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Superfluid density of states and pseudogap phenomenon in the BCS-BEC crossover
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We investigate single-particle excitations and strong-coupling effects in the BCS-BEC crossover regime of
a superfluid Fermi gas. Including phase and amplitude fluctuations of the superfluid order parameter within a
T -matrix theory, we calculate the superfluid density of states (DOS), as well as single-particle spectral weight,
over the entire BCS-BEC crossover region below the superfluid transition temperature Tc. We clarify how the
pseudogap in the normal state evolves into the superfluid gap, as one passes through Tc. While the pseudogap in
DOS continuously evolves into the superfluid gap in the weak-coupling BCS regime, the superfluid gap in the
crossover region is shown to appear in DOS after the pseudogap disappears below Tc. In the phase diagram with
respect to the temperature and interaction strength, we determine the region where strong pairing fluctuations
dominate over single-particle properties of the system. Our results would be useful for the study of strong-coupling
phenomena in the BCS-BEC crossover regime of a superfluid Fermi gas.
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I. INTRODUCTION

Strong correlation between particles is one of the most im-
portant key issues in condensed-matter physics. The recently
developed ultracold Fermi gases offer unique opportunities
for studying this important topic in a controlled manner, by
maximally using highly tunable physical parameters. Indeed,
the crossover from the BCS-type superfluid to the Bose-
Einstein condensation (BEC) of tightly bound molecules [1–4]
has been realized in 40K [5] and 6Li Fermi gases [6–8],
using a tunable pairing interaction associated with a Feshbach
resonance [9–14]. This BCS-BEC crossover demonstrates the
usefulness of an ultracold Fermi gas as a quantum simulator for
strongly correlated fermion systems. In particular, this system
is expected to be useful for the study of high-Tc cuprates [15].

The recent momentum-resolved photoemission-type spec-
troscopy developed by the JILA group [16] is a powerful tech-
nique for probing microscopic properties of a cold Fermi gas
in the crossover region [17,18]. This experiment is an analog
of the angle-resolved photoemission spectroscopy (ARPES)
in condensed-matter physics [19]. In the photoemission-
type experiment developed by JILA group [16], atoms are
transferred to the third empty atomic state by rf pulse. Using
this, one can directly measure the single-particle spectral
weight (SW), as well as the occupied density of states (DOS).
As a remarkable experimental result, the pseudogap has been
observed in 40K Fermi gas [20]. The back-bending curve of
single-particle dispersion has been observed as a characteristic
signature of pseudogap phenomenon [17,20].

The pseudogap has been considered as a crucial key issue
in the underdoped regime of high-Tc cuprates [15,19,21].
So far, various mechanisms have been proposed to explain
this phenomenon, such as preformed Cooper pairs [22–30],
antiferromagnetic spin fluctuations [28], localization of
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Cooper pairs [21,31], and hidden order [32]. However, the
complete understanding has not been obtained yet because of
the complexity of high-Tc cuprates. In contrast, the origin of
the pseudogap observed in a 40K Fermi gas [16,20] is well
understood. Namely, preformed pairs associated with strong
pairing fluctuations are responsible for this phenomenon [33].
Thus, cold Fermi gases are very suitable for the study of the
preformed pair scenario proposed in high-Tc cuprates.

Recently, the pseudogap phenomenon above superfluid
transition temperature (Tc) has been theoretically addressed
in the literature of cold Fermi gas [17,18,33–38]. It has
been shown that a gaplike structure emerges in the single-
particle excitation spectra in the pseudogap regime [33–35].
Also pointed out has been the existence of two pseudogap
temperatures T ∗ and T ∗∗ [33]: While a dip structure appears
in DOS below T ∗, a double-peak structure and back-bending
dispersion are seen in SW below T ∗∗.

In this article, we investigate single-particle excitations
and effects of strong pairing fluctuations in the BCS-BEC
crossover regime of a superfluid Fermi gas. Extending our
previous article for the pseudogap phenomenon above Tc [33]
to the superfluid phase below Tc, we calculate DOS within
a T -matrix theory. We clarify how the pseudogap above Tc

evolves into the superfluid gap below Tc. While the evolution
is continuous in the weak-coupling BCS regime, the superfluid
gap is shown to appear after the pseudogap disappears below
Tc in the crossover region. We also identify the region where
pairing fluctuations dominate over single-particle properties
in the phase diagram with respect to the temperature and
interaction strength. Recently, strong-coupling effects on SW
has been discussed below Tc [39]. In this article, we also treat
this quantity to examine how the pseudogap in DOS is related
to SW affected by pairing fluctuations.

This article is organized as follows. In Sec. II, we explain
our formulation based on a T -matrix theory. In Sec. III, we
present our numerical results for the superfluid DOS, as well
as SW, to discuss strong-coupling effects on these quantities.
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In Sec. IV, we present the phase diagram of a superfluid Fermi
gas to clarify the region where pairing fluctuations are crucial
for single-particle excitations. Throughout this article, we set
h̄ = kB = 1, and the system volume V is taken to be unity.

II. FORMALISM

We consider a three-dimensional Fermi gas, consisting of
two atomic hyperfine states described by pseudospin σ =
↑ ,↓. For simplicity, we assume that the two hyperfine states
are equally populated and ignore effects of a harmonic trap.
We also assume a broad Feshbach resonance as the origin of
tunable pairing interaction. In this case, it is known that the
detailed Feshbach mechanism is not crucial for the study of
interesting BCS-BEC crossover physics, so that we can safely
use the ordinary single-channel BCS model, given by

H =
∑
p,σ

ξpc†pσ c pσ

−U
∑

p, p′,q

c
†
p+q/2↑c

†
− p+q/2↓c− p′+q/2↓c p′+q/2↑. (1)

Here c
†
pσ is the creation operator of a Fermi atom with

pseudospin σ =↑ ,↓ and the kinetic energy ξp = εp − µ =
p2

2m
− µ measured from the chemical potential µ (where m

is an atomic mass). −U (<0) is a tunable pairing interaction
associated with a Feshbach resonance. In cold-atom physics,
this pairing interaction is conveniently measured in terms of
the s-wave scattering length as , which is related to U as [40],

4πas

m
= − U

1 − U
∑ωc

p
1

2εp

, (2)

where ωc is a high-energy cutoff. In this scale, the weak-
coupling BCS regime and the strong-coupling BEC regime are,
respectively, given by (kFas)−1 <∼ − 1 and (kFas)−1 >∼ 1, where
kF is the Fermi momentum. The region −1 <∼ (kFas)−1 <∼ 1 is
called the crossover region.

To consider fluctuations in the Cooper channel below Tc, it
is convenient to rewrite Eq. (1) into the form consisting of the
mean-field part and fluctuation contribution. Introducing the
Nambu field,

� p =
(

c p↑
c
†
− p↓

)
, (3)

we have [41]

H =
∑

p

�†
p[ξpτ3 − �τ1]� p − U

∑
q

ρ+(q)ρ−(−q). (4)

Here, τj (j = 1,2,3) are Pauli matrices acting on particle-hole
space. ρ±(q) ≡ [ρ1(q) ± iρ2(q)]/2 are the generalized density
operators, where ρj (q) = ∑

p �
†
p+q/2τj� p−q/2. In Eq. (4), the

first term is the mean-field Hamiltonian, where the superfluid
order parameter � ≡ U

∑
p〈c− p↓c p↑〉 is taken to be real and

proportional to the τ1 component. In this choice, ρ1(q) and
ρ2(q) physically describe the amplitude and phase fluctuations
of the order parameter, respectively [41,42]. Namely, the last
term in Eq. (4) describes effects of pairing fluctuations.

In this article, we take into account the last term in Eq. (4)
within the T -matrix approximation [39]. For this purpose,

FIG. 1. Fluctuation contributions to the self-energy 
 p(iωn) in
the T -matrix approximation employed in this article. (a) Self-energy
correction. (b) Particle-particle scattering matrix �q(iνn). The solid
and dashed lines represent the mean-field Green’s function G0

p(iωn)
and pairing interaction −U , respectively. The bubble diagrams
represent the zeroth-order correlation functions 
ss′

q (iνn) (where
s = ±), describing pairing fluctuations below Tc. The solid circles
are Pauli matrices τs .

we introduce the 2 × 2-matrix single-particle thermal Green’s
function, given by

G p(iωn) = 1

G0
p(iωn)−1 − 
 p(iωn)

. (5)

Here, G0
p(iωn)−1 ≡ iωn − ξpτ3 + �τ1 is the mean-field

Green’s function, where ωn is the fermion Matsubara fre-
quency. The 2 × 2-matrix self-energy 
 p(iωn) describes
fluctuation corrections. Within the T -matrix theory, it is
diagrammatically given by Fig. 1 [39]. Summing up the
diagrams in Fig. 1, we obtain


 p(iωn) = − 1

β

∑
q,νn

∑
s,s ′=±

�ss ′
q (iνn)τ−sG

0
p+q(iωn + iνn)τ−s ′ ,

(6)

where β = 1/T is the inverse temperature, νn is the boson
Matsubara frequency, and τ± = [τ1 ± iτ2]/2. The particle-
particle scattering matrix �ss ′

q (iνn) is given by(
�+−

q (iνn) �++
q (iνn)

�−−
q (iνn) �−+

q (iνn)

)

= −U

[
1 + U

(

+−

q (iνn) 
++
q (iνn)


−−
q (iνn) 
−+

q (iνn)

)]−1

. (7)

Here, 
ss ′
q (iνn) is the lowest order of the following correlation

function:


ss ′
q (iνn) =

∫ β

0
dτ 〈Tτ {ρs(q,τ )ρs ′ (q,0)}〉eiνnτ . (8)

Evaluating Eq. (8) within the zeroth order with respect to the
last term in Eq. (4), we have


ss ′
q (iνn) = 1

β

∑
p,ωn

Tr
[
τsG

0
p+q/2(iωn + iνn)τs ′G0

p−q/2(iωn)
]
.

(9)
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Executing the ωn summation in Eq. (9), we obtain


++
q (iνn)

= 1

4

∑
s=±1

∑
p

s�2

E p+q/2E p−q/2

E p+q/2 + sE p−q/2

ν2
n + (E p+q/2 + sE p−q/2)2

×
[

tanh

(
β

2
E p+q/2

)
+ s tanh

(
β

2
E p−q/2

)]
, (10)


+−
q (iνn) = 1

4

∑
s=±1

∑
p

[ (
1 + s

ξ p+q/2ξ p−q/2

E p+q/2E p−q/2

)

× 1

iνn − (E p+q/2 + sE p−q/2)

+
(

1 − ξ p+q/2

E p+q/2

) (
1 − s

ξ p−q/2

E p−q/2

)

× iνn

ν2
n + (E p+q/2 + sE p−q/2)2

]

×
[

tanh

(
β

2
E p+q/2

)
+ s tanh

(
β

2
E p−q/2

)]
,

(11)

where E p =
√

ξ 2
p + �2 is the Bogoliubov single-particle

excitation spectrum. The other components are given by

−−

q (iνn) = 
++
q (iνn) and 
−+

q (iνn) = 
+−
q (−iνn).

DOS is obtained from the analytic continued Green’s
function as

ρ(ω) =
∑

p

A( p,ω), (12)

where SW A( p,ω) has the form

A( p,ω) = − 1

π
ImG p(iωn → ω+ = ω + iδ)|11. (13)

The analytic continued self-energy 
 p(ω → ω+) involved in
G p(iω → ω+) is given by


 p(iωn → ω+)|11

= 
HF + 1

π

∑
q,s=±1

∫ ∞

−∞
dz

nB(z) + f (sE p+q)

z − sE p+q + ω+

×
(

1 − s
ξ p+q

E p+q

)
Im[�+−

q (z+)], (14)


 p(iωn → ω+)|12

= 1

π

∑
q,s=±1

∫ ∞

−∞
dz

nB(z) + f (sE p+q)

z − sE p+q + ω+

× s
�

E p+q
Im[�++

q (z+)], (15)

where z+ = z + iδ, and


HF = −U

2

∑
p

[
1 − ξ p

E p
tanh

(
βE p

2

)]
(16)

is the Hartree self-energy. The other components are given
by 
 p(ω+)|22 = −
 p(−ω+)|11, and 
 p(ω+)|21 = 
 p(ω+)|12.
In Eqs. (14) and (15), we have carried out the Matsubara

frequency summation by using the spectral representation of
�ss ′

q (iνq), given by

�+−
q (iνn) = −U − 1

π

∫ ∞

−∞
dz

Im[�+−
q (iνn → z+)]

iνn − z
,

(17)

�++
q (iνn) = − 1

π

∫ ∞

−∞
dz

Im[�++
q (iνn → z+)]

iνn − z
.

We actually calculate Eq. (12) after determining the
superfluid order parameter � and Fermi chemical potential
µ below Tc. In the present T -matrix theory, they are obtained
by solving the gap equation,

1 = U
∑

p

1

2Ep

tanh
Ep

2T
, (18)

together with the equation for the number of Fermi atoms,

N = 2

β

∑
p,ωn

G p(iωn)|11e
iδωn . (19)

This framework is a natural extension of the Gaussian
fluctuation theory developed by Nozières and Schmitt-Rink
(NSR) [3], where the self-energy correction 
 p(iωn) is taken
into account up to the first order. This T -matrix theory can
properly describe the BCS-BEC crossover behaviors of Tc and
µ [22,33] (see insets in Fig. 2). In addition, this theory is
consistent with the Goldstone’s theorem, in the sense that the
particle-particle scattering matrix �±±

q (iνn) in Eq. (7) has a
pole at q = νn = 0. Indeed, the condition that Eq. (7) has a
pole at q = νn = 0 gives

{1 + U [
++
q=0(0) + 
+−

q=0(0)]}
× {1 − U [
++

q=0(0) − 
+−
q=0(0)]} = 0. (20)

One finds from Eqs. (10) and (11) that the factor 1 −
U [
++

q=0(0) − 
+−
q=0(0)] vanishes identically when the gap

equation (18) is satisfied. We also note that, as in the NSR
theory [43], the present T -matrix theory also shows the
first-order phase transition in the BCS-BEC crossover region
(see Fig. 2), which is, however, an artifact of the theory.
To overcome this problem, one needs to include many-body
scattering effect between molecules in a consistent manner
[44]. Although this is an important problem in the BCS-BEC
crossover physics, in this article, we leave it as a future problem
and simply use � and µ in Fig. 2 to examine strong-coupling
effects on single-particle excitations below Tc.

III. SINGLE-PARTICLE PROPERTIES IN THE
SUPERFLUID PHASE

Figure 3 shows DOS at Tc (top panels), as well as at
T = 0 (bottom panels), in the BCS-BEC crossover. In the top
panels, the pseudogap structure can be seen around ω = 0 [33].
This structure becomes more remarkable with increasing the
interaction strength, reflecting the enhancement of pairing
fluctuations. On the other hand, since thermal fluctuations
are absent at T = 0, the well-known superfluid excitation gap
associated with the superfluid order parameter � appears in
the bottom panels in Fig. 3. The goal of this section is to
show how the pseudogap at Tc evolves into the superfluid gap
below Tc.
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FIG. 2. (Color online) Calculated superfluid order parameter �

(a) and Fermi chemical potential µ (b) in the BCS-BEC crossover
normalized by the Fermi temperature TF. We use these results in
calculating DOS in Sec. III. The upper and lower insets show Tc and
µ(Tc), respectively. [Tc is also shown in panel (b) as the dashed line.]
The first-order behavior seen in the crossover region [(kF as)−1 >∼−0.5] is an artifact of the T -matrix approximation we are using in
this article.

We find from Fig. 3 that the pseudogap is actually not a fully
gapped structure, but a dip structure around ω = 0. In this arti-
cle, we define the magnitude of pseudogap size EPG as the half
of the dip size in DOS at [ρ(ω0) + ρ(ω1)]/2, as schematically
shown in the inset of Fig. 4(b) (where ω0 and ω1 are the bottom
energy and lower peak position, respectively). Since one meets
the same problem in considering the superfluid gap ESF near
Tc, this definition is also used in evaluating ESF. Far below Tc

where pairing fluctuations are weak, this ESF coincides with
the ordinary definition of superfluid energy gap in DOS.

In considering how the pseudogap at Tc evolves into the
superfluid gap below Tc, we first note the following two key
issues which can be seen in Fig. 3. The first one is that the size
difference between the pseudogap EPG at Tc and the superfluid
gap ESF at T = 0 evaluated from Fig. 3 strongly depends on
the interaction strength. As shown in Fig. 4(a), while EPG is
smaller than ESF in the weak-coupling BCS regime, the former
becomes larger than the latter in the BCS-BEC crossover
region. This implies that, while the pseudogap in the BCS
regime may smoothly change into the superfluid gap below
Tc, the large pseudogap at Tc in the crossover region needs to

FIG. 3. (Color online) (Top panels) Pseudogap in DOS ρ(ω)
at Tc. (Bottom panels) DOS at T = 0. In this figure, the left and
right panels show the results in the BCS side [(kF as)−1 � 0] and
in the BEC side [(kF as)−1 � 0], respectively. At T = 0, small but
finite intensity at ω ∼ 0 seen in panel (b1) is due to a small
imaginary part (δ = 0.01TF) introduced to the energy in numerical
calculations.

FIG. 4. (Color online) (a) Comparison of the pseudogap size
EPG at Tc and superfluid gap size ESF at T = 0 evaluated from
Fig. 3. For comparison, we also show the energy gap EG in the
BCS-Leggett crossover theory [2] (which equals � when µ > 0
and equals

√
µ2 + �2 when µ < 0). Panel (b) shows the behaviors

of these quantities in the strong-coupling BEC regime, where one
finds EPG � ESF � EG when (kFas)−1 >∼ 3. The inset shows how to
determine EPG and ESF from Fig. 3. Since the pseudogap actually
does not have a clear energy gap, we conveniently define the gap size
as half of the dip size at [ρ(ω0) + ρ(ω1)]/2, as shown in the inset,
where ω0 and ω1 are the bottom energy and lower peak position,
respectively.
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shrink below Tc, in addition to the opening of the superfluid
gap.

The second key issue in Fig. 3 is that, although the
pseudogap structure in DOS looks similar to the superfluid gap,
the former does not have the coherence peaks at the gap edges.
However, even in the superfluid phase below Tc, the coherence
peaks are known to disappear by strong-coupling effects. In

the present case, these strong-coupling effects involve pairing
fluctuations excited thermally and the formation of tightly
bound molecules. While the former effects are expected only
at finite temperatures, the latter may exist down to T = 0 in
the BEC regime. The latter effect can be easily confirmed
by using the superfluid DOS within the mean-field theory,
given by

ρ(ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

m3/2

2
√

2π2 [θ (ω − �) − θ (−ω − �)]
[√√

ω2 − �2 + µ
(

ω√
ω2−�2 + 1

)
+θ (µ2 + �2 − ω2)

√
−√

ω2 − �2 + µ
(

ω√
ω2−�2 − 1

)]
(µ > 0),

m3/2

2
√

2π2 [θ (ω −
√

µ2 + �2) − θ (−ω −
√

µ2 + �2)]

×[
ω√

ω2−�2 + 1
]√√

ω2 − �2 − |µ| (µ < 0).

(21)

In the BCS regime where µ > 0, the singularity in
ω/

√
ω2 − �2 in the upper equation gives the diverging

coherence peaks at ω = ±�. In contrast, the singularity at
|ω| = � in the lower equation is less important in the BEC
regime when µ < 0, because DOS is finite only when |ω| �√

�2 + µ2 > �. Since the negative µ in the BEC regime
is a strong-coupling effect associated with the formation of
tightly bound molecules [2,3], the suppression of the coherence
peaks in the BEC regime at T = 0 may be also regarded as a
strong-coupling effect. From the preceding discussion, we find
that the coherence peaks in DOS may be used to determine the
region where strong-coupling effects are less important and
one can discuss superfluid properties to some extent within
the weak-coupling mean-field BCS theory.

We now consider the superfluid DOS ρ(ω) below Tc.
Figures 5–7 show the temperature dependence of calculated
ρ(ω) in the BCS-BEC crossover. In the weak-coupling BCS
regime (Fig. 5), the pseudogap at Tc is found to smoothly
change into the superfluid gap below Tc. One can see the
growth of the coherence peaks in panels (a2) and (a3), and
the BCS-type superfluid DOS having a clear gap structure
with sharp coherence peaks is eventually realized far below Tc

[panel (a4)]. We note that a similar continuous evolution from
the pseudogap to the superconducting gap has been observed
in the underdoped regime of high-Tc cuprates [21,45].

Figure 5 also shows the intensity of SW in the right panels.
As discussed in our previous article [33], the pseudogap
phenomenon in SW is not remarkable in the BCS regime.
Indeed, a peak line corresponding to the free particle dispersion
ω = p2/2m − µ is only seen in panel (b1), although the
pseudogap can be clearly seen in panel (a1). The expected
superfluid gap simply opens at ω = 0 below Tc, as shown in
panels (b2)–(b4). Comparing these results with the mean-field
expression,

A( p,ω) = 1

2

[
1 + ε p − µ

E p

]
δ(ω − E p)

+ 1

2

[
1 − ε p − µ

E p

]
δ(ω + E p), (22)

we find that the overall behavior of SW in the BCS regime is
essentially the same as that in the mean-field theory.

We obtain quite different results in the unitarity limit shown
in Fig. 6. In this case, panel (a2) clearly shows that the
superfluid gap structure is still absent around ω = 0 even
at T = 0.9Tc. This is because, although the superfluid order
parameter � itself is finite, the superfluid gap structure in
DOS is smeared out by strong pairing fluctuations at this
temperature. However, panel (a2) also shows that pseudogap
structure becomes obscure, indicating the suppression of
pairing fluctuations (although they are still strong enough to
smear out the superfluid gap in DOS).

This suppression of pseudogap below Tc can be also seen in
SW. In Fig. 6(b1), we can see the typical pseudogap structure
of SW, namely, the double-peak structure consisting of a

FIG. 5. (Color online) Temperature dependence of DOS ρ(ω)
and intensity of SW A( p,ω) in the weak-coupling BCS regime
[(kF as)−1 = −1].
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FIG. 6. (Color online) Same plot as in Fig. 5 for (kF as)−1 = 0
(unitarity limit).

positive-energy (particle) and negative-energy (hole) branches.
At T = 0.9Tc [panel (b2)], this double-peak structure becomes
obscure due to the appearance of finite spectral intensity
around ω = 0. However, the superfluid gap still does not open
at ω = 0 at this temperature, being consistent with panel (a2).

At lower temperatures, when the pseudogap in DOS almost
disappears, Fig. 6(a3) shows that a dip structure appears around
ω = 0. Correspondingly, SW also has a gap structure at ω =
0, as shown in panel (b3). These superfluid gap structures
develop at lower temperatures, and they eventually reduce to
the BCS-type DOS and SW far below Tc, as shown in panels
(a4) and (b4), respectively [46].

The preceding results indicate that, in the crossover region,
the superfluid gap appears in DOS after the pseudogap
almost disappears. This is quite different from the continuous
evolution from the pseudogap to the superfluid gap in the
weak-coupling BCS regime. Since strong pairing fluctuations,
which are essential for the pseudogap phenomenon, must be
suppressed to obtain the superfluid gap in DOS and SW, the
evolution from the pseudogap to superfluid gap is a competing
phenomenon in the crossover region.

The pseudogap in the unitarity limit has been recently
investigated by many authors by various theoretical methods
[17,35–38]. Here, we briefly compare our results with the
previous ones. While the pseudogap structure in Fig. 6(b1) is
consistent with the recent quantum Monte Carlo calculations
at Tc [38], Refs. [35] and [36] (which are, respectively, based
on the dynamical cluster approximation and conserving �-
derivative theory) report the absence of such a clear pseudogap
structure. In this case, the superfluid gap simply develops
in SW below Tc, without competing with the pseudogap

FIG. 7. (Color online) Same plot as in Fig. 5 for (kF as)−1 = 0.8
(BEC regime).

[36]. However, even in Refs. [35] and [36], one obtains
a pseudogap structure in SW in the BEC regime. For the
validity of the T -matrix theory used in this article, we note
that the recently observed strong-coupling corrections to the
photoemission-type spectrum at the unitarity [16,20] has been
well explained by the T -matrix theory [17], as well as a
quantum cluster expansion theory [37]. This agreement with
the experiment implies that the T -matrix theory used in this
article may correctly describe strong-coupling phenomena in
the unitarity regime of real cold Fermi gases to some extent,
although one needs further studies to settle the controversy
among the strong-coupling theories.

In the strong-coupling BEC regime, since tightly bound
molecules have been already formed far above Tc, DOS has
a clear gap structure even at Tc, as shown in Fig. 7(a1).
Because of this clear gap structure, although the shrinkage
of this gap can be seen in panel (a2) (which is considered
to correspond to the suppression of the pseudogap discussed
in Fig. 6), one cannot precisely determine the temperature
where the superfluid gap structure at ω = 0 starts to appear in
Fig. 7. In this regard, we note that the chemical potential µ is
negative in the case of Fig. 7. Thus, as is discussed in Sec. IV,
one should regard the system in this regime as a molecular
Bose gas, rather than a Fermi gas.

Figures 7(b3) and 7(b4) show the appearance of a sharp
negative-energy branch in SW far below Tc, which has been
also reported in Ref. [39]. This means that the overall spectral
structure becomes close to the mean-field superfluid result
given by Eq. (22) far below Tc (although the chemical potential
µ remarkably deviates from the Fermi energy εF). For the
appearance of this negative-energy (hole) branch, we briefly
note that it is absent in the BEC limit where the molecular
formation occurs within the simple two-body physics. On
the other hand, SW has both a positive-energy (particle) and
negative-energy (hole) branches in the BCS regime, reflecting
that Cooper pairs are many-body bound states assisted by

043630-6



SUPERFLUID DENSITY OF STATES AND PSEUDOGAP . . . PHYSICAL REVIEW A 82, 043630 (2010)

Fermi surface. Thus, the sharp hole branch in panels (b3)
and (b4) indicates that the many-body effect still contributes
to pair formation to some extent even in the BEC regime at
(kFas)−1 = 0.8.

In the strong-coupling BEC limit, the Green’s function in
Eq. (5) reduces to [39,47]

G p(iωn)|11 = −iωn − ξp

ω2
n + ξ 2

p + �2
PG + �2

. (23)

[We summarize the derivation of Eq. (23) in the Appendix.]
Here

� =
√

8πn0
B

m2as

(24)

is the superfluid order parameter in the BEC limit, and �PG =√
8πñB/m2as is the pseudogap parameter [39], where n0

B and
ñB represent the molecular condensate density and molecular
noncondensate density, respectively. Equation (23) shows that
the single-particle excitation gap EG is given by

EG =
√

µ2 + (
�2 + �2

PG

) =
√(

1

2ma2
s

)2

+ 4πn

m2as

, (25)

where n = 2[n0
B + ñB] is the total fermion density, and we

have used the expression µ = −1/2ma2
s in the BEC limit

[40]. Equation (25) means that the excitation gap in DOS
becomes T independent deep inside the BEC regime. Indeed,
Fig. 4(b) shows that EPG � ESF(� EG) when (kFas)−1 >∼ 3.
In the extreme BEC limit (a−1

s → +∞), Eq. (25) reduces to
half of the binding energy of a two-body bound state Ebind =
1/ma2

s , as expected.
Before ending this section, we note that, although the

overall structure of DOS is very close to the BCS-type DOS
at T = 0 (see the lower panels in Fig. 3), the gap size ESF in
DOS at T = 0 is smaller than the magnitude of superfluid order
parameter evaluated in the BCS-Leggett crossover theory [2]
(which consists of the mean-field gap equation and mean-field
number equation), as shown in Fig. 4(a). This is because
the self-energy correction 
 p(iωn) in Eq. (5) still affects
single-particle excitations even at T = 0, although pairing
fluctuations are suppressed far below Tc. Indeed, in the present
T -matrix theory, the superfluid gap in DOS is affected by the
off-diagonal self-energy 
 p(iω → ω + iδ)|12 at ω ∼ � even
far below Tc. In addition, the present strong-coupling theory
involves effects of an effective molecular interaction within
the Born approximation; namely, the effective molecular
scattering length equals aB = 2as [40] in the BEC regime.
This effective boson-boson interaction leads to the quantum
depletion nd (which describes the number of noncondensate
fermions at T = 0), which decreases the condensate fraction
n0

B = [n − nd ]/2, as well as the magnitude of superfluid
order parameter in the BEC regime given by Eq. (24). These
effects are completely ignored in the BCS-Leggett crossover
theory [2], so that the superfluid gap size ESF in DOS
becomes smaller than � evaluated in the mean-field-type
crossover theory. However, since these strong-coupling effects
are eventually suppressed deep inside the BEC regime, the
difference between the two theories becomes small in the BEC
limit, as shown in Fig. 4(b).

IV. PHASE DIAGRAM IN THE BCS-BEC CROSSOVER

Figure 8 shows the phase diagram of a cold Fermi gas
in the BCS-BEC crossover. In panel (a), we introduce three
characteristic temperatures, T̃ ∗, T ∗, and 2|µ(Tc)|, in order
to conveniently identity the region where pairing fluctuations
dominate over single-particle properties. T̃ ∗ is the temperature
where the superfluid gap appears in DOS below Tc [48]. The
region above T̃ ∗ is considered to be dominated by strong
pairing fluctuations even in the superfluid state. T ∗ is the
so-called pseudogap temperature discussed in our previous
article [33], where the pseudogap starts to emerge in DOS
above Tc. In addition, we also take into account the fact that
physical properties in the strong-coupling BEC regime are
close to those of a molecular Bose gas, rather than a Fermi
gas. Noting that the molecular binding energy Ebind in this
regime is deeply related to the Fermi chemical potential as
Ebind � 2|µ| when µ < 0, one may expect that the thermal
dissociation of molecules is suppressed in the BEC regime

FIG. 8. (Color online) Phase diagram of a cold Fermi gas in the
BCS-BEC crossover. (a) Characteristic temperatures introduced in
this article. T̃ is the temperature below which the superfluid gap
appears in DOS [48]. 2|µ(Tc)| in the BEC regime (µ < 0) gives a
characteristic temperature below which thermal dissociation of bound
molecules is suppressed. Thus, the right side of this line may be
regarded as the region of tightly bound molecular Bose gas, rather than
a Fermi gas. T ∗ is the pseudogap temperature obtained in Ref. [33],
where the pseudogap structure starts to appear in DOS above Tc. In
addition to these characteristic temperatures, we also introduce Tcp

as the temperature at which the BCS-type coherence peaks appear
in DOS. Below Tcp, the system becomes close to the simple weak-
coupling BCS state, at least with respect to single-particle excitations.
(b) Phase diagram of a cold Fermi gas. PG, pseudogap phase; NF,
normal Fermi gas; NB, normal state molecular Bose gas [33]; SF,
superfluid Fermi gas with a superfluid gap in DOS; MBEC, BEC of
molecular bosons. We emphasize that only Tc is the phase transition
temperature, and the others are all crossover temperatures without
being accompanied by any phase transition.
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when T <∼ 2|µ| (µ < 0). Thus, it is convenient to regard the
right side of the 2|µ(Tc)| line in Fig. 8(a) as the molecular Bose
gas regime [33]. We briefly note that T̃ ∗, T ∗, and 2|µ(Tc)| are
all crossover temperatures without being accompanied by any
phase transition.

Using these three characteristic temperatures in Fig. 8(a),
we find that the region “PG” in Fig. 8(b), which is surrounded
by T ∗, T̃ ∗, and 2|µ(Tc)|, is the one where the pseudogap
structure in DOS is remarkable. Thus, we conveniently call
this region the pseudogap region (although, strictly speaking,
the region below Tc is the superfluid state). In this pseudogap
regime, strong pairing fluctuations induce a gaplike structure
in DOS in both the normal and superfluid phases.

Below T̃ ∗ [“SF” in Fig. 8(b)], instead of the disappearance
of the pseudogap, the superfluid gap starts to develop in DOS,
so that single-particle properties are dominated by superfluid
gap. As one further decreases the temperature below T̃ ∗,
one eventually obtains the weak-coupling BCS-type DOS
characterized by a clear excitation gap and coherence peaks,
as discussed in Sec. III. To conveniently include this, we
also introduce the characteristic temperature Tcp at which
the coherence peaks appear in DOS [49] in Fig. 8(a). Below
Tcp, single-particle properties are close to those in the weak-
coupling mean-field BCS state.

In the molecular Bose gas regime [“NB” and “MBEC” in
Fig. 8(b)], a large single-particle excitation gap already exists
above Tc, reflecting a large molecular binding energy (Ebind �
2|µ| � 1/ma2

s [40]). This large binding energy suppresses
single-particle excitations accompanied by pair breaking in the
superfluid phase below Tc, so that excitations are dominated by
collective Bogoliubov modes, as in the case of Bose superfluid.
In this sense, we call the superfluid region in the molecular
Bose gas regime the BEC of molecular bosons [“MBEC” in
Fig 8(b)].

V. SUMMARY

To summarize, we have investigated single-particle excita-
tions and strong-coupling effects in the BCS-BEC crossover
regime of a superfluid Fermi gas. Extending our previous
work above Tc to the superfluid phase below Tc, we have
numerically calculated the superfluid DOS, as well as SW,
within the T -matrix theory. We have systematically examined
how the pseudogap at Tc evolves into the superfluid gap, as
one decreases the temperature below Tc. While the evolution is
continuous in the weak-coupling BCS regime, the superfluid
gap was shown to appear in DOS after the pseudogap is
suppressed below Tc in the crossover regime. Using these
results, we have identified the pseudogap region where strong
pairing fluctuations dominate over single-particle properties in
the phase diagram of a cold Fermi gas.

Since the observation of single-particle excitations has re-
cently become possible in cold Fermi gases by photoemission-
type experiment, measurements of single-particle excitation
spectrum affected by strong pairing fluctuations discussed in
this article would be an interesting problem to understand
the strong-coupling superfluid properties in the BCS-BEC
crossover.

In this article, for simplicity, we have assumed a uniform
Fermi gas. In a trapped system, it is an interesting problem
how the spatial inhomogeneity affects the evolution from

the pseudogap to the superfluid gap below Tc. Since a real
Fermi gas is always trapped in a harmonic potential, this is
also an important issue in comparing experimental data with
theoretical calculations. We will discuss this problem in a
future article.
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APPENDIX: ANALYTIC RESULTS IN STRONG-COUPLING
BEC LIMIT

In this appendix, we present the outline of the derivation
of Eq. (23). For more details, see Refs. [39,47]. In the BEC
limit, the particle-particle scattering matrix in Eq. (7) reduces
to [39,47](

�+−
q (iνn) �++

q (iνn)

�−−
q (iνn) �−+

q (iνn)

)

� 8π

m2as

1

ν2
n + EB

q
2

×
(−iνn + q2/4m − µB −µB

−µB iνn + q2/4m − µB

)
,

(A1)

where EB
q =

√
q2

4m
( q2

4m
+ 2|µB|) is the Bogoliubov excitation

spectrum of a molecular BEC, and µB = −�2/4|µ| is the
Bose chemical potential. The number equation in the BEC limit
reduces to N = 2(n0

B + ñB), where n0
B and ñB are the molecular

condensate and noncondensate density, respectively, given by

n0
B = 1

β

∑
q,νn

µB

ν2
n + EB

q
2 , (A2)

ñB = 1

β

∑
q,νn

iνn + q2/4m − µB

ν2
n + EB

q
2 . (A3)

Using Eq. (A1), we approximate the self-energy in Eq. (6) to


 p(iωn) � 8π

m2as

(
ñBG0

p(iωn)|22 n0
BG0

p(iωn)|12

n0
BG0

p(iωn)|21 ñBG0
p(iωn)|11

)
, (A4)

where we have approximately set q = νn = 0 in G0
p+q(iωn +

iνn). Using Eq. (A4), one obtains the diagonal component of
the Green’s function as

G p(iωn)|11

= 1

iωn − ξp − 8πñB

m2as
G0

p(iωn)|22 −
[
�− 8πn0

B
m2as

G0
p(iωn)|12

]2

iωn+ξp− 8πñB
m2as

G0
p(iωn)|11

.

(A5)

Expanding the denominator in Eq. (A5) up to O(�2), we obtain
Eq. (23).
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