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Emerging bosons with three-body interactions from spin-1 atoms in optical lattices
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We study two many-body systems of bosons interacting via an infinite three-body contact repulsion in a
lattice: a pairs quasicondensate induced by correlated hopping and the discrete version of the Pfaffian wave
function. We propose to experimentally realize systems characterized by such interaction by means of a proper
spin-1 lattice Hamiltonian: spin degrees of freedom are locally mapped into occupation numbers of emerging
bosons, in a fashion similar to spin-1/2 and hardcore bosons. Such a system can be realized with ultracold spin-1
atoms in a Mott insulator with a filling factor of 1. The high versatility of these setups allows us to engineer
spin-hopping operators breaking the SU(2) symmetry, as needed to approximate interesting bosonic Hamiltonians
with three-body hardcore constraint. For this purpose we combine bichromatic spin-independent superlattices
and Raman transitions to induce a different hopping rate for each spin orientation. Finally, we illustrate how our
setup could be used to experimentally realize the first setup, that is, the transition to a pairs quasicondensed phase
of the emerging bosons. We also report on a route toward the realization of a discrete bosonic Pfaffian wave
function and list some open problems for reaching this goal.
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I. INTRODUCTION

Ultracold atoms and trapped ions offer unprecedented
possibilities for realizing, controlling, and observing quantum
many-body phenomena [1–3]. For these reasons, in recent
years they have been frequently employed as quantum simula-
tors, that is, controllable laboratory setups mimicking other
interesting but not easily accessible systems described by
the same mathematical model. Simulation targets come from
such diverse research fields as condensed-matter or even
high-energy physics. A paradigmatic quantum simulator is a
system of bosonic atoms in an optical lattice, which provides a
practically ideal realization of the Bose-Hubbard model [4–7].
On one hand, many of these studies aim at the simulation of
systems which are otherwise difficult to treat numerically, such
as the Fermi-Hubbard model [8,9] or many-body frustrated
models [3]. On the other hand, a parallel goal of quantum sim-
ulation is the experimental study of “blackboard” theoretical
models, such as the Ising model [10], the Tonks-Girardeau
gas [11], or the one-dimensional Dirac equation [12].

Within the last context, the possibility of simulating many-
body systems characterized by interactions involving more
than two particles is of great interest. For example, three- and
four-body interactions are known to be the essential ingredients
of lattice gauge theories [13]. Such theories and their related
lattice models play important roles in the context of novel
exotic quantum phases, of the breakdown of the Landau-
Ginzburg scenario and of the confinement-deconfinement
transition [14–16]. Besides that, local many-body interactions
are essential also in paradigmatic spin models exhibiting topo-
logical order [17–19]. Moreover, in the presence of external
magnetic fields, they lead to various exotic fractional quantum
Hall states [20,21]. A celebrated example is the Pfaffian wave
function [22,23], which arises in bosonic systems at filling
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factor ν = 1 and exhibits topological order. Its quasiexcitations
are non-Abelian anyons; that is, the exchange of these quasi-
particles is associated with noncommuting transformation of
the system [24]. Furthermore, Pfaffian states can be found
within other frameworks, such as p-wave superconductivity,
where the excitations correspond to zero-energy Majorana
fermions [22,25,26], or one-dimensional systems [27]. This
motivates the need for experimentally feasible proposals
realizing three- or many-body interactions.

Recently, cold-atom theorists have been developing several
approaches to achieve this goal. The early proposals employed
higher-order superexchange interactions on triangular and
Kagomé lattices [28]. However, the temperatures required are
even lower than those necessary for quantum magnetism in
Mott phases, a demanding task to which a lot of experimen-
talists are still committed. Superexchange interactions of the
second order involving Raman transitions between atoms and
molecules in square lattices have been proposed to realize
an effective ring-exchange Hamiltonian for bosons [29]. A
completely different approach has been proposed by Büchler
et al. [30], who suggested using polar molecules with a setup
inhibiting two-body interactions. Very recently it has been
suggested to use the dissipative dynamics in the presence of
a large three-body loss rate in order to enforce on the system
an effective three-body hardcore constraint [31,32]. The idea
is very reminiscent of a scheme experimentally realized by
Syassen et al. [33] to induce strong correlations in molecular
gases. The dissipative scheme has been combined with the
rotation of the trap to induce artificial magnetic fields and
achieve the formation of the Pfaffian wave function [32].
Finally, it has been theoretically shown that a perturbative
treatment of vibrational bands in optical lattices induces
effective many-body terms in the Hamiltonian, which have
also been experimentally observed in the time evolution of the
quantum phase of the system [34,35].

The purpose of this article is twofold. The first one is
to investigate two systems of bosons interacting via infinite
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three-body repulsion in a lattice. We show that in one dimen-
sion the presence of correlated hopping in such models leads to
an exotic quantum phase, characterized by quasicondensation
of pairs of particles. In the presence of magnetic fields in 2D,
the ground state of such a model corresponds to the lattice
version of the bosonic Pfaffian wave function. In particular,
we discuss the stability of the topological properties of such
wave function in a nondilute limit with the magnetic length
comparable to the lattice spacing.

The second purpose is to illustrate how spin-1 atoms in a
Mott insulator (MI) with filling factor of 1 offer a possibility
of tailoring three-body interactions in a setup combinable with
artificial gauge fields. The idea is based on mapping the internal
states of real spin-1 bosons on the lattice into occupation
numbers of emerging bosons, similarly to the correspondence
between spin-1/2 particles and emerging hardcore bosons. An
easy generalization to higher-spin atoms can open the route to
the simulation of four-, five-, and many-body contact-infinite
repulsions. The first proposed model, which exhibits the
quasicondensation of pairs, can be carried on rather simply
in such a framework. On the other side, the realization of the
lattice Pfaffian wave function seems to be slightly outside the
class of models accessible with our proposal.

The experimental system discussed in this article greatly
exploits the use of bichromatic superlattices [36] in order
to individually tailor the hopping rates of the different
spin species. This scheme is rather general and could
allow the realization of very general hopping operators,
including even spin-flipping terms; therefore, it could find
applications beyond the problem of many-body interactions,
such as in fermionic systems or in non-Abelian gauge
theories [37].

The article is organized as follows: We start in Sec. II
describing how to realize three-body interacting bosons with
atomic setups characterized by three relevant degrees of
freedom. Subsequently, in Sec. III, we consider the explicit
case of atoms with F = 1 hyperfine ground manifold and we
derive the related superexchange Hamiltonian. We then move
to the problem of having a complete external access to all
the relevant parameters of the real spin-1 system and in
Sec. IV we describe how superlattices and Raman transitions
can be used to achieve this goal. The next two sections
are devoted to the discussion of systems characterized by
three-body interactions and their possible implementation with
our proposal. In Sec. V we present a phase characterized
by quasi-long-range order of pairs. In Sec. VI we discuss
the problems faced in trying to engineer the Pfaffian wave
function. Finally, in Sec. VII our conclusions are presented.

II. THE MAPPING

As a starting point for our work, we recall here that particles
interacting via a three-body infinite repulsion effectively
undergo a three-body hardcore constraint; that is, there can
not be more than two particles at a time in the same place.
Therefore, in the presence of a spatially discrete setup, the
description of local (on-site) degrees of freedom is captured
by a finite Hilbert space of dimension three:

Hloc
3hb = span{|n = 0〉,|n = 1〉,|n = 2〉}. (1)

FIG. 1. (Color online) Sketch of the proposed mapping. A Mott
insulator with a filling factor of 1 whose atoms have three relevant
degrees of freedom can simulate a system of bosons with an infinite
contact repulsion via the mapping W. The three relevant degrees of
freedom can be identified with a F = 1 hyperfine manifold.

Since three-body elastic interactions are rather weak in
nature, we have to simulate such an ideal system by means
of a proper realistic discrete setup characterized by a local
Hilbert space Hloc

real of dimension three. A unitary mapping
between the local Hilbert spaces (Fig. 1),

W : Hloc
real −→ Hloc

3hb, (2)

allows us to relate the real experimental dynamics to the
dynamics of the emerging bosons characterized by an infinite
three-body interaction. If the first is described by some
effective Hamiltonian H eff

real, the correspondent H3hb would then
be

H3hb = W⊗L2
H eff

realW
†⊗L2

, (3)

and tuning experimental parameters in H eff
real permits in princi-

ple the investigation of a variety of “blackboard” H3hb.
In the context of ultracold atoms in optical lattices, which

offer an unprecedented control on discrete structures, it is then
quite natural to consider a MI with a filling factor of 1 and
three internal degrees of freedom. In this article we focus our
attention on an hyperfine manifold F = 1, as exhibited by
87Rb or 23Na, that have already been successfully loaded into
an optical lattice and cooled into a MI state without freezing
the spin dynamics [38]. If the experimental apparatus is tuned
to a not-too-deep MI, small quantum fluctuations in the atomic
position give rise to a nontrivial dynamics, usually addressed
as superexchange effects. This dynamics can be characterized
by an effective Hamiltonian H eff

real obtained through a second-
order perturbative expansion of the kinetic term of the Bose-
Hubbard Hamiltonian describing the real atoms on the lattice
[39]. The next section is indeed devoted to a detailed derivation
of such effective theory. However, we underline that this is
not the only possible choice and other internal degrees of
freedom could have been chosen; as proposed in Ref. [40] for
a different purpose, these three local degrees of freedom could
even correspond to different scalar atomic species.
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III. SPIN 1 ATOMS

The focus of this section consists of deriving the effec-
tive Hamiltonian describing magnetic degrees of freedom
inside the MI and of investigating whether interesting H3hb

Hamiltonians can be effectively mimicked via the proposed
mapping. The proposed analysis is generally valid for systems
of dimension one, two, and three. In order to describe the
experimental system of ultracold spin-1 atoms in an optical
lattice, we rely on the standard Bose-Hubbard Hamilto-
nian [41] (α = {−, ◦ ,+} runs over the three spin states
{|mF = −1〉,|mF = 0〉,|mF = +1〉}):

Hreal =
∑

〈i,j〉,α
[−tαb

†
i,αbj,α + H.c.] +

∑
i,α

�αni,α

+ U0

2

∑
i

ni(ni − 1) + U2

2

∑
i

(�S2
i − 2ni

)
, (4)

with ni,α = b
†
i,αbi,α , ni = ∑

α ni,α , and (�Si)α,β = b
†
i,α

�Fα,βbi,β

is the total spin on the site i. The first term represents the
kinetic energy (hopping) and the �α’s represent the energy
offset of each of the three states (�◦ = 0); the last two terms
describe the two-body interaction on a same site that, due to the
spin nature of atoms, is characterized by two s-wave scattering
lengths, a0 for the S tot = 0 channel and a2 for the S tot = 2 one,
with the ratio U2/U0 = (a2 − a0)/(a2 + 2a0) [41].

Hamiltonian (4) preserves the total magnetization M ≡∑
i S

z
i = ∑

i αi of the sample, allowing us to work in a
convenient block-diagonal representation. Moreover, each
energy offset �α plays the role of a chemical potential for
the atomic species α. As a consequence, in the absence of
spin-flipping interactions (nα conserved), the �α would play
no role in the dynamics at fixed magnetization. In our case
the situation is complicated by the presence, in the atomic
Hamiltonian, of terms which flip the atomic spin:

|mF = 0〉|0〉 ←→ |+1〉|−1〉. (5)

The �α would still not play any role in the dynamics if the
following relation holds: 2�◦ = �+ + �−. In presence of an
external magnetic field, only the linear Zeeman shift satisfies
this requirement, whereas the quadratic one does not. In this
case, the relevant dynamical quantity is δ = �+ + �− − 2�◦,
which quantifies deviations from the linear splitting regime. It
is experimentally possible to control small values of δ dressing
the system with microwave fields [42].

In case interaction energies are larger than the hopping rates
(U0 + U2, U0 − 2U2 	 |tα|), the system is in a MI phase and
with a second-order perturbative expansion of the kinetic term
we compute the superexchange Hamiltonian H eff

real, whose link
expression reads as follows:

Link basis real: {|mF,site1 = −〉|mF,site2 = −〉,|−〉|◦〉,|−〉|+〉,|◦〉|−〉,|◦〉|◦〉,|◦〉|+〉,|+〉|−〉,|+〉|◦〉,|+〉|+〉},
H eff

real = H
eff(0)
real + H

eff(2)
real , H

eff(0)
real = Diag (2�−,�−,�+ + �−,�−,0,�+,�+ + �−,�+,2�+) ,

H
eff(2)
real = − 1

U0 + U2

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4|t−|2 0 0 0 0 0 0 0 0
0 |t−|2 + |t◦|2 0 2t∗◦ t− 0 0 0 0 0
0 0 (|t−|2 + |t+|2)B 0 −(t∗◦ t− + t∗+t◦)A 0 2t∗+t−B 0 0
0 2t∗−t◦ 0 |t−|2 + |t◦|2 0 0 0 0 0
0 0 −(t∗◦ t+ + t∗−t◦)A 0 |t◦|2C 0 −(t∗◦ t− + t∗+t◦)A 0 0
0 0 0 0 0 |t◦|2 + |t1|2 0 2t∗+t◦ 0
0 0 2t∗−t+B 0 −(t∗−t◦ + t∗◦ t+)A 0 (|t+|2 + |t−|2)B 0 0
0 0 0 0 0 2t∗◦ t+ 0 |t◦|2 + |t+|2 0
0 0 0 0 0 0 0 0 4|t+|2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(6)

A = U2(U0 + U2)

(U0 + U2)(U0 − 2U2) + δU0
+ U2(U0 + U2)

(U0 + U2)(U0 − 2U2) + δ(U2 − U0)
,

B = (U0 − δ)(U0 + U2)

(U0 + U2)(U0 − 2U2) + δ(U2 − U0)
, C = 4(U0 − U2 + δ)(U0 + U2)

(U0 + U2)(U0 − 2U2) + δU0
.

Let us now consider a simple class of mappings W{ϕ} which
will be used in the following, characterized only by a simple
phase freedom:

W{ϕ}|mF = α〉real = eiϕα |n = α + 1〉3hb. (7)

These mappings are characterized by the property that the
magnetization of the spin insulator is directly mapped into

the density of the three-hardcore bosons. Therefore, since the
Hamiltonian in Eq. (6) contains only off-diagonal terms which
preserve the total magnetization, we automatically gain the
possibility of studying hardcore boson setups at fixed density.

As far as the interaction strengths are concerned, we report
that the scattering lengths a0 and a2 have very similar values in
both 87Rb and 23Na. This means that the spin-dependent part
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of the interaction is, in natural setups, almost negligible, as it is
clearly stated once the ratio U2/U0 is calculated, respectively,
−0.005 and 0.04 for the two atoms [38,43,44]. This could,
in principle, be a weak point of our proposal, because four
nondiagonal matrix element in H eff

real are proportional to U2.
In the next sections we show how to cope with this problem,
namely, that even in the case in which it is not possible to
externally tune the ratio U2/U0 to higher values it is possible
to experimentally observe some interesting physics.

Before concluding this section, we stress that the off-
diagonal matrix elements present in Eq. (6) correspond, via
the mappings W{ϕ} in Eq. (7), to terms describing the hopping
of three-hardcore bosons. In particular, the matrix elements
of the second sub- and superdiagonal correspond in H3hb to
one-particle hopping terms,

|0〉|1〉 ↔ |1〉|0〉, |1〉|1〉 ↔ |2〉|0〉, |1〉|2〉 ↔ |2〉|1〉, (8)

whereas those of the fourth sub- and superdiagonal correspond
to a two-particle hopping,

|0〉|2〉 ↔ |2〉|0〉. (9)

The relative importance of these two contributions can be
modified just by tuning |t◦|, a factor which multiplies the
second sub- and superdiagonal and is not present in the fourth
one. However, before mapping the spin model into a discrete
free bosonic model, one should take care that the amplitude of
the one-particle hoppings in (8) obey the bosonic commutation
relations. This implies that the amplitude of the |1〉|2〉 ↔
|2〉|1〉 process is twice as large as that of |0〉|1〉 ↔ |1〉|0〉 and
a factor

√
2 larger than that of |1〉|1〉 ↔ |2〉|0〉.

In the next sections we try to use of the Hamiltonian in
Eq. (6) to study interesting phenomena related to the presence
of a three-hardcore constraint: We focus on the realization
of a quasicondensate of pairs of particles and discuss the
problems in realizing the two-dimensional Pfaffian state.
Before doing that, however, we describe a setup providing
us a high external control on the hopping parameters of the
system, an inescapable requirement if we want to be able to
realize the desired Hamiltonians.

IV. THE EXPERIMENTAL SETUP

We now describe an optical lattice setup, consisting of a
bichromatic spin-independent potential dressed with suitable
optical transitions, that once loaded with spin-1 atoms allow
us to experimentally tune the spin-1 Hamiltonian in Eq. (4).
Standard spin-independent optical lattices are indeed not
suited for our purposes since they preserve SU(2) symmetry;
that is, they naturally give rise to perfectly equal hopping
rates tα for all the spin orientations. On the other hand,
spin-dependent optical lattices [45,46] suffer heating problems
and short lifetimes and are thus as well not optimal. At a
contrast, our setup allows for tuning independently the three
hopping rates tα without affecting the “traditional” quite-long
lifetimes. In this section we present a rather qualitative
description, leaving quantitative analyses in Appendix A. We
start addressing the one-dimensional setup; the generalization
to more dimensions is sketched at the end of this section.

The alkali-metal atoms we propose to optically trap, 87Rb
or 23Na, are characterized by a nuclear spin I = 3/2 and thus

by a ground state split into two hyperfine manifolds F = 1 and
F = 2. If the laser originating the lattice is detuned enough
from the excited levels, the optical potential is insensitive to
atomic spin properties and the eight ground hyperfine levels
experience the same dipole potential [47]. By combining two
lasers with exactly commensurate frequencies 1:2 (obtainable
by standard frequency doublers), it is possible to create a
bichromatic superlattice [36],

V (x) = −V0[cos2(kx) + λ cos2(2kx)]; V0,λ > 0, (10)

where V0 is proportional to the overall light intensity and λ

describes the relative strength of the two lasers. Tuning these
two parameters, it is possible to create a configuration with
main (deep) and secondary (shallow) minima, as depicted in
Fig. 2. In particular, it is experimentally possible to cool a
MI with atoms only in the main minima just superimposing
the second lattice after the cooling has already been done.
We propose to store all the physical information into the
main minima of the F = 1 manifold, whereas the other
one will only provide auxiliary levels. Indeed, the idea is
to use the levels trapped in the secondary minima of the
F = 2 manifold to provide intermediate “bus” states to be
adiabatically eliminated, as pictorially explained in Fig. 3.

The bound-state energies and the corresponding local-
ized Wannier wave functions were calculated solving the
single-particle Schrödinger equation with periodic boundary
condition and manipulating the periodic solutions [48]. The
overlap between them is exactly zero because they belong to
different bands of the lattice spectrum, making it impossible to
implement couplings via microwave fields that carry negligible
momentum. Our suggestion is to engineer them via optical
Raman transitions, adiabatically eliminating a far excited
state like the one employed to create the trapping optical
dipole potential and consequently transferring a momentum
comparable to the lattice inverse spacing. Provided a non-null
intersection of the effective support for the Wannier wave
functions, this scheme makes it possible to have couplings
like those of Fig. 3. We note that, because of the coherence
properties of laser light, it is possible to give a complex phase
to the effective hopping and therefore to combine this setup

FIG. 2. (Color online) Plot of the superlattice potential in Eq. (10)
with V0 = 20Er and λ = 1.0, where Er = h̄2k2/(2m). We show the
exact Wannier wave functions of the first and third band of the lattice,
corresponding to the two bound states we use in our proposal.
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FIG. 3. (Color online) Sketch of the scheme we propose to
induce hopping between the levels of the F = 1 manifold, that
is, the adiabatic elimination of one F = 2 state trapped in the
intermediate minimum (red solid arrows). Because of orthogonality
properties of Wannier functions, the coupling cannot be realized with
microwave fields. Optical Raman transitions through an excited state
carry non-negligible momentum and can therefore be a solution. In
Appendix A we also discuss the effect of spurious couplings as those
depicted with orange dashed arrows.

with current proposals of artificial Abelian and non-Abelian
gauge fields [49–51]. The results presented in this article were
obtained by fixing the parameters V0 = 20Er and λ = 1.0,
where Er = h̄2k2/(2m) is the recoil energy of the long-wave
lattice; some important parameters of this lattice are listed in
Table I.

We suggest to use the levels of the |F = 2,mF = m〉 as
ancillas for the |F = 1,mF = m〉 states. The possibility of
individually addressing each of the three transitions |1,m〉 ↔
|2,m〉 is granted by an external magnetic field, which splits the
levels according to the formulas

E1,m = −gF µBBm + �
(2)
1,m(µBB),

E2,m = �HF + gF µBBm + �
(2)
2,m(µBB), (11)

where µB is the Bohr magneton, gF is the hyperfine Landé
factor, and �HF the hyperfine splitting (see Fig. 4). �(2)

F,m(µBB)
denotes the second-order Zeeman shift proportional to (µBB)2

of the magnetic sublevel mF = m of the spin-F manifold,
which in 87Rb has opposite signs for the two F = 1 and F = 2
manifolds. The values for 87Rb are µBgF = 0.7 MHz/G and

TABLE I. Numerical values of the parameters of the superlattice
in Eq. (10) with V0 = 20Er and λ = 1.0. We first list the energies of
the lowest localized Wannier functions of main and secondary minima
and their energy difference. We then calculate the parameters of the
main lattice, that is, the hopping rate Jmain-main and the interaction
energies U0 main-main and U2 main-main.

Emain −30.9Er 92.7 kHz
Esec −13.2Er 39.6 kHz
δ = Esec − Emain 17.7Er 53.1 kHz
Jmain-main −2.4 × 10−4Er 0.0 Hz
U0 main-main 1.8Er 5.4 kHz
U2 main-main −0.009Er −0.027 kHz

FIG. 4. (Color online) Splittings of the levels of the F = 1 and
F = 2 hyperfine manifolds in 87Rb due to an external magnetic field.
The splitting between the two manifolds is not to scale. Red arrows
describe the effective couplings we want to engineer via Raman
transitions; δ’s and �’s are the effective parameters describing these
transitions.

�HF = 6.8 GHz. The transitions can be therefore detuned to a
regime in which spurious effects can be safely neglected. For
example, if we consider 87Rb, even weak magnetic fields of
10–100 G can detune the three transitions of 15–150 MHz.
A more quantitative and detailed discussion of these ideas is
given in Appendix A, where analytical and numerical argu-
ments are provided in support of our proposal. In particular,
we discuss the effects of spurious couplings between other
localized states of the two manifolds, represented in Fig. 3 by
orange dashed lines, which prove not to affect the efficient
population transfer between neighboring sites.

As far as the generalization to more dimensions is con-
cerned, we simply propose to apply the laser configuration
originating the potential in Eq. (10) also in the other directions,
labeled by i:

V (x) = −V0

∑
i

[cos2(kxi) + λ cos2(2kxi)]; V0,λ > 0.

(12)

An increased number of dimensions makes the structure of the
relative minima more complicated; however, it is still possible
to recognize a square or cubic geometry of main minima and an
“auxiliary” lattice of secondary minima trapped in the middle
of links between the main ones. Other higher-energy minima
appear at the centers of faces and cubes, but they can be
neglected due to their even higher energy offset. Similarly to
that done in one dimension, the system must be then dressed
by optical lasers driving the nearest neighbor hopping.

Finally, we notice that the other parameters appearing
in Eq. (4) can be experimentally tuned with technologies
standardly used in current optical lattice setups. The interaction
strengths U0 and U2 can be indeed modified via Feshbach
resonances of the scattering lengths a0 and a2 [2,52], whereas
the energy offsets �α can be varied using the Zeeman effect
or dressing the levels with far-detuned microwave fields [42].

Before concluding this section, we remark that we are
suggesting to observe global magnetic properties arising from
the superexchange effects of a spinorial MI. Currently, many
experimental efforts are devoted to this task, mainly within
the context of the Fermi-Hubbard model, the challenge being
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represented by severe temperature and entropy requirements
[53–55]. Nonetheless, the huge quest under way makes us be-
lieve that such phenomena will be experimentally achievable in
the near future. In the same spirit we intend also the superlattice
setup, which at a first glance could seem rather intricate.

V. PAIRS QUASICONDENSATION

In this section we study the first interesting model char-
acterized by three-body infinite repulsion: We show that a
dominating correlated hopping can drive a transition to a
quasicondensate of pairs (PQC) without the need of any
two-body attraction. Moreover, we show that substituting
the three-body interaction with a two-body one the system
becomes unstable toward collapse: This strictly links the PQC
to the stabilizing effect of the three-body repulsion.

The experimental realization of such a phase with the help
of our setup is possible. Besides the three-body hardcore
constraint, we highlight in Sec. III the simultaneous presence
of the usual single-particle hopping (8) and of a correlated
two-particle term (9) in the emerging Hamiltonian H3hb of
Eq. (6). As we point out at the end of Sec. III, the relative
strength of these two terms can be varied by just tuning the
strength of |t◦|: With the help of the setup discussed in Sec. IV
it becomes feasible. We explicitly discuss the realistic case of
Eq. (6) where many spurious terms emerge but do not prevent
PQC to be observed.

At zero temperature (T = 0), very general theorems state
that no long-range order can arise in one dimension (1D)
and Bose-Einstein condensation is consequently ruled out;
anyway, the presence of algebraical decays in the density
matrix allows one to introduce the concept of quasi-long-range
order and quasicondensation [56]. Beside the usual “atomic”
quasicondensate (AQC), characterized by quasi-long-range
order of the one-particle density matrix 〈a†

i ai+�〉, it is possible
to speak of “pairs” quasicondensate when the two-body density
matrix 〈a†2

i a2
i+�〉 still exhibits quasi-long-range order despite

the exponential suppression of one-particle correlations.
Even if mean-field calculations support the conjecture

that PQC induced by correlated hopping is not a low-
dimensionality phenomenon, the simplest setup for both
experimental and numerical purposes is offered by a 1D
lattice. On one side, a reduced number of Raman pairs
of beams is required; on the other, numerical simulations
can be routinely done with the help of the Density Matrix
Renormalization Group (DMRG) [57,58]. In this article we
made use of an open-source code (www.dmrg.it) with open
boundary conditions (OBC), but in principle also parabolic
external potentials—closer to current experimental setups—lie
within the possibilities of the method [58].

Before starting our discussion, we report that the same
paired phase has been also at the focus of Ref. [31], where the
transition was driven via two-body attractive interactions and
the three-body hardcore constraint was effectively induced by
strong dissipation channel.

A. PQC induced by correlated hopping

In order to understand whether a system with dominating
correlated hopping undergoes a phase transition to PQC, we

FIG. 5. (Color online) Phase diagram of the 1D model in Eq. (13)
calculated with a DMRG algorithm. Two phases appear, characterized
respectively by quasi-long-range order of the one-body density matrix
(AQC) and by exponential decay of the one-body-density matrix and
quasi-long-range order of the two-body one (PQC). The red dashed
line is the mean-field result obtained via Gutzwiller ansatz.

start studying this simple blackboard Hamiltonian on a 1D
setup with L sites:

H = −J
∑

i

a
†
i ai+1 − K

∑
i

a
†2
i a2

i+1 + H.c.; (a†
i )3 = 0.

(13)
The corresponding phase diagram, plotted in Fig. 5, displays
a large region characterized by an exponential decay of the
particle-particle correlator 〈a†

i aj 〉 and by an algebraic decay
of the the pair-pair one 〈a†2

i a2
j 〉. A mean-field analysis via

Gutzwiller ansatz shows the presence of the same phase
transition and thus supports the robustness of the effect even
in larger dimensions. It is also possible to Fourier transform
both density matrices and analyze the finite-size scaling of
the population in the largest occupied state, that is, the lowest
momentum one. An algebraic growth ∼Lα is another signature
of quasi-long-range order, and we find agreement between the
two benchmarks. In the following, we only look at the decay
of the correlators.

We stress that the mere presence of correlated hopping is
not enough to create a PQC and that the stabilizing action of
a three-body hardcore constraint is for this sake crucial. For
example, we can study a model in which we substitute the
constraint with two-body repulsions:

H = −J
∑

i

[a†
i ai+1 + H.c.] + −K

∑
i

[
a
†2
i a2

i+1 + H.c.
]

+ U

2

∑
i

ni(ni − 1). (14)

The relative phase diagram is plotted in Fig. 6 for two
different densities, n = 1.0 and n = 0.75: when K dominates
a phase appears which in the thermodynamic limit is unstable
toward collapse. The instability is induced by the correlated
hopping term and has been already observed in other numerical
works [59]; in Eq. (13) it was counterbalanced by the hardcore
constraint. The stabilizing action of strong two-body U drives
the system outside this instability region; however, it prevents
also double occupancies and then the desired PQC. In the limit
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FIG. 6. (Color online) Phase diagram of the system described by
Eq. (14) in which the three-body interactions have been substituted by
two-body ones. Instead of a PQC a phase appears which is unstable
toward collapse. At incommensurate filling and J = 0 the ground-
state manifold is largely degenerate and is spanned by Fock states
with less than double local occupancies (Mott Glass).

of large J/K the usual Bose-Hubbard physics made of AQC
and MI only is recovered (not shown in plots).

B. PQC in spin-1 Mott insulators

Coming back to the experimental setup proposed in Sec. III,
we investigate whether it supports the PQC. In order to
do that, we use a proper mapping (7) WPQC with all the
phases set to a same value ϕα = 0. The diagonal terms in
Eq. (6) describe additional two-body and nearest-neighbors
interactions that we cannot get rid of; deviations in the
off-diagonal matrix elements from the bosonic values can
be interpreted as neighboring many-body interactions too.
We tried to investigate the properties of the Hamiltonian
from this viewpoint but the complicated nature and the large
number of interactions prevented an easy understanding of
the ground-state properties of the model. We do not write
the model in this form because the Hamiltonian in Eq. (13)
cannot be easily recast and additional numerical simulations
are needed to characterize our approximation.

All the next plots share the same value of t±/U0 = 0.1 and
of δ = 0; that is, there are no relevant quadratic corrections to
the linear Zeeman splitting. With respect to the ratio U2/U0,
we studied the cases of 87Rb (−0.005) and 23Na (+0.04) as
well as the value U2/U0 = −0.04. The phase diagrams, shown
in Fig. 7, have been studied varying the total density of three-
hardcore bosons, that is, the magnetization of MI, and the ratio
between single-particle and correlated hopping in Eq. (6):

J

K
=

√
2

2t◦t−
2t+t−B

U2∼0≈
√

2
t◦
t+

. (15)

For the values of the two alkali metals the system clearly
exhibits a PQC phase, even if no clear signature of an AQC
phase has been found. Instead, an inhomogeneous phase
appears characterized by phase separation between fillings 0
and 1 or 1 and 2. However, a slight tuning of U2/U0 to −0.04
could help the system recover all the interesting physics of
the Hamiltonian in Eq. (13), as shown by the phase diagram
in Fig. 7, calculated for such value. This happens even if the

FIG. 7. (Color online) Phase diagrams of the Hamiltonian H3hbc

realized with our proposal which approximates the model in Eq. (13).
The two plots are drawn for the realistic values of U2/U0 = −0.005
(87Rb, left) and U2/U0 = −0.04 (right); the case U2/U0 = 0.04
(23Na) is not shown since it is qualitatively equivalent to the case
of 87Rb. On the left, even if a PQC phase appears, there are no
signatures of AQC. Instead, at density n = 1.0 we find a MI, whereas
at n �= 1.0 an inhomogeneous phase appears (phase separation). On
the right, the phase diagram shows that even a small tuning of U2/U0

from the atomic values let the AQC phase arise.

matrix elements of the second sub- and superdiagonal are quite
far from being proportional to the exact values {1,

√
2,

√
2,2}

(see Table II). As a side remark, we stress that such a fine tuning
can be achieved at the price of more experimental intricacies
and will be exploited only when strictly needed (see Table IV).

The density profile and the spatial decays of the particle-
particle and pair-pair correlators for the system at n = 1.125
and J/K = 1.54 (AQC) are shown in Fig. 8, whereas in
Fig. 9 the plots refers to n = 1.125 and J/K = 1.43 (PQC).
The plots show quite clearly the presence of a region in the
phase space where the pair-pair correlator exhibits quasi-long-
range order, whereas the particle-particle one is exponentially
suppressed. The accurate definition of the phase border,
requiring numerics on larger systems and finite size scalings,
lies beyond the purposes of this article, which only aims to
determine the presence of a PQC phase. However, simulations
for large systems up to 240 sites show that the PQC phase is
indeed stable and is not a finite-size effect.

For a more accurate theoretical treatment of the properties
of the transition from QC to PQC, we refer the interested reader
to Refs. [60,61]. The applicability of such theoretical methods
to our system must not be taken for granted because in our setup
the phase transition is induced by correlated hopping, whereas
in the referred articles it is induced by two-body attractive
interactions.

TABLE II. Amplitudes of the matrix elements representing the
hopping of one and two emerging bosons in the case U2/U0 = −0.04
and t± = 0.1U0. As discussed in Sec. VI, the values typical of free
bosonic operators can be obtained by fine tuning t± and U0.

|0〉|1〉 ↔ |1〉|0〉 −0.21 t◦ |1〉|1〉 ↔ |2〉|0〉 −0.008 t◦
|1〉|2〉 ↔ |2〉|1〉 −0.21 t◦ |0〉|2〉 ↔ |2〉|0〉 −0.019 U0
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FIG. 8. (Color online) Plot of the density profile 〈n(x)〉 of the
ground state of the system for U2 = −0.04U0, n = 1.125, and J/K =
1.54. The two insets show the algebraic decay of the particle-particle
(left) and pair-pair (right) correlators (log-log plots). These data allow
us to identify the phase as an AQC.

C. Experimental observation

Since one of the key features of a quantum simulator is
the possibility of observing the quantum state that have been
realized, we now discuss how the two AQC and PQC phases
could be detected with our setup. For this purpose, we translate
into the spin language the correlators 〈a†

i aj 〉 and 〈a†2
i a2

j 〉 which
we used to identify the two phases. Once the mapping WPQC is
considered, the three-body hardcore operators can be rewritten
as follows:

ai =
(

1 +
√

2 − 1√
2

Sz
i

)
S+

i , a2
i = 1

2
S+2

i . (16)

The pair-pair correlator assumes therefore a very sim-
ple expression, whereas the particle-particle one can be

FIG. 9. (Color online) Plot of the density profile 〈n(x)〉 of the
ground state of the system for U2 = −0.04U0, n = 1.125, and J/K =
1.43. The two insets show the exponential decay of the particle-
particle correlator (left, log plot) and the algebraic decay of the
pair-pair correlator (right, log-log plot). The presence of this last
quasi-long-range order allows us to identify the phase as a PQC.

written as

〈a†
i aj 〉 = 〈S+

i S−
j 〉 +

√
2 − 1√

2

[〈
Sz

i S
+
i S−

j

〉 + 〈
S+

i S−
j Sz

j

〉]

+ 3 − 2
√

2

2

〈
Sz

i S
+
i S−

j Sz
j

〉
. (17)

Numerical simulations show that the analysis of the decay
of the spin correlators 〈S+

i S−
j 〉 and 〈S+2

i S−2
j 〉 leads to definition

of the same phase boundary as before. The possibility of using
spin-spin correlators to identify the phases is experimentally
relevant, because this is the most natural language for
analyzing the properties of a spin-1 MI. Moreover, we think
that the actual significant experimental efforts at developing
techniques able to resolve the single sites of optical lattices
[62,63] will make the direct observation of the proposed
correlators possible.

VI. PFAFFIAN PHYSICS

In this section we move to the analysis of a second
interesting many-body system characterized by three-body
interactions: the Pfaffian wave function [23]. This state has
been proposed in the context of the quantum Hall effect
(QHE) [20] in order to describe the many-body electron liquid
at fractional magnetic filling ν = 5/2. The interest in this
wave function lies in the predicted property of supporting
non-Abelian quasiexcitations [22,64].

Here we deal with the bosonic version of the Pfaffian state
(ν = 1) and show that this wave function can be studied also
in a lattice. Combining exact-diagonalization numerical ap-
proaches and some well-known benchmarks to test topological
properties, we see that even at significant magnetic fields the
ground state of the system features nontrivial topological hall-
marks. We then employ these tools to discuss the possibility of
using a spin-1 MI to realize such a wave function and underline
some still present drawbacks in the recipe.

A. Quantum Hall effect on a lattice

We consider a two-dimensional setup with N bosons with
charge q interacting via purely three-body repulsion (no two-
body term) in the presence of an external uniform magnetic
field with vector field A. The setup is pierced by a number
of magnetic fluxes N	 equal to the number of particles N

(filling factor ν = 1); a typical length 
 = √
h̄c/qB is induced

in the system by the magnetic field itself. The system is ruled
by the following many-body Hamiltonian, in which we write
the position of the particles with complex coordinates z =
(x + iy)/
:

HPf =
∑

i

[
pi − q

c
A(zi)

]2

2m
+ c3

∑
i<j<k

δ(zi − zj )δ(zi − zk).

(18)

c3, greater than zero, is the strength of the repulsion. The
single-particle levels are arranged into a collection of degener-
ate manifolds, the Landau levels (LLs), separated by a gap
twice the cyclotron frequency 2h̄(qB/mc); as long as the
chemical potential is smaller than this separation, the particles
will live only in the lowest LL and will be characterized by
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wave functions analytical in z (the exponent being the angular
momentum). Within this framework, the double-δ potential is
properly regularized and the ground state of the Hamiltonian
is the Pfaffian wave function [23]:

�(z1,...,zN ) ∝ Pf

(
1

zi − zj

) ∏
i<j

(zi − zj ) e− ∑
j |zj |2/2. (19)

The Slater determinant
∏

i<j (zi − zj ) would prevent the
coincidence of two or more particles in the same spatial
position; the prefactor Pf[1/(zi − zj )], the Pfaffian (square root
of the determinant) of the antisymmetric matrix with elements
Aij = 1/(zi − zj ), enables the superposition of two bosons
but still forbids that of three. With this construction, the wave
function is forced to be the lowest angular momentum state in
the intersection between the lowest LL and the kernel of the
three-body interaction.

In order to discuss the possibility of simulating the Pfaffian
state with our proposal, we have first to discretize the system.
We take into account the presence of a three-body interaction
with c3 → ∞ introducing the three-hardcore bosons operators
a and a† satisfying a3 = 0 and a†3 = 0. The discrete version
of a kinetic Hamiltonian with minimal coupling is

HPf−lat = −J
∑
〈i,j〉

eiφi,j a
†
i aj + H.c.; (a†

i )3 = 0. (20)

As in every discrete U(1) gauge theory, the magnetic field
coupling to the positional degrees of freedom of the particles
is represented by a phase φi,j = 2π/	0

∫ j

i
A · d l , where 	0 =

hc/q is the quantum of flux.
We discuss in Secs. II and III how to experimentally deal

with the lattice version of three-hardcore bosons; we also
show that our superlattice setup is compatible with the general
theoretical idea of inducing a phase in the hopping with an
electromagnetic running wave, as in the pioneering proposal
by Jaksch et al. [49]. A flurry of theoretical proposals and
experimental attempts to realize an artificial gauge field for
neutral atoms has been under way for years now [50,51,65–70]
and has been further spurred by the breakthrough work by Lin
et al. [71] that illustrated the experimental realization in a
Bose-Einstein condensate. Therefore, we think that this tech-
nological aspect of our proposal also lies within the next-future
possibilities and the only problem we are left with is whether
it is possible to realize the model Hamiltonian (20) within the
framework of spin-1 MIs with Raman superlattice dressings.

B. Topological properties as a benchmark

Before discussing the simulation of Hamiltonian (20), we
investigate to which extent transposing the physical system
onto a discrete lattice modifies the nature of the many-body
state. The problem arises from the competition of two typical
lengths, the magnetic one 
 and the lattice constant a. In the
small magnetic field limit l 	 a (or dilute limit, since the
constraint N = N	 must hold), we expect the system to be in-
sensitive to the discrete nature of the space. On the other hand,
an analysis of what happens when the magnetic field (and the
particle density as well) increases is needed to test the robust-
ness of a fully discrete version of the Pfaffian wave function.

TABLE III. Exact diagonalization study on a torus of the
many-body ground state of the system described by the Hamil-
tonian in Eq. (20). The degeneracy and the CN of the ground
manifold in the continuum case are, respectively, 3 and 3. As
discussed in Appendix B, the presence of magnetic fields strongly
constrains the dimension of the torus to be simulated; the next size
would be 5 × 5, with a Hilbert dimension of 110 000.

N N	 Lx × Ly 
/a Degeneracy Overlap CN dimH

4 4 4 × 4 ∼0.8 3 78% 3 3620

The characterization of QHE wave functions transposed
from continuum systems (usually two-dimensional strongly
interacting electrons) to discrete optical lattices is a problem
that has already been faced in the literature [72–74]. Here
we follow the standard approach. We perform an exact diag-
onalization of the system with periodic boundary conditions
(PBCs). Three marks are used to test the genuine Pfaffian
nature of the numerical ground state (see Table III for their
values in this case):

(i) the agreement between the degeneracy of the discrete
numerical and continuum analytical ground manifolds (the
Pfaffian wave function has been generalized on a torus first in
Ref. [23]);

(ii) a significant overlap of the discrete numerical wave
functions with the continuum analytical ones;

(iii) the agreement between the Chern number (CN) [75,76]
of the discrete numerical and continuum analytical ground
manifolds.

We stress that the threefold degeneracy of the Pfaffian
ground state is not of a topological nature and is strictly
connected to the properties of the Jacobi θ functions, which
are used to generalized on the torus some QHE states [23].

CNs probe the topological properties of the system testing
its sensibility toward the twist of the boundary conditions,
expressed by two parameters (θx,θy) ∈ [0,2π ) × [0,2π ). We
give here the expression of the first CN for the simple case of
nondegenerate ground state, whereas for more dimensions we
refer to Refs. [72,75]:

C = 1

2π

∫
dθxdθy

[
∂θx

Ay(θx,θy) − ∂θy
Ax(θx,θy)

]
, (21)

where Ai = 〈�(θx,θy)| ∂
∂θi

|�(θx,θy)〉 and |�(θx,θy)〉 is the
ground state with boundary conditions (θx,θy). This integer
quantity is indeed related to the theory of topological invariants
in the context of the Berry connection. CNs are increasingly
used in condensed-matter theory since the discovery that the
quantized properties of the anomalous QHE resistivity could
be studied within such a framework [77]. We calculate the
CN with the method provided by Hatsugai [75], which avoids
any explicit numerical differentiation and connects the CN
evaluation to the number of vortices displayed by a proper
auxiliary field �(θx,θy). The consequent integer character of
the CN constitutes a further reason for its extensive use, since
it provides a reliable yes-no benchmark more immediate than
the wave function overlap ranging in [0,1].

In Fig. 10 we show the energy spectrum of the Hamiltonian
(20) studied on a torus with the parameters listed in Table III.
The figure highlights also the fact that moving in the (θx,θy)
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FIG. 10. (Color online) (Top) Plot of the first 20 energy levels of
the Hamiltonian (20) studied on a 4 × 4 torus with the parameters
listed in Table III. A threefold quasidegenerate ground state can be
recognized. (Bottom) Cut of the first 20 energy bands in the (θx,θy)
space. The lowest (red) line, threefold degenerate, does not mix with
the higher bands; that is, the ground-state multiplet is always well
defined and separated from higher energy levels. This is a crucial
ingredient for applying the Hatsugai method for the computation of
CNs.

space the threefold degeneracy of the ground-state multiplet is
preserved. Figure 11 shows the auxiliary field �(θx,θy) in this
case and the three vortices, which correspond to a CN equal
to three.

Within the uncertainty given by working with small systems
without accessing the thermodynamic limit, we can at least
affirm that our results are compatible with the presence of

FIG. 11. (Color online) Plot of the auxiliary field �(θx,θy) for
the system with Hamiltonian (20). The parameters of the system are
those in Table III. The three highlighted vortices mean that the CN
of the system is equal to 3. The definition of the field � and the way
it can be computed are discussed extensively in Refs. [72,73,75], to
which we refer the interested reader.

an incompressible liquid with a degenerate ground state on
the torus at 
 ∼ 0.8a. Moreover, they also present significant
signatures that the nature of the system should be strictly linked
to that of the Pfaffian state.

C. Tentatives toward the clean model

The previous section shows that if we were able to imple-
ment Hamiltonian (20), we would access the intriguing physics
of Pfaffian with our quantum simulator. The Hamiltonian for
effective bosons obtained in Eq. (6) has to be then compared
with the link version of Eq. (20),

Hdisc = −J

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0

0 0 0 eiφi,j 0 0 0 0 0

0 0 0 0
√

2eiφi,j 0 ♥ 0 0

0 e−iφi,j 0 0 0 0 0 0 0

0 0
√

2e−iφi,j 0 ♠ 0
√

2eiφi,j 0 0

0 0 0 0 0 0 0 2eiφi,j 0

0 0 ♥ 0
√

2e−iφi,j 0 0 0 0

0 0 0 0 0 2e−iφi,j 0 0 0

0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the graphic symbols highlight some terms of Eq. (6)
which are not present in (20).

One of the problems is related to the presence in ♥ of the
correlated hopping term (9), which is not comprised by
the QHE model. Therefore, we tried to study the model in
the regime |t◦| 	 |t+|,|t−|, which decreases the relevance
of correlated hopping. In this case we use a mapping WPF

characterized by the phases: {ϕ− = 0; ϕ◦ = 0; ϕ+ = π} and

set the various parameters to the values listed in Table IV. This
sets the second sub- and superdiagonal to be approximately
proportional to {1;

√
2;

√
2; 2}. Unfortunately, this tunes only

eight of the terms of the diagonal to an approximate same
value: The central one ♠ is significantly different from the
others, leading to a completely different model with an
effective nearest-neighbors interaction. Moreover, this method
has the general disadvantage that the effective hopping rate
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TABLE IV. Set of parameters used together with the mapping
WPF to recover the model in Eq. (20). The last lines show the
amplitudes of the matrix elements representing the hopping of one
and two emerging hardcore bosons. The one-particle ones are in a
ratio {1,

√
2,2}, whereas the two-particle one is smaller.

U2 = √
2/(2

√
2 + 3)U0 ∼ 0.24U0 δ = −2|t◦|2/(U0 + U2)

t◦ = 0.1U0 t− = 0.1t◦eiϑ t+ = 2t∗
−

|0〉|1〉 ↔ |1〉|0〉 −0.0016 U0 |1〉|1〉 ↔ |2〉|0〉 −0.0022 U0

|1〉|2〉 ↔ |2〉|1〉 −0.0032 U0 |0〉|2〉 ↔ |2〉|0〉 −0.0006 U0

J would be proportional to |t◦t−|/(U0 + U2) and therefore
requires temperatures even lower than the pure superexchange
effect |t◦|2/(U0 + U2). As displayed in Fig. 12, a further
numerical analysis shows that the energy spectrum does not
exhibit any degenerate ground state and that moving in the
(θx,θy) space many energy bands cross, making the calculation
of the CN meaningless.

As an alternative, we abandon the attempt to exactly recover
the model in Eq. (20) and try instead to realize a similar system
whose ground state is characterized by the same benchmarks
of the Pfaffian wave function, that is, the same degeneracy
on the torus and the same CN. At low density, the number
of global Fock states with more than two particles on one
link is lower than that of the other states. Thus, we expect
that matrix elements of the link Hamiltonian connecting states
with more than two particles per link do not play a relevant
role in the global dynamics; even sensible deviations of such
terms from the exact values should not change too much the
properties of the ground state. Hence, we investigated sets of

FIG. 12. (Color online) (Top) Plot of the first 20 energy levels
of the spin-1-based model with the parameters listed in Table IV,
studied on the same 4 × 4 torus as before. No threefold quaside-
generate ground state can be recognized. Moreover, the gap here is
approximately one order of magnitude smaller than in the Pfaffian
case (here we take J = −0.0016 U0). (Bottom) Cut of the first 20
energy bands in the (θx,θy) space. No definite threefold ground state
multiplet can be recognized. This result strongly tells us that the
system is far from featuring a ground state sharing the topological
properties of the Pfaffian wave function.

parameters which could put all the “noise” on such matrix
elements. We consider the same 4 × 4 system as before at
density ρ = 1/4 and magnetic field N	 = 4, which we can
numerically analyze, but the next considerations could also be
generalized to systems with smaller magnetic fields (or more
dilute). Unfortunately, even this turned out to be impossible.
We tried to combine a tomographic analysis of the Pfaffian
wave function with the tuning of all the matrix elements
of the link Hamiltonian connecting states with less than
three particles. However, the numerical simulation of these
Hamiltonians gave always as result nondegenerate ground
states characterized by no topological properties, that is, a
CN equal to zero [76].

Unfortunately, we were then not able to find a way to get
the Hamiltonian in Eq. (20) or realize a similar Hamiltonian
whose ground state was threefold degenerate and characterized
by a CN equal to three. Ergo, we think that, unfortunately, the
Pfaffian wave function cannot be readily implemented with the
help of a quantum simulator based merely on the ingredients
described in this work. It might be nonetheless the case that
adding to the proposed setup some further trick or ancillary
system it becomes feasible.

VII. CONCLUSIONS

In this article we have discussed two many-body examples
of systems characterized by a three-body infinite contact
repulsion. In the former we studied a 1D phase characterized
by quasi-long-range order induced by correlated hopping,
whereas in the latter we have examined the stability of a
discrete bosonic Pfaffian wave function in a nondilute limit.

Moreover, we suggest to experimentally realize such phases
with the help of optical lattices and spin-1 atoms. Our proposal
to simulate three-body infinite repulsion relies on a local
mapping between the dynamics of a spin-1 MI and that of
emerging bosons characterized by such interaction. Numerical
calculations support the experimental feasibility of the former
setup, whereas in the latter it seems that further control
parameters are still needed.

A crucial point of this article is the extensive description
of a bichromatic optical superlattice which could allow the
realization of rather general hopping operators for spin gases
in optical lattices. We describe the case of spin-preserving
hopping rates and show that it is possible with laser-assisted
tunneling to break the SU(2) symmetry. Moreover, in a future
work we will show that an additional staggering of the lattice
can, in principle, give access to a more general class of hopping
operators operators containing even spin-flipping terms. We
hope with this to open a route toward theoretical studies of
interesting models or toward the experimental realization of
exotic spin models.
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APPENDIX A: EXTERNAL CONTROL OF THE HOPPING
RATE VIA SUPERLATTICES

In this appendix we give a quantitative analysis of the dis-
cussion of Sec. IV, in which we suggested using superlattices
in order to externally and independently control the hopping
of the three spin species.

We start discussing the explicit expression of the coupling
realized with an optical Raman transition between two differ-
ent hyperfine levels of the ground state L = 0 via elimination
of the manifold of excited states L = 1, where L is the
electronic angular momentum. Atomic levels are addressed
with the notation |L,α,k〉, where α labels the hyperfine degrees
of freedom and k is the quantum number of the center-of-mass
wave function. The Raman coupling between two states |0αk〉
and |0α′k′〉 is

�̃α′k′;αk(t)

= −1

2

∑
|1βq〉

〈k′|e−ip2·x|q〉〈q|eip1·x|k〉

× c∗
2α′β‖µ‖∗

2E
∗
2E1‖µ‖1c1αβe−i(ω1−ω2)t

×
(

1

E1βq − E0αk − h̄ω1
+ 1

E1βq − E0α′k′ − h̄ω2

)
,

(A1)

where ELαk is the energy of the level |L,α,k〉 and ωi and pi

are the energy and momentum of the ith laser, respectively.
The coupling realized by the ith laser between the internal
atomic states |0α〉 and |1β〉 is described by ‖µ‖i , Ei , and
ciαβ according to the notation of Ref. [47]. The sum over the
excited states is limited to the first excited manifold because
we consider lasers far detuned from higher excited levels. In
the case of a spin-independent lattice, lasers can be detuned
from the first excited manifold L = 1 of even some tens of
THz: In this case the expression in Eq. (A1) can be simplified.
Indeed, the energy differences at the denominators depend
only slightly on the internal structure of the levels (they can
differ at most for some GHz): once E1βq − E0α′k′ is substituted
with the zeroth-order energy difference between excited and
ground states �E10, we can write

�̃α′k′;αk(t) = −1

2

( 〈k′|e−i(p2−p1)·x|k〉
�E10 − h̄ω1

+ 〈k′|e−i(p2−p1)·x|k〉
�E10 − h̄ω2

)

×
∑

β

c∗
2α′β‖µ‖∗

2E
∗
2E1‖µ‖1c1αβe−i(ω1−ω2)t

= Sk′k�α′αe−iωt . (A2)

In this last expression ω = ω1 − ω2, Sk′k = 〈k′|e−i(p2−p1)·x|k〉,
whereas �α′α comprises all the remaining terms. The very

FIG. 13. (Color online) The six-level model used to study the
coupling of different hyperfine levels with one Raman transition.
Levels are labeled by two quantum numbers, F and k. Energies
are not to scale; the orders of magnitude of the parameters are as
follows: d ∼ 10−100 kHz, δ ∼ 100−500 kHz, and � ∼ 1−10 GHz.
We propose to adiabatically eliminate the upper manifold and to
study the dynamics of the lowest one with an effective Hamiltonian
Hpert.

simplified expression for the center-of-mass part of the
coupling Sk′k comes from the substitution of

∑
q |q〉〈q| with

the identity on the center-of-mass Hilbert space.
Taking advantage of Eq. (A2) specified in the setup

described in Sec. IV, we now discuss the possibility of
transferring population between two F = 1 neighboring sites
via adiabatic elimination of an F = 2 state trapped in the
middle.

We consider two states with the same magnetic quantum
number mF , |F = 1,mF 〉 and |F = 2,mF 〉, and develop the
six-level model depicted in Fig. 13. We believe this model
captures the relevant physics of superlattices dressed with
one Raman coupling and includes spurious couplings between
main and main or secondary and secondary sites. The coupling
between levels trapped at different positions, that is, belonging
to different bands of the lattice, is possible only because we are
transferring momentum via the lasers. Since we are working
at fixed L = 0 and mF , we restrict the previous notation
|0αk〉 to the shorter |F,k〉, the two quantum numbers being
the hyperfine manifold F = 1,2 and the position where the
center-of-mass wave function is trapped (for the meaning of
k = 1,2,3, see Fig. 13). The model is characterized by only
three relevant Sk′k , as depicted in Fig. 13; couplings between
neighboring main sites are negligible. The Hamiltonian reads
as follows:

H = d|1,2〉〈1,2| + � (|2,1〉〈2,1| + |2,3〉〈2,3|)
+ (� + d)|2,2〉〈2,2| + �e−iωt [S1,2(|2,2〉〈1,1|
+|2,2〉〈1,3|) + S1,1(|2,1〉〈1,1| + |2,3〉〈1,3|)
+S∗

1,2(|2,1〉〈1,2| + |2,3〉〈1,2|) + S2,2|2,2〉〈1,2|] + H.c.

(A3)

Once we apply the unitary transformation �(t) =
exp[id (|1,2〉〈1,2| + |2,2〉〈2,2|) t], the three levels |1,k〉 be-
come degenerate. In case the three inequalities |Si,j�|/(δ −
d) � 1 are fulfilled, it is possible to use second-order
perturbation theory in order to develop an effective
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Hamiltonian describing the dynamics within this submanifold:

Hpert/�2 = −
( |S1,1|2

δ − d
+ |S1,2|2

δ

)
[|1,1〉〈1,1| + |1,3〉〈1,3|]

−
( |S2,2|2

δ − d
+ 2

|S1,2|2
δ − 2d

)
|1,2〉〈1,2|

− |S1,2|2
δ

|1,3〉〈1,1| + H.c.

−
[
S1,2S1,1

2

(
1

δ − d
+ 1

δ − 2d

)
eidt

+ S∗
2,2S1,2

2

(
1

δ − d
+ 1

δ

)
eidt

]
× [|1,2〉〈1,1| + |1,2〉〈1,3|] + H.c. (A4)

Using this Hamiltonian we study the transfer rate of popu-
lation from level |1,1〉 and |1,3〉 and vice versa. The main
contribution is the direct coupling

J
(1)
13 = −|S1,2|2�2

δ
. (A5)

A second contribution, which in our system will prove to be
non-negligible, comes from a sort of “adiabatic elimination”
of the level |1,2〉:

J
(2)
13 = − 〈1,3|Hpert|1,2〉〈1,2|Hpert|1,1〉

〈1,2|Hpert|1,2〉 − 〈1,1|Hpert|1,1〉 + d
. (A6)

The main approximations in the presented six-level model
reside in the neglecting of delocalized higher-energy free
states and in the neglecting of couplings between neighboring
higher bands’ localized Wannier functions. Both of these
processes could induce spurious population transfers to next-
neighboring states. Regarding the first issue, this mainly
means that experimentally there is a trade-off between a large
detuning regime, allowing powerful lasers and strong effective
couplings with noisy spurious population transfers, and a small
detuning one, with small clean couplings. Concerning the
second point, this essentially implies a trade-off between a
deep lattice configuration with localized wave functions and
a shallow lattice regime with spread ones. In the former
case, neighboring Wannier functions are not connected by
the Hamiltonian, but the overlap between different bands
S1,2 is also negligible; in latter case, the S1,2 becomes
important but couplings between neighbors become also
significative.

It is possible to engineer the previous setup in or-
der to get an independent control on the hopping
rates of the different spin species. To this aim, we
must be able to independently couple desired pairs
of states (physical F = 1 and auxiliary F = 2 states)
via independent Raman transitions. This can be realized with
the help of “energy selection rules,” that is, choosing pairs of
states with distinct energy differences and with the help of
Raman transitions far detuned from all the energy differences
except that of the pair that they should couple. In our case we
take advantage of the fact that the hyperfine Landé factors of
the manifolds F = 1 and F = 2 are opposite of each other and
suggest splitting the hyperfine manifolds with a magnetic field
and using the level |α = (F = 2,Fz = m)〉 as the ancilla state

FIG. 14. (Color online) Exact time evolution of the populations
with Fz = 0 of the 6 × 3-level model describing the dynamics of the
hyperfine levels of the ground state under the action of three Raman
couplings. The initial state is |1,1〉. (Inset) The maximum population
reached in each level. The parameters used are listed in Table V.

for the |α = (1,m)〉 level. The energy differences of these pairs
can then be detuned of circa 100 MHz with moderate fields of
circa 66 G; in this case the use of Raman couplings detuned
from the pair transition of hundreds of kHz or even MHz would
do the job (see Fig. 4).

We now report on some numerical simulations which
consolidate the arguments given previously and show that it
is indeed possible to induce different hopping rates for the
three spin species. We calculate the exact time evolution of a
6 × 3-level model under the action of three different Raman
couplings. The parameters characterizing the levels and the
couplings are listed in Table V. We assume the possibility
of engineering Raman couplings carrying no angular momen-
tum (π transitions) and therefore neglect the possibility of
transferring population between states with different Fz. This
factorizes our 18-level problem into three 6-level problems,
which are numerically less demanding. In case this were
not possible, spin mixing would still be almost prevented by
energy-conservation constraints.

We show in Fig. 14 the exact time evolution of the six levels
with Fz = 0. At the beginning all of the population is in the
level |1,1〉 and very clear Rabi oscillations between the |1,1〉
and |1,3〉 levels can be seen. It is very important to notice that
only a negligible fraction of the population is lost into the other
four states (see the inset in Fig. 14).

In Fig. 15 we compare the time evolution of the levels
|Fz = −1,0, + 1,k = 1〉: It is very interesting to observe that
it is possible to induce different hopping rates for the three spin
species. Indeed, as shown in Table V, the simple application
of Eqs. (A5) and (A6) corroborates the intuition that each
hopping rate is ruled by only one Raman coupling, whereas
the action of the others, far detuned, introduces only small
corrections. It is also possible to check that including the other
lasers improves the agreement with the experimental data.

In conclusion, this analysis shows that optical lattices
loaded with alkaline atoms display a hierarchy of energy scales
which could be exploited to engineer hopping operators break-
ing the SU(2) symmetry. In particular, we propose employing
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TABLE V. Parameters used in the simulation of the 3 × 6-level model. We compare the periods of the Rabi oscillations
with the theoretical values calculated taking into account only the Raman coupling which is supposed to drive the transition.
Discrepancies are contributions of the off-resonant Raman couplings and higher-order corrections.

Level, Fz Energy Parameters

|1,1〉, m −gF µBBm �HF 6.8 GHz
|1,2〉, m −gF µBBm + δ gF µBB 50 MHz
|1,3〉, m −gF µBBm δ 60 kHz
|2,1〉, m �HF + gF µBBm S1,2 0.2
|2,2〉, m �HF + gF µBBm + δ S1,1 0.6
|2,3〉, m �HF + gF µBBm S2,2 0.6

# Raman � (kHz) ω Ang. mom.

1 31 �HF − 2µF B + δ − 300 kHz 0
2 45 �HF + δ − 300 kHz 0
3 39 �HF + 2µF B + δ − 300 kHz 0

Fz J
(1)
13 (Hz) J

(2)
13 (Hz) Estimated T (ms) Numerical T (ms)

−1 −135.0 −18.3 20.4 22.1
0 −270.0 −73.0 9.1 10.1
+1 −202.5 −41.4 12.8 14.0

the upper hyperfine manifold to provide auxiliary states to be
adiabatically eliminated and taking advantage of superlattice
configurations to trap them in the middle of each link.

APPENDIX B: MAGNETIC FLUX
QUANTIZATION CONDITION

In Sec. VI we deal with a (discretely) translational invariant
2D lattice pierced by an external (homogeneous) magnetic
field. In this appendix we provide more details on the study of
such a system via a finite lattice with PBCs. In particular, we
show that the need for mutually commuting Hamiltonian and
discrete-translation operator imposes non trivial conditions on
the dimension of the sample.

FIG. 15. (Color online) Time evolution of the |1,1〉 levels with
different magnetic numbers. As explained in the text, with the
parameters listed in Table V it is possible to tune the different hopping
rates to very different values.

A. Bulk

We start discussing the Hamiltonian and the discrete
translation operator in the bulk. We consider the Landau gauge,
A = B(0,x), and introduce the number of fluxes crossing each
plaquette α = Baxay/	0, where 	0 is the flux quantum and
ax and ay are the dimensional lattice constants. From now on
x and y will just be adimensional integer numbers labeling the
sites of the lattice.

The standard generalization of the Bose-Hubbard Hamilto-
nian in the presence of an external magnetic field is the Harper
Hamiltonian:

H = −J
∑
x,y

[e−2πiαxd
†
x,y+1dx,y + d

†
x+1,ydx,y] + H.c., (B1)

where dx,y and d
†
x,y are boson annihilation and creation

operators satisfying [dx,y,d
†
x ′,y ′ ] = δxx ′δyy ′ .

The action of the standard discrete translation operator
Tm,n = T (max + nay) (m,n ∈ N) on the field operators is the
following:

T1,0d
(†)
x,yT

†
1,0 = d

(†)
x+1,y ,

T0,1d
(†)
x,yT

†
0,1 = d

(†)
x,y+1,

Tm,n = T m
1,0T

n
0,1 = T n

0,1T
m

1,0.

Since these Tm,n operators do not commute with the
Hamiltonian in Eq. (B1), we need a “magnetic” translation
operator Mm,n commuting with the Hamiltonian, which is the
discrete version of the continuum case discussed in Ref. [78]:

M1,0d
(†)
x,yM

†
1,0 = e+(−)2πiαyd

(†)
x+1,y ,

M0,1d
(†)
x,yM

†
0,1 = d

(†)
x,y+1,

Mm,nd
(†)
x,yM

†
m,n = e−(+)iπαmnMm

1,0M
n
0,1d

(†)
x,yM

†n
0,1M

†m
1,0

= e+(−)iπαmnMn
0,1M

m
1,0d

(†)
x,yM

†m
1,0M

†n
0,1.
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The preceding equation indicates clearly the peculiarity of
the magnetic translations which leads to the Aharonov-Bohm
effect: The result of a translation from one point to another
strongly depends on the followed path and eventually, moving
along a closed loop, gives to the state a phase proportional to
the encircled magnetic flux.

We can verify the commutativity of the magnetic translation
operator with the Hamiltonian just by checking M1,0 because
translations along other directions commute straightforwardly:

M1,0e
−2πiαxd

†
x,y+1dx,yM

†
1,0

= e−2πiαxe−2πiα(y+1)e+2πiαyd
†
x+1,y+1dx+1,y

= e−2πiα(x+1)d
†
x+1,y+1dx+1,y ,

M1,0d
†
x+1,ydx,yM

†
1,0 = d

†
x+1,ydx,y ⇒ M1,0HM

†
1,0 = H,

where we exploit the sum over dummy x in H and change
variables to x ′ = x + 1, always possible in the bulk.

B. Boundaries

We now discuss the possibility of studying the previous
infinite system with a finite system of dimension Lx × Ly

with PBC. Lx,y are here adimensional numbers which can be
used to define the total number of fluxes crossing the finite
system: N	 = LxLyα. In order to be able to identify the
bosonic operators residing on sites whose distance is mLxax +
nLyay , with m,n ∈ N, we must require the total number
of fluxes N	 to be an integer number. This can be proven
by simply translating the field operator around one plaquette
Lx × Ly . As before, we also require the Hamiltonian and the
“magnetic” translation operators to commute; in particular,
we discuss in detail the interesting case of translation along x̂:
M1,0HM

†
1,0 = H .

We separately analyze this equation on each link of the
finite lattice. In particular, when considering the links oriented
along the ŷ direction, it reduces to the following equality:

e−2πiαxe−2πiα[y+1−y]d
†
x+1,y+1

dx+1,y

= e−2πiαx+1d
†
x+1,y+1

dx+1,y, (B2)

where x + 1 denotes the modulus count (x + 1 mod Lx); the
same holds for y.

We distinguish four cases:
(i) x ∈ [0,Lx − 2] ∧ y ∈ [0,Ly − 2]—Eq. (B2) is auto-

matically satisfied, as it happens in the bulk;
(ii) x = Lx − 1 ∧ y ∈ [0,Ly − 2]—Eq. (B2) is fulfilled

only if e−2πiα(Lx−1)e−2πiα = 1, which implies αLx ∈ N;
(iii) x ∈ [0,Lx − 2] ∧ y = Ly − 1—Eq. (B2) is fulfilled

only if e+2πiα(Ly−1) = e−2πiα , which implies αLy ∈ N;
(iv) x = Lx − 1 ∧ y = Ly − 1—Eq. (B2) is fulfilled only if

e−2πiα(Lx−1)e+2πiα(Ly−1) = 1, which implies α(Ly − Lx) ∈ N.
The double constraint N	/Lx,N	/Ly ∈ N and the desired

magnetic filling one N	 = N strongly reduces the number
and variety of finite size systems numerically treatable with
moderate effort. The Hilbert space for the examined 4 × 4
lattice with four particles consists of 3.620 states, but already
five three-hardcore bosons on a 5 × 5 grid need 110.630 states
to be described. Such strict constraints could be circumvented
if one introduces proper singularities of the magnetic field
to fulfill the correct translational and periodic conditions;
however, any spurious correction introduced by hand would
strongly affect the numerics on the small scales treatable.
Therefore, we decided to stick to the strictest version given
earlier. An extensive numerical study of this problem, though
interesting, goes well beyond the purposes of the present article
and is left for future investigations.
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