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We investigate the strongly correlated effect of cold atoms in a triangular optical lattice using the dynamical
cluster approximation combined with the continuous-time quantum Monte Carlo method. When the interaction
increases, the Fermi surface evolves from a circular ring into a flat plane, and the system transitions from a Fermi
liquid into a Mott insulator. The transition between the Fermi liquid and a pseudogap shows a reentrant behavior
due to the Kondo effect. We give an experimental protocol to observe these phenomena in future experiments by
varying the lattice depth and the atomic interaction via the Feshbach resonance.
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I. INTRODUCTION

Quantum phase transition in a strongly correlated system
is an important research area in condensed matter physics,
and it presents some of the most challenging problems. In a
real material, it is difficult to vary the experimental parameter
to observe the strongly correlated effect, which is complicated
by impurities and multiple bands. However, optical lattices
present a highly controllable and clean system for studying
a strongly correlated system in which the relevant parameter
can be adjusted independently [1-6]. Optical lattices with
different geometrical properties, such as such as triangular [7],
honeycomb [8], and Kagomé [9-12] optical lattices, can be set
up by adjusting the propagation directions of laser beams. The
interaction between the trapped atoms is tunable through the
Feshbach resonance, such as °Li and “°K. In recent years, a
series of experiments has been carried out to investigate
the quantum phase transition of cold atoms in optical
lattices [13-19].

There are many analytical and numerical methods used
to investigate the strongly correlated system, especially the
frustrated system [20-29]. The dynamical mean-field theory
(DMFT) [30] has proven to be a useful tool. The self-energy
is given as a local quantity in the DMFT, which has proved
to be exact in the infinite-dimensional limit [31]. This
method is a good approximation even for a three-dimensional
situation [32]. However, in the frustrated systems, the nonlocal
correlations cannot be simply ignored or the DMFT would not
work efficiently. So, many methods have been improved to
incorporate nonlocal correlations in the framework of DMFT,
such as the dynamical cluster approximation (DCA) [33,34].
Differently from the DMFT, the lattice problem is mapped into
a self-consistently embedded finite-sized cluster in the DCA.
The irreducible quantities of the embedded cluster are used as
an approximation for the corresponding lattice quantities. The
DCA has been used to investigate the geometrical frustrated
system [35,36].

In the present article, we investigate the Mott transition
in an artificial frustrated system—cold atoms in a triangular
optical lattice. We improve the numerical method, the DCA
combined with the continuous-time quantum Monte Carlo
method (CTQMC) [37], to investigate this geometrical frus-
trated system. The CTQMC, used as the impurity solver, is
an exact numerical method that was proposed recently. By
calculating the density of states and the spectral function, we
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find the system undergoes a second-order phase transition from
Fermi liquid to Mott insulator. The phase diagram shows a
reentrant behavior of the transition between the Fermi liquid
and the pseudogap due to the Kondo effect at low temperature.
These phenomena can be observed in the triangular optical
lattice by varying the lattice depth and the interaction strength
via the Feshbach resonance. The advantages of this artificial
frustrated system are high controllabity and cleanliness, and
the numerical method acts as a powerful tool for investigating
the strongly correlated effect in condensed-matter physics,
such as the spin liquid, the high-temperature superconductor,
and the colossal magnetoresistance.

II. ARTIFICIAL FRUSTRATED SYSTEM

In contrast with real materials, the cold atoms trapped in
an optical lattice provide an artificial system to investigate the
strongly correlated effect. The experiment can be performed
with “°K atoms prepared by mixing two magnetic sublevels
of the F = 9/2 hyperfine manifold, such as the |—9/2) and
the |—5/2) states [16]. As an artificial frustrated system, the
triangular optical lattice can be set up by three laser beams,
such as the Yb fiber laser at wavelength A = 1064 nm, with a
27 /3 angle between each other, as illustrated in Fig. 1(a). The
potential of optical lattice is given by

k, 3k,
Vix,y) = VO[3 +4cos ( Zx) cos (%)

+ 2cos(«/§kyy)i|, (D

where Vj is the barrier height of the standing wave formed
by laser beams in the x-y plane, and k. and k, are the
two components of the wave vector k = 2w /1 along x and
y directions. In experiments, V; is always given in units of
recoil energy E, = h*k?/2m. The landscape of the potential
of a triangular optical lattice in the x-y plane is shown in
Fig. 1(b), where the dark blue parts in the figure indicate the
minimum lattice potential. Figure 1(c) shows the contour lines
of the triangular optical lattice. By connecting the center of the
circular optical lattice, which indicates the minimum lattice
potential, we may get the geometry of this triangular optical
lattice, as shown by the red dashed lines.
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FIG. 1. (Color online) (a) A sketch of the experimental setup to
form a triangular optical lattice. Each arrow depicts a laser beam; the
sphere in the center of the figure depicts a fermionic quantum gas,
such as “°K. (b) Landscape of the potential V(x,y). (c) The contour
lines of a triangular optical lattice. The dark blue circles indicate the
minimum lattice potential. The dashed red lines show the geometry
of this triangular optical lattice by connecting the minimum lattice
potential.

The Hamilitonian of the interacting fermionic atoms
trapped in this artificial frustrated system is written as

H=—t Z ¢l cio+U annu, 2
(ij)o i

where cfa and c¢;, denote the creation and the annihilation

operator of the fermionic atom on lattice site i, respectively.
Nig = cj{, cis represents the density operator of the fermionic
atom, and ¢ = (4//m)E,(Vo/E,)**exp[—2(V/E;)/?] is the
kinetic energy, which can be adjusted by the lattice depth
Vo. U = /8/mkasE.(Vy/E,)** is the on-site interaction
determined by the s-wave scattering length a,, which can be
adjusted by Feshbach resonance [6,38,39].

III. NUMERICAL METHOD: DCA + CTQMC

We improve the dynamical cluster approximation (DCA)
to combine with the continuous-time quantum Monte Carlo
method (CTQMC) to investigate the strongly correlated effect
of cold atoms in the frustrated system shown in Fig. 2(a), which
can be realized by the Hubbard model (2).

In the DCA, the reciprocal space of the lattice contain-
ing N points is divided into finite cells [34]. The coarse-
graining Green’s function G is achieved by averaging Green’s
function G within each cell. The lattice problem is mapped
into a self-consistently embedded finite-sized cluster. The
coarse-graining procedure of the DCA is illustrated as follows:
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FIG. 2. (Color online) (a) Sketch of the triangular lattice.
(b) A coarse-graining procedure in the first Brillouin zone when
N, = 4. The red dashed horizontal lines show the first Brillouin zone
in reciprocal space. The green solid diagonal lines shows the region
divided into four cells for the DCA calculation.

the Brillouin zone is divided into N, cells, each cell represented
by a cluster momentum K.In Fig. 2(b), we provide an example
of this coarse-graining procedure in an N, = 4 situation. In our
treatment, the coarse-grained Green’s function,

— = NC —> ~
G K, iw,) = — G(K +Kk,iw,
(Kiw,) N;<:+zm

Nc 1
= — —— , 3)
N Z: — — /
= iw, 8K_)+E Y (K iw,)

where summation over K is taken within the coarse-graining
cell, the w, is the Matsubara frequency.

Similar to the DMFT, after mapping the Hubbard model to
an Anderson impurity problem we introduce an impurity solver
to solve the cluster problem, such as the quantum Monte Carlo
(QMO), the fluctuation exchange approximate (FLEX), and
the noncrossing approximation (NCA). In our calculation, we
employ the CTQMC [37] which does not need to introduce
any anxiliary-field variables as our impurity solver. Compared
to the traditional QMC method, the CTQMC is much more
exact because it does not use the Trotter decomposition. We
use 107 sweeps in our CTQMC step.

The self-consistent loop can be taken as follows:

(1) The DCA iteration loop can be started by setting the
initial self-energy X.( I?,i w,), which can be guessed or gotten
from a perturbation theory.

(2) We could get the following: G(K,iw,) = Reyl/
lion — e o = Zo(Kliwy)].

(3) The host Green’s function ?(I?,i w,) 1s computed by
UK iw) ! = G(K io) ™ + T(Kiw,).

(4) The G( I?,i wy) is transformed from a momentum-
frequency variable to a space-time variable G( )T), - )?j L Ti—Tj)
used as the input to the CTQMC simulation.

(5) The CTQMC step is the most time-consuming part of
the iteration loop. In our CTQMC step, we use 107 CTQMC
sweeps. After the simulation, we get G( )?, — )?j,ri - T;).

6) G( )?, - )?j,t,- — t;) is transformed from a space-time
variable to a momentum-frequency variable 5(1?,1&),,) by
Fourier transform. _

(7) We get the new self-energy by X.(K,iw,)=
UK io) ™ = G(K i)™
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FIG. 3. (Color online) The double occupancy D, as a function
of the interaction U for different temperature. ¢ is the kinetic energy
in Eq. (2).

(8) Repeat from steps (2) to (7) until X.( I?,i w,) converges
to the desired accuracy.

(9) Once convergence is reached, we can calculate the state
density p(w) by the maximum entropy method [40]. And
we can get other lattice quantities by some other additional
analysis code.

By combining the DCA, which introduces the nonlocal
correlations, and the exact numerical method, CTQMC, we
caninvestigate the frustrated system efficiently. This numerical
method can be easily reconstructed to study another strongly
correlated system in future research.

IV. PHASE DIAGRAM

We investigate the double occupancy Dyec = dF/oU =
% > .(niyn;) as a function of interaction U for various
temperatures, where F is the free energy. When the inter-
action is lower than U/t = 8.6, the D, increases as the
temperature decreases due to the enhancing of the itinerancy
of atoms, as shown in Fig. 3. When the interaction is stronger
than U/t = 8.6, the effect of the temperature on Dg is
weakened. The D,.. decreases as the interaction increases
due to the suppressing of the itinerancy of the atoms. When
the interaction is stronger than the critical interaction of the
Mott transition, D, for different temperatures is coincident,
which shows the temperature does not affect the double
occupancy distinctly. The continuity of the evolution of the
double occupancy by interaction shows that it is a second-order
transition.

We employ the maximum entropy method [40] to calculate
the density of states (DOS) which describes the number of
states at frequency w. Figure 4(a) shows the DOS for different
interactions at 7/t = 0.5. There is a Fermi-liquid-like peak
when U/t =4.0. A pseudogap formed by the splitting of
Fermi-liquid-like peak appears when the interaction increases,
such as U/t = 8.0 and U/t = 9.0. When the interaction is
stronger than the critical interaction U,/t = 11.6, such as
U/t =12.0and U/t = 20.0, the system becomes an insulator
indicated by an opened gap. The DOS for different interactions
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FIG. 4. (Color online) The density of states (DOS) as a function
of frequency w for different interactions. ¢ is the kinetic energy in
Eq. (2). (a) At T/t = 0.50, a pseudogap formed by the splitting of
Fermi-liquid-like peak appears when the interaction increases. A gap
is opened when the interaction is stronger than the critical interaction
U./t =11.6. (b) At T/t = 0.25, a Kondo resonance peak is found
before the pseudogap appears.

at T/t = 0.25 is shown in Fig. 4(b). When U/t = 4.0, there is
also a Fermi-liquid-like peak. When the interaction increases,
such as U/t = 8.0, a Kondo resonance peak appears which
is shown by a sharp quasiparticle peak with two shoulders.
When U/t = 9.3, the Kondo resonance peak is suppressed and
a pseudogap appears, which is the intermediary state between
the Fermi liquid and the Mott insulator. A gap is opened
when the interaction is stronger than the critical interaction
U./t = 10.6. Instead of directly splitting into two parts shown
in Fig. 4(a), a Kondo peak appears, which is formed by the
effect between the local atom and the itinerant atom at low
temperature, as shown in Fig. 4(b).

We could also get the K-dependent spectral function
Ap(w) = —Im Gg(w + 10)/r, which describes the distribution
probability of the quasiparticle with momentum k and
energy w. Figure 5 shows Ax(w) for different temperature,
where U/t = 7.0. At T/t = 1.67, there exists a quasiparticle
peak which shows a metallic behavior, as shown in Fig. 5(a). In
Fig. 5(b), apseudogap appears at 7/t = 1.11, which is formed
by the splitting of the quasiparticle peak. When 7'/t = 0.50,
the pseudogap disappears and there is a quasiparticle peak
again, as shown in Fig. 5(c). An obvious Kondo peak appears
when T/t = 0.2, as shown in Fig. 5(d). It shows a reentrant
behavior in the transition between the Fermi liquid and the
pseudogap when the interaction is fixed and the temperature
decreases. This behavior is based on the Kondo effect which
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FIG. 5. (Color online) The K-dependent spectral function Ai(w)
for different temperatures when U/t = 7.0. ¢ is the kinetic energy in
Eq. (2). (a) At T/t = 1.67, the red region (near w/t = 1.5) shows
a Fermi-liquid-like peak near Fermi energy. (b) At 7'/t = 1.11, a
narrow pesudogap is shown by the green region (near w/t = 0).
Two peaks found around the pesudogap are shown by yellow
(near w/t = —2) and orange (near w/t = 2.5). (c) At T/t =0.5,
a Fermi-liquid-like peak appears again shown by red (near w/t = 0).
(d) At T/t = 0.2, an obvious Kondo peak appears shown by red (near
o/t =0).

suppresses the splitting of the quasiparticle peak at low
temperature.

We study the Fermi surface as a function of momentum &
by A(k; w = 0) = —% limy, .o ImG(k,iw,). A linear extrapo-
lation of the first two Matsubara frequencies is used to estimate
the self-energy to zero frequency [41]. Figure 6 shows the
Fermi surface for a different interaction at 7/t = 1.25. A
circular ring, which means the particles distribute on a certain
energy, displays a metallic behavior, as shown in Fig. 6(a-1).
As the interaction increases, the ring becomes bigger, as
shown in Fig. 6(b-1). When the interaction is stronger than the
critical interaction U/t = 13.7, the Fermi surface becomes a
nearly flat plane, as shown in Fig. 6(c-1). From Figs. 6(a-2)
to 6(c-2), we find that the amplitude of the spectral weight
becomes smaller and the breadth becomes wider. The Fermi
surface transitions from a determined surface into a flat plane
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FIG. 6. (Color online) The Fermi surface as a function of
momentum k for different interaction at 7'/t = 1.25: (a) U/t =
5.0, (b) U/t =10.0, (¢c) U/t =16.0. ¢ is the kinetic energy in
Eq. (2).
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FIG. 7. (Color online) The phase diagram of Fermi atoms in a
triangular optical lattice, where the square plots on the solid line
(green, red, blue) indicate the transition line of the Fermi liquid and
the pseudogap, the circular plots on the solid line (purple) indicate
the Mott transition line, and the triangular plots on the dashed line
(pink) mark the Kondo peak appearing region. # is the kinetic energy
in Eq. (2).

due to the localization of the particles when the interaction
increases.

The phase diagram of cold atoms trapped in a triangular
optical lattice is shown in Fig. 7, where a; indicates the s-wave
scattering length. The transition between the Fermi liquid
and the pseudogap shows a reentrant behavior. For a fixed
interaction weaker than U/t = 7.2, when the temperature
decreases, the system transitions from a Fermi liquid to a
pseudogap. When the temperature is lower than the critical
temperature distributing on the red solid line, the system
transitions from pesudogap to Fermi liquid. There is a Kondo
peak region, which is indicated by the blue solid line and the
pink dashed line. If the temperature is lower than 7/t = 2.0,
a Kondo peak emerges before the appearing of the pseudogap
when the interaction increases. When the interaction is
stronger than the critical interaction of the Mott transition
distributing on the purple line, the system translates from a
pseudogap to an insulator confirmed by an opened gap.

V. EXPERIMENTAL PROTOCOL

We designed an experiment to investigate the quantum
phase transition in a triangular optical lattice. The experimental
protocol can be taken as follows: The “°K atoms can be
produced as a pure fermion condensate by evaporative cooling
[42]. Three laser beams at wavelength A = 1064 nm are used
to form the triangular optical lattice [43] to trap *°K atoms.
The lattice depth Vj is used to adjust the kinetic energy ¢
and the interaction U. The on-site interaction can be adjusted
by Feshbach resonance [44—48]. The s-wave scattering length
is used to determine the effective interaction. The temperature
can be extracted from time-of-flight images by means of Fermi
fits in experiment [19].
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When the interaction increases, the system transitions from
a Fermi liquid (a; < 48ay) to a Mott insulator (a; > 111ap) at
temperature 7 = 5.96 nK, when Vy = 10E,. In order to detect
the double occupancy Do, we rapidly increase the depth of
the optical lattice to prevent further tunneling. Next we shift the
energy of the atoms on doubly occupied sites by approaching
a Feshbach resonance. Then one spin component of the atoms
on the double occupied sites is transferred to an unpopulated
magnetic sublevel by using a radio-frequency pulse. The
double occupancy can be deduced by the fraction of trans-
formed atoms obtained by the absorption imagining [16,49].
At T = 5.96 nK, D, decreases from 0.11009 (a;, = 45ay) to
0.004 56 (a;, = 130ay) with increasing atomic interaction.

By ramping down the optical lattice slowly enough,
the atoms stay adiabatically in the lowest band while the
quasimomentum is approximately conserved. Then, the optical
lattice is converted from a deep one into a shallow one and the
quasimomentum is preserved. After completely turning off the
confining potential, the atoms ballistically expand for several
milliseconds. Then by absorption imagining, one can get the
Fermi surface [50,51]. At T = 5.96 nK, the circular ring shape
of the Fermi surface when a; = 41qy transforms into a flat
plane when a; = 162qy.
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VI. SUMMARY

In summary, we investigate the Mott transition of the
cold atoms in a two-dimensional triangular optical lattice
set up by three laser beams. The system evolves from a
Fermi liquid into a Mott insulator for increasing interaction,
and a reentrant behavior of the transition between Fermi
liquid and the pesudogap is found due to the Kondo effect.
Our study presents a helpful step for understanding the
strongly correlated effect in the frustrated system, such as
the spin liquid. Beyond the DMFT, the DCA is improved to
incorporate the nonlocal correlation which cannot be simply
ignored in the frustrated system. This numerical method is
universally used to investigate strongly correlated systems,
such as the high-temperature superconductor and the colossal
magnetoresistance.
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