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Mean-field regime of trapped dipolar Bose-Einstein condensates in one and two dimensions
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We derive rigorous one- and two-dimensional mean-field equations for cigar- and pancake-shaped dipolar
Bose-Einstein condensates with arbitrary polarization angle. We show how the dipolar interaction modifies
the contact interaction of the strongly confined atoms. In addition, our equations introduce a nonlocal
potential, which is anisotropic for pancake-shaped condensates. We propose to observe this anisotropy via
measurement of the condensate aspect ratio. We also derive analytically approximate density profiles from
our equations. Both the numerical solutions of our reduced mean-field equations and the analytical density
profiles agree well with numerical solutions of the full Gross-Pitaevskii equation while being more efficient to
compute.
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I. INTRODUCTION

Quantum-degenerate gases with long-range interactions
have received much attention recently from both experimental
and theoretical studies. In conventional experiments with
bosonic quantum gases, short-range interactions have played
a leading role and are well described by the s-wave scattering
length [1]. With the realization of a dipolar chromium Bose-
Einstein condensate (BEC) it is now possible to go beyond
such isotropic interactions in degenerate gases [2,3]. Dipolar
interactions have a long-range and anisotropic component.
These features crucially affect the ground-state properties
[4,5], stability [6–8], and dynamics of the gas [9]. Furthermore,
they offer a route for studying exciting many-body quantum
effects such as a superfluid-crystal quantum phase transition
[10], supersolids [11], or even topological order [12] (for a
review of the experimental and theoretical progress in dipolar
gases, see Refs. [13,14]).

52Cr possesses a comparatively large magnetic dipole
moment of 6 Bohr magnetons. A large magnetic dipole
moment makes atomic BECs ideal candidates for studying
the interplay between contact and dipole-dipole interactions.
By reducing the s-wave scattering length via a Feshbach
resonance, it is even possible that dipole-dipole interactions
dominate the properties of the BEC [15,16]. Dipolar effects
have also been observed in a spinor alkali-metal condensate
[17]. Furthermore, dc electric fields can induce large electric
dipole moments in alkali-metal atoms [18]. Systems with a
large permanent electric dipole moment include heteronuclear
molecules [19,20], which are harder to cool to quantum
degeneracy [21,22], and Rydberg atoms [23].

Complementing the tremendous experimental progress,
many properties of trapped dipolar BECs have been investi-
gated theoretically. The Gross-Pitaevskii equation (GPE) with
a nonlocal potential determines its ground-state density profile
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in three dimensions and at zero temperature [5]. Neglecting
the kinetic energy term, O’Dell et al. [24,25] have shown that,
remarkably, the ground-state density profile of a harmonically
trapped three-dimensional (3D) dipolar BEC is an inverted
parabola, just as in the nondipolar BEC. On the other hand, in
most experiments to date a strong harmonic trap (or optical
lattice) along one or two axes confines the dipolar BEC
to a cigar or pancake shape, respectively [3,16]. For these
cases, Parker and O’Dell [26] have derived one- (1D) and
two-dimensional (2D) density profiles of a dipolar BEC both
in the Thomas-Fermi (TF) limit and the 1D and 2D mean-field
limit. However, their results are only valid for polarization
along the symmetry axis. Several authors have derived
effective dipolar potentials in lower dimensions for either
axial or transverse polarizations [27–32]. To our knowledge,
an effective dipolar potential valid for arbitrary polarization
direction of quasi-1D and quasi-2D dipolar BECs has not been
proposed yet.

Apart from a conceptual clarity, effective equations for
lower-dimensional dipolar BECs also offer a clear advantage
for numerical computations. For strong trap anisotropies the
time scales along the compressed and elongated axes are very
different, which makes an accurate numerical treatment hard.
Instead of solving the full 3D problem, it is hence desirable to
find governing equations for lower-dimensional dipolar BECs
which are suitable for efficient numerical methods. This is
particularly important for very strong confinement or low
densities, where the usual TF approximation for the full 3D
GPE becomes invalid [1].

In this article, we present mean-field equations for trapped
dipolar BECs in one and two dimensions polarized along an
arbitrary axis. Our equations are based on a mathematically
rigorous dimension reduction of the 3D GPE to lower
dimensions. For BECs without dipolar interactions the formal
analysis [33–35] and rigorous analysis [36–39] of such a
dimension reduction has been discussed extensively in the
physical and mathematical literature. On the other hand, only
few mathematically rigorous results are available for the
dimension reduction of dipolar BECs, such as Ref. [40]. The
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FIG. 1. (Color online) In the quasi-1D setup in (a) the dipolar
BEC is confined to the z direction. In the quasi-2D setup in (b) the
atoms are confined to the x-y plane. The dipoles are polarized along
the axis n = (nx,ny,nz) with polar angle θ̃ (i.e., nz = cos θ̃ ).

main advantages of our effective equations over previously
derived results are: (i) valid for arbitrary dipole alignment
and (ii) well amenable for efficient numerical computations
typically based on the Fourier transformation and related
methods.

For the derivation of the 1D (2D) case we assume that
the BEC is in the ground state of the radial (axial) trap (see
Fig. 1). We find that the ground state of the lower-dimensional
dipolar BEC is determined by a modified contact interaction
term and a nonlocal potential. Compared to a confined BEC
with only s-wave interactions, here the contact interaction
also depends on the strength of the dipolar interaction and
the z component of the polarization axis. Crucially, it is
independent of the transverse components of the polarization.
In 2D the nonlocal term introduces anisotropy in the BEC
ground-state density, which can be measured, for example,
in time-of-flight experiments as a modified aspect ratio of
the BEC [3,41]. We discuss the aspect ratio of the BEC for
the intermediate regime between the special cases of parallel
and orthogonal polarization, which have been studied before
[24,26]. Furthermore, we present simple analytical density
profiles in 1D and 2D derived from our mean-field equations.
We compare ground states of the quasi-1D and quasi-2D BEC
at different polarizations with the ground states of the full
3D BEC and find good agreement. In particular, our ground
states are a good approximation to the ground states of the
full GPE in regimes where the TF approximation fails. In the
limit of strong axial confinement we can cast our nonlocal
potential into a form similar to the Poisson equation found for
3D dipolar BECs [24].

This article is organized as follows. In Sec. II, we introduce
the model of a 3D dipolar BEC at zero temperature. As our
first main result, in Sec. III we present a mean-field equation
for a quasi-1D dipolar BEC. We compare the ground-state
solutions of this 1D equation with the full 3D computation
and an approximate analytical solution. In Sec. IV, we present
our second main result, namely, a mean-field equation for a
quasi-2D dipolar BEC. Again we compare its solutions to the
3D GPE solution and our analytical approximation. Moreover,
we calculate the aspect ratio of the BEC if the polarization of
the dipoles is changed continuously from the longitudinal to
a radial axis. We conclude in Sec. V. In Appendices A and B
we present details of the dimension reduction from the 3D
GPE to the 1D and 2D mean-field equations, respectively. In
Appendix C we derive closed forms for the nonlocal potentials
in 1D and 2D for arbitrary dipole alignment.

II. 3D MODEL

We consider a dilute dipolar BEC at zero temperature
trapped in a harmonic potential V (r) = m

2 (ω2
xx

2 + ω2
yy

2 +
ω2

zz
2), where m is the particle mass and ωx,y,z are the trap

frequencies. We focus on atomic BECs with a magnetic dipole
moment but it is straightforward to extend the analysis to
degenerate bosonic gases with electric dipole moments. We
assume that the atoms are polarized along a dipolar axis
n = (nx,ny,nz) with

∑
i n

2
i = 1. Away from shape resonances,

the wave function ψ(r,t) of the gas is governed by the GPE
[5,18,42]

ih̄∂tψ(r,t) =
[
− h̄2

2m
∇2 + V (r) + g|ψ |2 + �dd

]
ψ(r,t),

(1)

where g = 4πh̄2as/m is the contact interaction strength with
s-wave scattering length as . The dipolar potential �dd is given
by the convolution

�dd =
∫

d3r′Udd (r − r′)|ψ(r′,t)|2, (2)

with the dipole interaction

Udd (r) = Cdd

4π

1 − 3 cos2 θ

|r|3 . (3)

Here θ is the angle between the polarization axis n and
the relative position of two atoms (that is, cos θ = n · r/|r|).
For magnetic dipoles we have Cdd = µ0µ

2
d , where µ0 is the

magnetic vacuum permeability and µd the dipole moment,
and for electric dipoles we have Cdd = d2/ε0, where ε0 is the
vacuum permittivity and d the electric dipole moment. We
note that it is possible to modify the dipolar interaction Cdd by
means of a rotating magnetic field [43].

We use a mathematical identity to write the dipole interac-
tion Eq. (3) as [24,44]

Udd (r) = −Cdd

(
1

3
δ(r) + ∂nn

1

4π |r|
)

. (4)

Here we denote with ∂n = nx∂x + ny∂y + nz∂z the derivative
along the dipole axis and ∂nn = ∂n(∂n). Inserting Eq. (4) and
Eq. (2) into the GPE, Eq. (1), results in

ih̄∂tψ =
[
− h̄2

2m
∇2 + V (r) +

(
g − Cdd

3

)
|ψ |2 + �̃3D

]
ψ.

(5)

We note that two terms contribute to the dipolar in-
teraction. The first term in Eq. (4) reduces the contact
interaction strength [third term in Eq. (5)], while the
second term in Eq. (4) contributes the potential �̃3D =
−Cdd∂nn

∫
d3r′U3D(r − r′)|ψ(r′,t)|2 with kernel U3D(r) =

1/4π |r|.
We introduce dimensionless quantities by rescaling lengths

with r → ra0, times with t → t/ω0, energies with h̄ω0, and
the wave function with ψ → ψ

√
N/a3

0 , where ω0 is the
smallest trap frequency in the system [ω0 = min(ωx,ωy,ωz)],
a0 = √

h̄/mω0 the corresponding magnetic length, and N
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the total number of atoms in the BEC. After rescaling, in
dimensionless form Eq. (5) is given by

i∂tψ =
[
−1

2
∇2 + V (r) + β(1 − εdd )|ψ |2 + �3D

]
ψ, (6a)

�3D = −3βεdd∂nn

∫
d3r′U3D(r − r′)|ψ(r′,t)|2, (6b)

where β = 4πNas/a0 and εdd = Cdd/3g defines a natural
dimensionless parameter for the relative strength of dipolar
and s-wave interactions. The dimensionless trapping potential
is V (r) = 1

2 (γ 2
x x2 + γ 2

y y2 + γ 2
z z2), with γx = ωx/ω0, γy =

ωy/ω0, γz = ωz/ω0.

III. QUASI-1D DIPOLAR BEC

By choosing a sufficiently large radial trap frequency it
is possible to freeze the radial motion of the BEC [45]. If
the extent of the radial cloud is much larger than the s-wave
scattering length, this is the limit of a quasi-1D BEC [46].
In Fig. 1(a) we illustrate the geometry of this setup. In this
section, we present an intuitive mean-field equation for the
axial wave function of such a strongly confined dipolar BEC.

Our equation is based on a reduction of the 3D GPE to 1D
assuming a strong radial confinement.

A. 1D mean-field equation

In order to derive a mean-field equation for the axial wave
function of the condensate, we assume that ωz � ωx = ωy =:
ω⊥ and gn0 � h̄ω⊥, where n0 is the peak density of the BEC.
Moreover, we require that dipole interactions do not excite
radial modes; that is, �dd � h̄ω⊥. Then the radial modes of
the BEC are in the ground state of the transversal harmonic
trap and the order parameter ψ of the BEC factorizes. We write
the factorized wave function as

ψ(r,t) = e−iω⊥tw2D(x,y)ψ1D(z,t), (7)

w2D(x,y) =
√

mω⊥
πh̄

e−mω⊥(x2+y2)/2h̄. (8)

In this section we rescale equations in terms of the dimen-
sionless lengths r → raz, times t → t/ωz, and the axial wave
function ψ1D → ψ1D

√
N/az with az = √

h̄/mωz the magnetic
length in the z direction. Energies are expressed in units of
h̄ωz. Given these assumptions, in Appendix A we show that
the 3D GPE [Eq. (1)] reduces to an equation for the axial wave
function ψ1D

i∂tψ1D(z,t) =
{
−1

2
∂zz + V1D(z) + β1Dγ

2π

[
1 + εdd

2

(
1 − 3n2

z

)]|ψ1D(z,t)|2 + �1D

}
ψ1D(z,t), (9a)

�1D = 3β1Dεdd
√

γ

8
√

2π

(
1 − 3n2

z

)
∂zz

∫ ∞

−∞
dz′U1D(z − z′)|ψ1D(z′,t)|2, (9b)

where V1D(z) = z2/2, β1D = gN/h̄ωza
3
z = 4πNas/az, and nz

is the z component of the dipole axis n. The trap aspect ratio
is given by γ = ω⊥/ωz. We find for the kernel U1D

U1D(z) = eγ z2/2 erfc(|z|
√

γ /2), (10)

where erfc is the complementary error function. In Appendix C
we calculate the derivative in Eq. (9b) and give a closed form
of the resulting convolution integral. However, for our focus
on numerical computation of the ground state, expression
(9b) is better suited. It is worth pointing out that the only
approximation in the derivation of Eq. (9) from the GPE is the
factorization in Eq. (7) with the choice of a Gaussian as the
radial wave function w2D(x,y).

The formula for the wave function of a quasi-1D dipolar
BEC [Eq. (9a)] is very intuitive. It has the same structure as the
corresponding 3D expression [Eq. (6a)]. Notably, the effect of
the dipolar interaction in 1D is an altered contact interaction
strength and the introduction of a nonlocal potential �1D. In
Fig. 2(a) we plot the kernel U1D of the potential [Eq. (10)]
for different trap aspect ratios. In contrast to the kernel U3D

in 3D, the kernel of the 1D potential does not diverge at the
origin. Instead, we find U1D(z) = 1 − √

2γ |z|/√π + O(|z|2)
for |z| → 0. In the opposite limit, |z| → ∞, we find U1D(z) ∼√

2/
√

πγ |z|; that is, it scales with 1/|z| as the 3D kernel.
These properties allow for efficient numerical methods based
on Eq. (9) [44].
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FIG. 2. (Color online) (a) The kernel U1D [Eq. (10)] for γ = 10
(solid line), 80 (dashed line), 1000 (dotted line). (b) U2D [Eq. (17)]
for γ = 1/10 (solid line), 1/80 (dashed line), 1/1000 (dotted line).
In both cases, increasing the confinement of the BEC leads to
increasingly local behavior.
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B. Ground state

The third term in Eq. (9a) describes the altered contact
interaction, which now depends on the dipolar interaction
strength β1Dεdd . The anisotropy of the dipolar interaction is
manifest in this term in the dependence on the z component
nz = cos θ̃ of the dipole axis, where θ̃ is the angle between
dipole and z axes [cf. Fig. 1(a)]. If the dipoles are aligned
along the longitudinal BEC axis (nz = 1), the effective contact
interaction reduces by a factor of (1 − εdd ). Neglecting the
nonlocal part of Eq. (9a), this results in a reduced BEC length.
If the dipole axis is perpendicular to the BEC axis (nz = 0),
the BEC length increases since the contact interaction is larger
by a factor (1 + εdd/2). Intuitively, these two cases can be
understood in terms of a string of magnets: Magnets with
poles aligned head to tail attract each other, while magnets
in a head to head or tail to tail configuration repel each
other. However, our equation also maps out all intermediate
configurations between these two special cases. Finally, we
notice the familiar increase of the effective s-wave scattering
strength in 1D by a factor γ /2π , which is due to the
choice of a Gaussian ground state in the factorization Eq. (7)
[34,47].

The potential �1D in Eq. (9a) describes the nonlocal effect
of the dipolar interaction on the BEC. The shape of the
kernel U1D [see Fig. 2(a)] reveals that this potential becomes
more local with increasing trap aspect ratio γ . Moreover, for
large γ we expect that �1D does not affect the shape of the
BEC significantly. Owing to the properties of convolutions,
we may apply the second derivative in �1D only to the
density |ψ1D|2 in the integral. However, for the ground state
we expect this density to become flatter for large γ so that
the derivative becomes smaller. Since the contact interaction
scales linearly with γ , the contact term dominates over the
nonlocal potential. Similar to the modified contact interaction,
our Eq. (9b) explicitly states the dependence of �1D on the
z component of the dipole axis (and predicts no dependence
on other components).

We have seen that the dipolar interaction in 1D is
composed of a local (or contact) interaction and a
nonlocal interaction. In order to determine the sign of
the nonlocal interaction, we evaluate the corresponding
energy via Fourier transformation. The energy is given
by 1

2

∫
dz�1D|ψ1D(z,t)|2 = 1

2

∫
dkz�̂1D

̂|ψ1D|2∗
(kz,t) =

− 3β1Dεdd
√

γ

16 (1 − 3n2
z)

∫
dkzk

2
z Û1D(kz)| ̂|ψ1D|2(kz,t)|2, where

f̂ (kz) = (1/
√

2π )
∫

dzf (z)e−ikzz denotes the Fourier trans-
form of a function f . Since the Fourier transforms Û1D

and | ̂|ψ1D|2|2 are positive (see Appendix A), the sign of the
nonlocal potential is opposite the sign of the modification
in the contact term β1Dεddγ

4π
(1 − 3n2

z). This means that the
nonlocal potential counteracts the action of the contact term:
If the contact term is repulsive, the nonlocal potential becomes
attractive and vice versa.

Another useful observation is the following. The BEC
ground state is not affected by the presence of dipolar
interactions for the “magic angle” cos θ̃m = 1/

√
3 [48]. In this

case, the 3D dipolar potential Udd vanishes and, accordingly,
Eq. (9) reduces to the GPE for a quasi-1D BEC without dipolar
interaction. This observation could be useful for very sensitive
matter-wave interferometers, where the dipole interaction

dominates the decoherence when the s-wave scattering length
has been reduced via a Feshbach resonance [16].

We can derive an analytical solution for the density of
the quasi-1D dipolar BEC if the contact interaction term in
Eq. (9a) is repulsive and dominates the dynamics [1]. In this
case, we neglect the kinetic and nonlocal parts in Eq. (9a).
Assuming a stationary solution, ψ1D(z,t) = e−iµzt

√
n1D(z),

we find the density profile n1D(z) = [µz − (z2/2)]{β1D
γ

2π
[1 +

εdd

2 (1 − 3n2
z)]}−1, where µz is the chemical potential along

z. The density vanishes for z � Z = √
2µz. We obtain

the half-width of the condensate Z by evaluating the
normalization condition

∫
dzn(z) = 1, which yields

Z =
{

3

2

β1Dγ

2π

[
1 + εdd

2

(
1 − 3n2

z

)]}1/3

. (11)

Inserting this expression into the density profile gives

n1D(z) = 3

4Z

(
1 − z2

Z2

)
. (12)

Parker and O’Dell [26] have derived analytical 1D densities for
the special case of dipoles aligned along the z axis. In this case,
we note that our generalized expression Eq. (12) coincides with
their density in the limit termed “1D mean-field regime.” Gen-
eralizing the criterion for the validity of the mean-field regime
in Refs. [26,49], we see that Eq. (12) is a good approximation
for the axial density profile of an elongated dipolar BEC if

β1D

4π
√

γ

[
1 + εdd

2

(
1 − 3n2

z

)] � 1. (13)

In Fig. 3 we compare the density of the quasi-1D BEC
determined via Eq. (9) with the analytical prediction Eq. (12)
and the numerical solution for the full 3D GPE in Eq. (1) after
integrating over the transversal directions. If the dipole axis
points perpendicular to the elongated BEC axis, we cannot
distinguish the analytical density from the the quasi-1D GPE
result (see bottom panels of Fig. 3). We have checked that
for larger values of the trap aspect ratio γ the discrepancy
between the full GPE result and our approximate 1D solution
with perpendicular dipoles diminishes. On the other hand, if
the dipoles are aligned with the BEC axis, our 1D mean-
field solution agrees very well with the solution of the full
GPE (see top panels of Fig. 3). Furthermore, we note that the
BEC is compressed compared to the case with perpendicular
dipole axis. This compression is caused by the attraction of
aligned dipoles in a 1D setup, and it is manifest in the reduced
contact interaction in Eq. (9a) for nz = 1. However, for axial
dipoles the nonlocal term in Eq. (9a) produces an appreciable
repulsive potential. As a consequence, the BEC is broadened
as compared to the analytical profile. Therefore, in the regime
of small or moderate interaction energy β1D, we see that the
usual approach of neglecting the kinetic and nonlocal terms
is not sufficient to describe the density profile. On the other
hand, our proposed 1D equation [Eq. (9)] describes the BEC
accurately in the mean-field regime at experimentally relevant
trap aspect ratios γ .
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IV. QUASI-2D DIPOLAR BEC

In this section we consider a dipolar BEC which is strongly
confined along the z axis; that is, γ � 1 [cf. Fig. 1(b)]. Ana-
logous to the preceding section, we assume that gn0 � h̄ωz

and that the axial extend of the cloud is much larger than
the s-wave scattering length. If the dipolar interactions are
also small compared to the axial trap energy h̄ωz, then the
BEC is in the ground state of the axial harmonic trap. This is
the case of a quasi-2D BEC, where the BEC wave function

separates into
ψ(r,t) = e−iωzt/2ψ2D(x,y,t)w1D(z), (14)

w1D(z) =
(

mωz

πh̄

)1/4

e−mωzz
2/2h̄. (15)

In this section we use the dimensionless rescaling r → ra⊥,
t → t/ω⊥, ψ2D → ψ2D

√
N/a2⊥, where a⊥ = √

h̄/mω⊥ is the
radial magnetic length. Energies are given in units of h̄ω⊥. We
show in Appendix B that the transversal wave function ψ2D

fulfills the following equations:

i∂tψ2D(x,y,t) =
{
−1

2
∇2 + V2D(x,y) + β2D√

2πγ

[
1 − εdd

(
1 − 3n2

z

)]|ψ2D(x,y,t)|2 + �2D

}
ψ2D(x,y,t), (16a)

�2D = −3β2Dεdd

2

[
∂n⊥n⊥ − n2

z∇2] ∫
dx ′dy ′U2D(x − x ′,y − y ′)|ψ2D(x ′,y ′,t)|2. (16b)

Here V2D(x,y) = (x2 + y2)/2 and β2D = 4πNas/a⊥. We
denote with ∂n⊥ = nx∂x + ny∂y and ∂n⊥n⊥ = ∂n⊥(∂n⊥). The
kernel U2D is radially symmetric and is given by

U2D(r) = er2/4γ

(2π )3/2√γ
K0(r2/4γ ), (17)

where Kν (ν real) denotes a modified Bessel function of the
second kind and r2 = (x − x ′)2 + (y − y ′)2. In Appendix C

n z n z

n

x

n

x

FIG. 3. (Color online) Linear density of the quasi-1D BEC
according to the solution of our 2D equation, Eq. (9) (blue solid
lines), the corresponding analytical prediction of Eq. (12) (gray dotted
lines), and the full 3D GPE of Eq. (1) (shaded area). In the top panels
dipoles are aligned with the BEC axis, while in the bottom panels they
are aligned perpendicular to the BEC axis. We choose β1D = 100,
εdd = 0.9, and the γ given in the plots.

we show that the nonlocal potential [Eq. (16b)] can be written
as a simple convolution �2D = − 3β2Dεdd

2

∫
dx ′dy ′U (n)

2D (x − x ′,
y − y ′)|ψ2D(x ′,y ′,t)|2. There we also derive a closed form
for U

(n)
2D , which explicitly depends on the polarization axis.

Assuming validity of the GPE, the only approximation in the
derivation of Eq. (16) is the factorization Eq. (14).

In Fig. 2(b) we plot the kernel U2D [Eq. (17)] for different
trap anisotropies γ . In contrast to the equivalent 1D kernel
U1D in Fig. 2(a), the long-range behavior does not depend on
γ . In fact, we can show that U2D(r) ∼ 1/2πr for r → ∞.
This is equivalent to the long-range behavior of the 3D kernel
U3D. However, in the opposite limit, r → 0, we find that
the divergence of the kernel is only logarithmic, U2D(r) 


1√
2π3γ

[−ln(r) + ln(2
√

γ ) + const].

For numerical computations in Fourier space, the expres-
sion Eq. (16b) for the nonlocal potential is often more useful
than the closed form derived in Appendix C. Moreover, in the
limit of large trap anisotropy, γ � 1, we have shown that the
potential in Eq. (16b) is equivalent to a Poisson-type equation.
To this end we introduce the fictitious potential φ2D defined by
�2D = − 3β2Dεdd

2 [∂n⊥n⊥ − n2
z∇2]φ2D. For γ � 1 we may then

replace Eq. (16b) with

(−∇2)1/2φ2D(x,y,t) = |ψ2D(x,y,t)|2. (18)

Hence, the computation of the nonlocal potential �2D in
Fourier space involves only multiplications of the density
|ψ2D|2 with the momentum.

In contrast to the 1D mean-field equation [Eq. (9)] in
2D the dipolar interaction increases the contact interaction
strength for dipoles aligned along the z axis (and positive
εdd ). This is a manifestation of the fact that magnets aligned
in parallel repel each other. The modification of the contact
interaction term by a factor of 1/

√
2πγ is due to the

compression along the z axis [34,46]. Furthermore, unlike
in 1D, the effect of dipolar interactions does not vanish at
the magic angle θ̃m: While the dipolar contact interaction
term vanishes, the nonlocal term [last term in Eq. (16a)]
does not.
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Analogous to the quasi-1D case, we now derive an
approximate analytical expression for the density. To this end
we assume that a repulsive contact interaction term (third term)
in Eq. (16a) dominates the ground-state solution. Hence, we
neglect the kinetic and nonlocal terms in Eq. (16a). With
the stationary ansatz ψ2D(x,y,t) = e−iµr t

√
n2D(r) we find

the density profile n2D(r) = [µr − (r2/2)]{ β2D√
2πγ

[1 − εdd (1 −
3n2

z)]}−1, where r2 = x2 + y2 and µr is the radial part
of the chemical potential. The density vanishes for r �
R = √

2µr . By evaluating the normalization of the density,
2π

∫
drrn2D(r) = 1, we find the mean-field radius

R =
(

4β2D

π
√

2πγ

[
1 − εdd

(
1 − 3n2

z

)])1/4

. (19)

Inserting this radius into the analytical density profile yields

n2D(r) = 2

πR2

(
1 − r2

R2

)
. (20)

For the special case nz = 1 our expression for the density
n2D(r) coincides with the expression for the “2D mean-field
regime” given in Ref. [26]. We can formally general-
ize the condition for the validity of Eq. (20) given in
Refs. [26,49] to

β2D

√
γ 3

4π

[
1 − εdd

(
1 − 3n2

z

)] � 1. (21)

While this condition may suggest that n2D(r) is a good approx-
imation for large dipole moment and small axial polarization
nz, we note that in the regime nz � 1/

√
3 the anisotropy

and magnitude of the potential �2D increases appreciably.
This may be seen by evaluating the kernel Un

2D given in
Appendix C. In other words, n2D(r) is a good approximation
for the 2D density profile if condition Eq. (21) is fulfilled
and the dipoles are polarized predominantly in the axial
direction.

By numerically solving Eq. (16) we obtain radial density
profiles of a quasi-2D dipolar BEC for various trap anisotropies
and polarizations. For axial polarization (nz = 1) we find a
radially symmetric density. For nonaxial polarization (nz < 1)
we find that the quasi-2D BEC is elongated along the
polarization axis projected onto the x-y plane and compressed
orthogonal to the polarization axis. This is in contrast to the
quasi-1D case where the attraction between aligned dipoles
compresses the BEC along the polarization axis. This is a
result of the saddle shape of the potential Un

2D with minima
along the projection of the dipole axis. The experiments in
Ref. [3,50] show such an elongation of a dipolar BEC in the
TF regime.

In Fig. 4 we show density profiles of the quasi-2D BEC
along the elongated (solid blue lines) and compressed axes
(dashed red lines) in the x-y plane. If the dipoles are aligned
parallel to the symmetry axis of the quasi-2D BEC (nz = 1),
the overall dipolar interaction is repulsive. This is manifest in
Eq. (16), where the contact interaction term becomes larger
for positive dipole strength εdd and the nonlocal potential is
positive. Moreover, the BEC remains radially symmetric as a
result of the vanishing radially asymmetric derivative ∂n⊥n⊥ .
We plot the radially symmetric density profile for nz = 1 in
the top panels of Fig. 4. The radial profile of the BEC becomes

n z n z

n

x

n

x

n

x + y

n

FIG. 4. (Color online) Cuts through the radial density profiles of
the quasi-2D dipolar BEC given by Eq. (16) for various polarizations
and trap anisotropies. The cuts are taken along the axes with largest
(x̄ axis, solid blue lines) and smallest extend of the BEC (ȳ axis,
dashed red lines). The insets show density plots of the quasi-2D BEC
and the lines indicate the positions of the cuts (x̄ and ȳ axes, respec-
tively). The gray dotted lines are the analytical profiles n2D(r) and
the shaded areas are the profiles obtained from the 3D GPE [Eq. (1)].
For sufficiently large confinement the 3D GPE profiles are not distin-
guishable from our 2D solution. We choose β2D = 100, εdd = 0.9, and
the dipole axis n = (0,0,1) (top panels), n = (1,0,0) (middle panels),
n = 1√

2
(1,1,0) (bottom left panel), and n = 1√

3
(1,1,1) (bottom right

panel).

increasingly asymmetric as we move the polarization away
from the z axis. This is evident in the different widths of the
density profiles along the two orthogonal axes in the middle
and bottom panels of Fig. 4. The plots with polarizations
along the x axis or the diagonal of the x-y plane (middle
and bottom left panels of Fig. 4) show the largest difference in
width. The case of equal polarization in all directions (bottom
right panel in Fig. 4), n = 1√

3
(1,1,1), is special because the

dipole interaction does not have a local character. This is
manifest in Eq. (16) where the contribution of the dipole
interaction to the contact interaction vanishes at the angle
nz = cos θ̃ ≈ 54.7◦. Consequently, in the bottom right panel
of Fig. 4 we only observe a very small asymmetry of the radial
BEC density, which is a purely nonlocal effect caused by the
potential �2D.
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For comparison, in Fig. 4 we also plot the density profiles
of a dipolar BEC obtained by numerically solving the 3D
GPE [Eq. (1)] and integrating over the z direction. We find
excellent agreement with the solutions of our proposed 2D
equations (16) for sufficiently large trap anisotropies. In the
top left panel of Fig. 4 we notice a slight discrepancy to the
2D solution because the trap anisotropy is not sufficient to
suppress the change in the axial density profile caused by
the dipole interaction. Furthermore, in Fig. 4 we plot the
approximation n2D(r) [Eq. (20)]. We observe good agreement
within its regime of validity discussed following Eq. (21).
The analytical approximation of the radial profile agrees well
with the numerical ground-state solution if the polarization is
predominantly perpendicular to the BEC disc (top and bottom
right panels of Fig. 4). For polarizations predominantly in the
plane of the quasi-2D BEC, our proposed Eq. (16) remains
a good approximation while the analytical approximation
becomes invalid.

We have seen in Fig. 4 that the quasi-2D BEC in a radially
symmetric trap loses its radial symmetry if the dipole axis does
not point along its symmetry axis. This is a consequence of
the anisotropic nature of the dipolar interaction. It is possible
to observe this effect experimentally by measuring the aspect
ratio

σy

σx

=
√

〈y2〉√
〈x2〉

(22)

of the BEC. The aspect ratio is particularly suited for
measurements because it is not sensitive on the exact number
of particles [41].

We have computed the aspect ratio of a dipolar BEC
by numerically solving our 2D equations (16) for different
values of the dipole moment and polarization angle. Figure 5
summarizes these results. In Fig. 5(a) we plot the aspect
ratio for polarization along the x axis and varying dipole
interaction strength εdd . We observe that the BEC becomes
increasingly elongated as we increase the dipolar interaction
strength. In Fig. 5(b) we fix the dipole strength but let the
dipolar axis rotate in the x-z plane. This shows how the
radial BEC density profile changes from a symmetric disc
to an oval shape as we rotate the polarization away from
the z axis. We note that large changes in the aspect ratio
occur in a region around the magic angle θ̃ 
 θ̃m, where
the effective contact interaction is nearly independent of
the dipole interaction strength εdd . Large trap anisotropies
[dashed line in Fig. 5(b)] suppress the onset of significant
BEC asymmetry because the contact interaction dominates
the ground state. We have also obtained the aspect ratios by
numerically solving the 3D GPE, Eq. (1) and integrating over
the z axis (circles in Fig. 5). We find excellent agreement
with the aspect ratios obtained from our 2D equations. Since a
rotation of the polarization in the x-y plane only corresponds
to a rotation of the elongated axis of the ground-state density
(see Fig. 4), we obtain similar results to Fig. 5(b) for arbitrary
polarization. This shows that the reduced Eqs. (16) are
indeed a good approximation for describing quasi-2D dipolar
BECs at arbitrary polarization with sufficiently strong axial
trapping.

n

x
n z

n n

x

FIG. 5. (Color online) Aspect ratio of the quasi-2D BEC for
(a) varying dipole strength εdd with polarization along the x axis and
(b) varying polarization angle in the x-z plane [n = (sin θ̃ ,0, cos θ̃ )]
with εdd = 0.9. We use the trap aspect ratios γ = 1/10 (solid lines)
and γ = 1/80 (dotted lines) with β2D = 100. The circles indicate the
corresponding condensate aspect ratio according to the numerical
solution of the 3D GPE [Eq. (1)]. The upper axis in (b) shows
nz = cos θ̃ .

V. CONCLUSION

We have presented Gross-Pitaevskii-type mean-field equa-
tions for trapped quasi-1D [Eq. (9)] and quasi-2D [Eq. (16)]
dipolar BECs polarized along an arbitrary axis. These equa-
tions are based on a rigorous dimension reduction of the full
3D GPE. In contrast to previous works, they are valid for
arbitrary dipole alignment in the mean-field regime if the BEC
is in the ground state of the radial or axial harmonic trap,
respectively. Our result shows that quasi-1D and quasi-2D
dipolar BECs are governed by a modified contact interaction
term and an additional nonlocal potential. We have given
explicit expressions for the nonlocal potential for arbitrary
polarization (also see Appendix C).

One of the main advantages of the proposed mean-
field equations is that they are well suited for numerical
computations in strongly confined BECs. Our numerical
implementations of the ground-state computation in 1D and
2D perform much faster than our equivalent 3D computations.
This is because we only need to integrate over the reduced
dimensions, which vary over similar time scales, whereas
the excluded dimensions vary on a much faster time scale
for strong trap anisotropies. Moreover, the kernel of the
convolution in the nonlocal potential is bounded in 1D and
diverges only logarithmically in 2D. In contrast, in 3D the
corresponding kernel diverges inverse linearly. Our formula-
tion of the nonlocal potential in terms of partial derivatives
allows for efficient numerical methods based on the Fourier
transformation.

We have computed the ground states of our 1D and 2D
equations numerically and compared them with the ground
states of the 3D GPE. We find excellent agreement but
notice small discrepancies in 1D for the case when the BEC
is polarized perpendicular to the elongated direction. By
neglecting the kinetic energy term and assuming a vanishing
nonlocal potential, we have derived analytical expressions
for the density profiles of quasi-1D and quasi-2D dipolar
BECs when the dipoles are aligned predominantly along the
z axis. The ground state of the quasi-2D dipolar BEC becomes
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anisotropic if the polarization is not parallel to the symmetry
axis of the pancake-shaped BEC. This results in a varying
aspect ratio of the BEC pancake, which can be measured with
time-of-flight imaging. We have computed this aspect ratio
for varying dipole interaction strength, trap anisotropy, and
polarization axis.

As an outlook, we point out that it is straightforward to use
our equations for studying the dynamics of arbitrarily polarized
dipolar BECs in lower dimensions. They also allow for a
stability analysis of such lower dimensional dipolar BECs. In
a future work we will investigate the influence of a changing
dipole axis on the formation of vortices in 2D dipolar BECs in
a rotating frame.
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APPENDIX A: DERIVATION OF THE 1D
MEAN-FIELD EQUATION

Under the assumptions in Sec. III, plugging ψ(r,t) =
e−iω⊥tw2D(x,y)ψ1D(z,t) into the GPE [Eq. (6a)], after rescal-
ing, we have

i∂tψ1Dw2D =
(−∂zz + z2

2
+ β1|ψ1Dw2D|2 + ∂nn�

)
ψ1Dw2D,

(A1)

where

� = −3β1Dεdd

∫
d3r′U3D(r − r′)|(ψ1Dw2D)(r′,t)|2, (A2)

with the rescaled quantities w2D(x,y) =
√

γ

π
e− γ

2 (x2+y2), β1 =
β1D(1 − εdd ). By multiplying both sides of Eq. (A1) by
w2D(x,y) and integrating over the x-y plane, we obtain an
equation in z only. Since w2D(x,y) is normalized according
to

∫
dxdyw2

2D(x,y) = 1 and
∫

dxdyw4
2D(x,y) = γ /2π , this

integration is straightforward for all but the last term. In the
following we outline the calculation of this last term.

In order to obtain Eq. (9), we need to compute∫ ∫ ∞

−∞
dxdy∂nn�(x,y,z,t)w2

2D(x,y). (A3)

Noticing the symmetry of U3D and w2D in x and y, we see that

∂xx(U3D ∗ |ψ1Dw2D|2) = ∂yy(U3D ∗ |ψ1Dw2D|2), (A4)

where we denote with a ∗ b the convolution of a and b.
Since U3D is the Green’s function of the Poisson equation
[24], we have −∇2U3D(r) = δ(r). Inserting Eq. (A4) into this

expression yields

∂xx(U3D ∗ |ψ1Dw2D|2) = −|ψ1Dw2D|2
2

− ∂zz(U3D ∗ |ψ1Dw2D|2)

2
. (A5)

Moreover, |ψ1Dw2D|2 is an even function with respect to
x and y and so is U3D ∗ |ψ1Dw2D|2, which implies that
the partial derivatives ∂xy , ∂yz, ∂xz of U3D ∗ |ψ1Dw2D|2 are
odd functions in x and y. Recalling ∂nn = n2

x∂xx + n2
y∂yy +

n2
z∂zz + 2nxny∂xy + 2nynz∂yz + 2nxnz∂xz, we plug Eq. (A5)

into Eq. (A3), which yields

3β1Dεdd

(
1 − n2

z

2

γ

2π
|ψ1D|2 + 1 − 3n2

z

2
∂zz

×
∫ ∫

dxdy(U3D ∗ |ψ1Dw2D|2)w2
2D

)
(A6)

because integrals of odd functions (the mixed partial deriva-
tives) vanish. We see that the first term in Eq. (A6) con-
tributes to the modification of the contact interaction term in
Eq. (9a).

In order to evaluate the last term in Eq. (A6), we expand
the convolution and compute the resulting integrals:∫

R4
dx ′dy ′dxdy

w2
2D(x ′,y ′)w2

2D(x,y)

4π
√

(x − x ′)2 + (y − y ′)2 + (z − z′)2
.

To this end, we introduce the variables x̃ = x − x ′, x̃ ′ =
x + x ′, ỹ = y − y ′, and ỹ ′ = y + y ′ and integrate over x̃ ′ and
ỹ ′. The result is∫ ∫

dx̃dỹ
γ e− γ

2 (x̃2+ỹ2)

8π2
√

x̃2 + ỹ2 + (z − z′)2
, (A7)

which can be evaluated further in polar coordinates
x̃ = r cos θ ′ and ỹ = r sin θ ′. Equation (A7) reduces to√

γ

4
√

2π
U1D(z − z′) with the substitution ζ =

√
r2 + (z − z′)2

and

U1D(z) =
√

2γ

π
eγ z2/2

∫ ∞

|z|
dζe−γ ζ 2/2. (A8)

Equation (A8) is an integral representation of U1D given in
Eq. (10). Inserting Eq. (A8) back into Eq. (A6), we obtain the
potential �1D [Eq. (9b)]. Plugging Eq. (A6) into the integrated
Eq. (A1) results in the mean-field equation for a quasi-1D
dipolar BEC [Eq. (9)].

The Fourier transform of U1D(z) is given by

Û1D(kz) = 1√
γπ

∫ ∞

0
dκ

e
− κ

2γ

k2
z + κ

. (A9)

The asymptotic behavior of this Fourier transform is
Û1D(kz) = 1√

γπ
[ln(2γ ) − γe − 2 ln |kz|] + O(kz) for |kz| → 0

and Û1D(kz) ∼ 2
√

γ

π
1

|kz|2 for |kz| → ∞, where γe is the Euler-
Mascheroni constant.
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APPENDIX B: DERIVATION OF THE 2D
MEAN-FIELD EQUATION

Under the assumptions in Sec. IV, plugging ψ(r,t) =
e−iωzt/2w1D(z)ψ2D(x,y,t) into the GPE [Eq. (6a)], after rescal-
ing, we have

i∂tψ2Dw1D =
{−∇2

⊥ + V2D

2
+ β2|ψ2Dw1D|2 + ∂nn�

}
×ψ2Dw1D, (B1)

where now

� = −3β2Dεdd

∫
d3r′U3D(r − r′)|(ψ2Dw1D)(r′,t)|2, (B2)

with rescaled w1D(z) = ( 1
γπ

)1/4e
− z2

2γ , ∇2
⊥ = ∂xx + ∂yy , and

β2 = β2D(1 − εdd ). Multiplying both sides of Eq. (B1) by
w1D(z) and integrating over the z direction, we can obtain
a 2D wave equation for ψ2D.

As in the preceding appendix, the integration is straight-
forward for all but the last term because

∫
dzw2

1D(z) = 1 and∫
dzw4

1D(z) = 1/
√

2πγ . In the following we only present the
integration of the last term of Eq. (B1),∫ ∞

−∞
dz∂nn�(x,y,z,t)w2

1D(z). (B3)

Again we use the identity −∇2U3D(r) = δ(r) to write

∂zz(U3D ∗ |ψ2Dw1D|2) = −|ψ2Dw1D|2
−∇2

⊥(U3D ∗ |ψ2Dw1D|2).

We recall that |ψ2D(x,y,t)w1D(z)|2 is even in z so that U 3D ∗
|ψ2Dw1D|2 also becomes even in z and ∂n⊥z(U 3D ∗ |ψ2Dw1D|2)
becomes odd in z. Plugging ∂nn = ∂n⊥n⊥ + n2

z∂zz + 2nz∂n⊥z

into Eq. (B3) yields

3β2Dεdd

(
n2

z√
2γπ

|ψ2D|2 − (
∂n⊥n⊥ − n2

z∇2
⊥
)

×
∫ ∞

−∞
dz(U3D ∗ |ψ2Dw1D|2)w2

1D(z)

)
, (B4)

where the ∂n⊥z term disappears because the integral of odd
functions vanishes. The first term in Eq. (B4) contributes to
the modified contact interaction term in Eq. (16).

After expanding the convolution in the last term of Eq. (B4),
wee see that we need to compute the integral:∫ ∫ ∞

−∞
dz′dz

w2
1D(z′)w2

1D(z)

4π
√

(x − x ′)2 + (y − y ′)2 + (z − z′)2
. (B5)

By changing the variables according to z̃ = z − z′ and z̃′ =
z + z′ and integrating over z̃′, we reduce Eq. (B5) to∫ ∞

−∞
dz̃

1

2
√

γ (2π )3/2

e−z̃2/2γ√
(x − x ′)2 + (y − y ′)2 + z̃2

. (B6)

By substituting ρ = z̃/
√

γ and introducing polar coordinates

with r =
√

(x − x ′)2 + (y − y ′)2, we get

U2D(r) = 1

(2π )3/2

∫ ∞

−∞
dρ

e−ρ2/2√
r2 + γρ2

. (B7)

This integral representation of U2D(r) is identical to Eq. (17)
[51], see Sec. 3.364]. We obtain the potential �2D [Eq. (16b)]
from the last term in Eq. (B4) after inserting Eq. (B7).
Finally, plugging Eq. (B4) into the integrated Eq. (B1) results
in the mean-field equation for the quasi-2D dipolar BEC
[Eq. (16)].

The Fourier transform Û2D(kx,ky) of the radially symmetric
kernel U2D is also radially symmetric and given by

Û2D(|kr |) = 1

2π2

∫ ∞

−∞
dκ

e− γ κ2

2

|kr |2 + κ2
, (B8)

with |kr | = √
k2
x + k2

y . The asymptotic behavior of this Fourier
transform is Û2D(|kr |) ∼ 1

2π |kr | for |kr | → 0 and Û2D(|kr |) ∼
1√

2π3γ

1
|kr |2 for |kr | → ∞.

APPENDIX C: CLOSED FORMS OF THE 1D AND
2D NONLOCAL POTENTIALS

In this appendix, we derive closed forms for the nonlocal
potentials �1D [Eq. (9b)] and �2D [Eq. (16b)]. Owing to
the properties of the convolution in �1D, we may write
Eq. (9b) as

�1D = 3β1Dεdd
√

γ

8
√

2π

(
1 − 3n2

z

)
(∂zzU1D) ∗ |ψ1D|2;

that is, the derivative only affects the kernel U1D. Straight-
forward calculation of the second derivative of Eq. (10)
leads to

Ũ1D(z) = ∂zzU1D(z) = γU1D(z)(1 + γ z2) −
√

2γ 3

π
|z|.

The resulting nonlocal potential �1D is of the same form
as the one given in Ref. [28] for the special case of axial
polarization.

In an analogous fashion, �2D in Eq. (16b) is given by

�2D = −3β2Dεdd

2

[(
∂n⊥n⊥ − n2

z∇2
)
U2D

] ∗ |ψ2D|2. (C1)

By using Eq. (17) and the properties of the derivatives of Bessel
functions we find for the second derivatives of U2D:

∂2
xxU2D = er2/4γ

2(2πγ )
3
2

[(
1 + x2

γ

)
K0 −

(
1 + x2

γ
− 2x2

r2

)
K1

]
,

∂2
yyU2D = er2/4γ

2(2πγ )
3
2

[(
1 + y2

γ

)
K0 −

(
1 + y2

γ
− 2y2

r2

)
K1

]
,

∂2
xyU2D = ∂2

yxU2D = er2/4γ

2(2πγ )
3
2

[
xy

γ
K0 −

(
xy

γ
− 2xy

r2

)
K1

]
.

Here and in the following we suppress the argument
r2/4γ of the Bessel functions with r2 = x2 + y2. Plugging
these identities into Eq. (C1), we find for the nonlocal
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kernel U
(n)
2D (x,y) = (∂n⊥n⊥ − n2

z∇2)U2D(r):

U
(n)
2D (x,y)

= er2/4γ

2(2πγ )3/2

[(
1− 3n2

z + (nxx + nyy)2 − n2
zr

2

γ

)
K0

−
(
1− n2

z + (nxx + nyy)2[1− 2γ /r2]−n2
zr

2

γ

)
K1

]
(C2)

and the nonlocal potential �2D = − 3β2Dεdd

2 U
(n)
2D ∗ |ψ2D|2. The

kernel U
(n)
2D (x,y) changes from a symmetric peak for nz = 1 to

a saddle shape with minima along the projection of the dipole
axis onto the x-y plane for nz < 1. We note that �2D reduces
to the potential for axial polarization (nz = 1) derived, for
example, in Ref. [32]. However, Eq. (C2) is valid for arbitrary
polarization.
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