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Three-site Bose-Hubbard model subject to atom losses: Boson-pair dissipation channel and failure
of the mean-field approach
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We employ the perturbation series expansion for derivation of the reduced master equations for the three-site
Bose-Hubbard model subject to strong atom losses from the central site. The model describes a condensate
trapped in a triple-well potential subject to externally controlled removal of atoms. We find that the π -phase
state of the coherent superposition between the side wells decays via two dissipation channels, the single-boson
channel (similar to the externally applied dissipation) and the boson-pair channel. The quantum derivation is
compared to the classical adiabatic elimination within the mean-field approximation. We find that the boson-pair
dissipation channel is not captured by the mean-field model, whereas the single-boson channel is described by it.
Moreover, there is a matching condition between the zero-point energy bias of the side wells and the nonlinear
interaction parameter which separates the regions where either the single-boson or the boson-pair dissipation
channel dominate. Our results indicate that the M-site Bose-Hubbard models, for M > 2, subject to atom losses
may require an analysis which goes beyond the usual mean-field approximation for correct description of their
dissipative features. This is an important result in view of the recent experimental works on the single-site
addressability of condensates trapped in optical lattices.
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I. INTRODUCTION

The mean-field approximation, formally obtained by re-
placing the boson creation and annihilation operators by
complex scalars, is usually employed for description of
bosonic many-body systems when the number of bosons is
large (for instance, see Refs. [1–3]). Such a replacement
can be justified by the

√
N scaling of the boson operators,

that is, when the populations are large, the commutators—
the source of quantum corrections—are negligible [1]. The
relation between the quantum and mean-field descriptions is
a subject of intensive studies. The quantum description is
necessary for the bifurcations, which modify significantly the
quantum spectrum [4], the quantum collapses and revivals [5],
and the many-body quantum corrections to the mean-field
theory [6,7]. Making explicit the N scaling of the operators and
identifying the N scaling of the parameters for a fixed particle
density, reveals the link of the mean-field approximation to
the Wentzel-Kramers-Brillouin semiclassical approach to the
discrete Schrödinger equation [8], now employed in the Fock
space with the inverse number of bosons 1/N playing the role
of an effective Planck constant (see, for example, Ref. [9]).
Therefore, the mean-field limit, as the semiclassical limit of a
discrete Schrödinger equation, is also singular. Hence, besides
the pronounced quantum corrections and fluctuations at the
bifurcations and instabilities, one must be prepared to find even
a qualitative disagreement between the mean-field description
and the full quantum consideration even when the populations
are large, as it is the case, for instance, in the nonlinear boson
model which describes tunneling of boson pairs between two
modes, see Refs. [10,11].

The main purpose of the present paper is to study the
dissipation dynamics of the atom-filled lattice sites coupled
to a common dissipated site. Our motivation is the recent
advancement in the quantum microscopy techniques and

the current experiments on the single-site addressability in
the optical lattices [12,13], where controlled atom losses
are induced in selected sites of a two-dimensional optical
lattice. We develop a direct method based on the perturbation
expansion for derivation of the reduced quantum master
equations for the Bose-Hubbard models with dissipation
(we consider the atom losses) and compare the quantum
derivation with the mean-field description. We concentrate
on the three-site Bose-Hubbard model, which is the simplest
model describing atom-filled sites coupled to a common
dissipated one and describes, for instance, cold atoms or
Bose-Einstein condensate trapped in a triple-well potential
subject to removal of atoms from the central well, see Fig. 1.
The three-site Bose-Hubbard model was also noted to possess
many features of complexity of a general quantum dynamics,
as the Wigner-Dyson spectral statistics and quantum chaos
[14,15]. It is also the simplest model where the boson-pair
tunneling, originating from the nonlinearity of the model, is
possible.

We derive the reduced quantum master equations for the
coherent modes describing the condensate in the side wells,
then consider the mean-field approach and compare the results
of the two approaches. We note here that we consider an open
quantum system and, as such, described by the quantum master
equation [16,17]. However, in the case of the atom losses, the
mean-field formulation is straightforward (this also applies to
the case of the multiple-site atom losses of the experimental
works of Refs. [12,13]). Contrary to the fact that the mean-field
approximation applies with a good accuracy to the two-site
Bose-Hubbard model with atoms losses and a noise [18,19],
it is shown here that the correct and complete description of
the three-site model (in general, the M-site Bose-Hubbard
models, with M � 3) requires going beyond the usual mean-
field approach. This disagreement stems from the quantum
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FIG. 1. (Color online) The three-site Bose-Hubbard model setup.
A laser or electron beam removes atoms from the central well with a
rate �. The εj represents the zero-point energy of the j th well. The
two quantum channels of dissipation of the π -phase coherent mode,
described in the text, are shown schematically by arrows.

boson-pair dissipation channel, due to the nonlinear interaction
(this is similar to the boson-pair tunneling resulting in the
qualitative failure of the mean-field approach in Ref. [11]).
Moreover, there is a matching condition between the zero-point
energy bias of the side wells and the nonlinear interaction
parameter which separates the regions where either the single-
boson or the boson-pair dissipation channel dominate. Hence,
one has to use the full quantum consideration, i.e., the quantum
master equation reduction methods, to describe the decay of the
subsystem (in our case, the quantum modes describing the side
wells), which then may be treated with further approximations,
even resembling the mean-field approach. However, the point
is that without invoking the quantum consideration at some
stage, i.e., working just within the mean-field approach, one
will be unable to describe the dissipative behavior of the filled
sites coupled to a common dissipated site, which conclusion
is also relevant to the recent experiments of Ref. [12].

The paper is organized as follows. In Sec. II we formulate
the quantum master equation. The derivation of the reduced
master equation for the side modes (i.e., the coherent su-
perposition modes over the left and right wells in Fig. 1) is
given in Sec. III. In Sec. IV a similar reduction is applied
to the reduced master equation of Sec. III producing the
master equation for the π -phase coherent mode. In Sec. V
the adiabatic elimination within the mean-field approximation
is studied. The concluding remarks and discussion is contained
in Sec. VI.

II. THE PROBLEM FORMULATION IN TERMS
OF THE MASTER EQUATION

A quantum channel representation for a local atom losses
(e.g., from a single lattice site), see Fig. 1, can be given in the
Fock space as follows [19]:

|kj 〉|0〉R → √
p|kj − 1〉|1〉R +

√
1 − p|kj 〉|0〉R,

|kj 〉 is the ket vector of the Fock space of a dissipating boson
mode, |X〉R describes the atom counter, and p = p(kj ,t) is the
probability. Note that p(kj ,δt), for small δt , depends linearly
on the number of atoms in the dissipating mode. As the result,
a Lindblad term with the generator L = √

�aj appears in the
master equation for the density matrix. Here � is the dissipation
rate parameter. We consider the dissipation acting on the

central well (denoted with j = 3 in Fig. 1) of the triple-well
trap, thus the master equation for the density matrix reads

dρ

dt
= − i

h̄
[H,ρ] + �

(
a3ρa

†
3 − 1

2
n3ρ − 1

2
ρn3

)
. (1)

By H we denote the three-site Bose-Hubbard Hamiltonian,

H = −J ([a†
1 + a

†
2]a3 + a

†
3[a1 + a2])

+
3∑

j=1

εja
†
j aj + U

3∑
j=1

(a†
j )2a2

j , (2)

where aj and a
†
j (j = 1,2,3) are the local boson modes

describing occupation of the respective well, J is the linear
tunneling rate, εj is the zero-point energy of the respective
well, and U is the atomic interaction parameter proportional
to the s-wave scattering length.

Due to the linear coupling of the central well to the side
wells in the Bose-Hubbard model, it is convenient to use the
new canonical basis b1 = (a1 + a2)/

√
2, b2 = (a1 − a2)/

√
2,

and b3 = a3. Here the modes b1,2 describe, respectively, the
zero-phase and π -phase coherent superpositions between the
side wells. The Bose-Hubbard Hamiltonian becomes

H = −J13(b†1b3 + b
†
3b1) − J12(b†1b2 + b

†
2b1) + εn3

+Un2
3 + U

2
([n1 + n2]2 + [b†1b2 + b

†
2b1]2), (3)

where nj = b
†
j bj and we have introduced the parameters J13 =√

2J , J12 = (ε2 − ε1)/2, ε = ε3 − (ε1 + ε2)/2 and dropped
an inessential term proportional to N = n1 + n2 + n3 (see the
Appendix for more details).

III. THE REDUCED MASTER EQUATION
FOR THE SIDE WELLS

In the strongly dissipative case, � � J13/h̄, the central well
is emptied on the time scale t ∼ 1/�, while the coherent
modes b1 and b2 almost retain their populations (see also
Ref. [19]). It turns out that in this case one can derive an
approximate master equation for the side wells alone valid
for the times t � 1/�, when the atom removal from the
central-well occurs on the fastest time-scale in the system.
Introducing the small parameter ε = J13/h̄� we require that
J12/h̄� = O(ε) and U 〈n1,2〉/h̄� = O(ε) [the symbol O(ε)
means the first-order in ε]. This approximation is valid for
an arbitrary bias ε between the central and side wells.

Before we embark on the derivation of reduced master
equations for the coherent modes (in this section for b1 and b2

and in Sec. IV for b2 alone) let us make two remarks.
First, we will work with the quantum master equation for the

density matrix of the system, whereas in the related mean-field
approximation, Sec. V, the adiabatic elimination will be
performed for the classical (i.e., mean-field) amplitudes. One
could, in fact use the adjoint quantum master equation for
the observables of the system (see, for instance, Ref. [17])
to come to the same results on the decay rates and Lamb
shifts, and which derivation would directly correspond to
working with the classical amplitudes (in this case, the
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differences between the classical mean-field and the full
quantum considerations are due to the contribution of the
quantum commutators). However, we chose to work with the
density matrix directly in the quantum case, since this approach
is much more informative on the nature of the quantum state
of the system. For instance, we will see that, already in the
first order in ε, the density matrix for the whole system is not
factorized and the central-well population strongly depends on
that of the side wells. Nevertheless, in the higher orders of the
perturbation theory (namely, in the second and third orders in
ε), the central well acts as an effective reservoir for the side
wells leading to the master equations for the coherent modes
b1 and b2 in the standard Lindblad form.

Second, by analyzing the nature of the coupling between
the modes b1 and b2 and their coupling to the dissipated mode
b3 = a3 one can already make some conclusions about the
expected results. Indeed, the Hamiltonian of the system in
the form of Eq. (3) shows two channels of coupling between the
coherent modes b1 (zero-phase mode) and b2 (π -phase mode):
the linear single-boson coupling, given by −J12[b†1b2 + b

†
2b1],

and the boson-pair coupling, given by U [b†1b2 + b
†
2b1]2/2

(whereas the terms with n1,2 do not induce any particle
exchange between the modes). Hence, there must be two
channels of dissipation from the side wells, correspondingly.
This is also an essential feature of the Bose-Hubbard model
formulated for the three or more lattice sites. Thus one can
predict that atoms leave the side wells either one by one
(the single-boson channel, the only possible for the coherent
mode b1) or by pairs (the boson-pair channel, which appears in
the case of the mode b2, since bosons must first go from mode
b2 to b1 and only then can leave the side wells). Moreover,
one could even guess the possible decay rates of the coherent
modes b1,2 by using the simpler and already studied two-site
Bose-Hubbard model [18,19], i.e., at least that of the linear
single-boson channel which is similar to the two-mode case.
However, the derivation below produces also the form of
the density matrix of the system which cannot be guessed
beforehand. Moreover, while the general structure of the decay
rates can be guessed, the actual coefficients must be derived
[note for instance the

√
2 coefficient in the resonance condition

U = √
2J12 of Sec. IV, discussed below Eq. (45)].

Let us now present the derivation of the reduced master
equation for the mode b1. First of all, let us pass to the
interaction picture. Introduce

ĤI (t) = U
†
0 (t)HIU0(t), ρ̂ = U

†
0 (t)ρ(t)U0(t),

(4)

U0(t) = U12(t) ⊗ U3(t) = exp

{
− i

h̄
(H12+H3)�t

}
,

where �t = t − t0, t0 is some initial time, and H12, H3, and HI

are parts of the Hamiltonian (3) describing the side wells, the
central well, and the interaction between them, respectively
[we have also subtracted the nonessential term U (n1 + n2 +
n3) from the system Hamiltonian to simplify the presentation].
The master equation in the interaction picture reads

dρ̂

dt
= − i

h̄
[ĤI (t),ρ̂] + �

(
b̂3(t)ρ̂b̂

†
3(t) − 1

2
n̂3ρ̂ − 1

2
ρ̂n̂3

)
, (5)

where b̂3(t) = U
†
0 (t)b3U0(t). Below we will work in the inter-

action picture and drop the hat, for simplicity. The density ma-
trix expansion reads ρ = ρ

(0)
12 ⊗ ρ

(0)
3 + ρ(1) + ρ(2) + O(ε3),

where, for instance, ρ12 = Tr3{ρ} (an arbitrary nonfactorized
expansion, ρ(0) = ∑

ij cij ρ
(0)
12i ⊗ ρ

(0)
3j , leads to the same result).

In the lowest orders in ε we have

dρ
(0)
12

dt
= 0,

dρ
(0)
3

dt
= �D(t)

{
ρ

(0)
3

}
, (6)

dρ(1)

dt
= − i

h̄

[
HI (t),ρ(0)

12 ⊗ ρ
(0)
3

] + �D(t){ρ(1)}, (7)

dρ
(2)
12

dt
= − i

h̄
Tr3{[HI (t),ρ(1)]}. (8)

The solution to the equation for ρ
(0)
3 is as follows:

ρ
(0)
3 (t) = |0〉〈0| + e− �

2 �t [c1|1〉〈0| + H.c.] + O(e−��t ), (9)

where the last term represents all higher-order external prod-
ucts of the Fock basis states and a decaying renormalization
correction to the first term. The coefficient c1 has the following
meaning: Tr3{b3(t)ρ(0)

3 (t)} = c1f1(t)e− �
2 �t + O(e−��t ), with

f1 being the eigenvalue of the unitary transformation in Eq. (5):
U3(t)|1〉 = f1(t)|1〉, in our case f1(t) = e−iε�t/h̄ [note also that
b3(t) = f1(t)b3].

Inserting Eq. (9) into Eq. (7) we get the general solution in
the following form (suggested by the form of ρ

(0)
3 itself):

ρ(1)(t) = V (t)
[
ρ

(0+1)
12 ⊗ |0〉〈0|]V †(t) + O

(
e− �

2 �t
)
, (10)

where ρ
(0+1)
12 = ρ

(0)
12 + ρ

(1)
12 and V (t) reads

V (t) = exp{α1(t)b1(t)b†3(t)} = I + α1(t)b1(t)b†3(t) + O(ε2),

(11)

with a scalar function α1(t) = O(ε). Indeed, taking derivative
of the solution (11) and using Eqs. (7) and (9), we obtain the
equation to be satisfied

dρ(1)

dt
= dV

dt
ρ

(0)
12 ⊗ |0〉〈0|V † + Vρ

(0)
12 ⊗ |0〉〈0|dV †

dt

+V
dρ

(1)
12

dt
⊗ |0〉〈0|V † = − i

h̄

[
HI (t),ρ(0)

12 ⊗ |0〉〈0|]
+�D

{
Vρ

(0+1)
12 ⊗ |0〉〈0|V †} + O(ε2). (12)

We evaluate

− i

h̄

[
HI (t),ρ(0)

12 ⊗ |0〉〈0|]
= iJ13

h̄

[
f ∗

1 (t)b1(t)ρ(0)
12 ⊗ |1〉〈0| − H.c.

]
(13)

and, using Eq. (11),

�D(t)
{
Vρ

(0+1)
12 ⊗ |0〉〈0|V †}

= −�

2

[
α1(t)f ∗

1 (t)b1(t)ρ(0)
12 ⊗|1〉〈0| + H.c.

] + O(ε2). (14)

Equations (7) and (13) give immediately

dρ
(1)
12

dt
= O

(
e− �

2 �t
)
. (15)
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Since J12/h̄� = O(ε) and U 〈n1,2〉/h̄� = O(ε), the derivative
of b1(t) is of order ε,

db1(t)

dt
= − i

h̄
[H12,b1(t)] = O(ε). (16)

Now, by taking into account Eqs. (11), (13)–(16), one sees that
Eq. (12) is satisfied by setting

dα1

dt
= −

[
�

2
+ i

ε

h̄

]
α1 + iJ13

h̄
. (17)

Equation (17) gives

α1 = 2iJ13

h̄�

[
1 + 2iε

h̄�

]−1

+ O
(
e− �

2 �t
)
. (18)

The final step is to insert Eq. (10) into Eq. (8), use Eqs. (6) and
(15) and take the trace over the central-well subspace, keeping
only the terms up to O(ε2). Returning to the Schrödinger
picture, we get [up to a correction of the order O(ε3)]

dρ12

dt
= − i

h̄
[H12,ρ12] − i

h̄

[
εRb

†
1b1,ρ

(0)
12

]
+�RD1

{
ρ

(0)
12

} + O
(
e− �

2 �t
)
, (19)

with �R given by

�R = |α1|2� = 4J 2
13

h̄2�

[
1 +

(
2ε

h̄�

)2]−1

, (20)

and D1{ρ} = b1ρb
†
1 − 1

2 {b†1b1,ρ}. The interaction-induced
Lamb shift εR of the zero-point energy of the coherent
zero-phase mode b1 reads

εR = −J13Re(α1) = −ε
�R

�
. (21)

Our aim is to further reduce Eq. (19) to a master equation for
the coherent π -phase mode b2, which has unusual dissipation
features (see below). To this end, however, one has to consider
the contribution to Eq. (19) coming from the next order
in ε, i.e., O(ε3). Indeed, similar to the derivation of this
section, the reduced master equation for mode b2 is obtained
under the conditions that J12,U 〈n1,2〉 	 h̄�R , what makes the
Hamiltonian part in the master equation (19) smaller than
the Lindblad part, hence the former should be discarded in the
present order O(ε2). Thus, in the second-order approximation,
the coherent mode b2 has no dissipation dynamics at all
(only the Hamiltonian evolution described by H2 = U

2 n2
2).

It only appears in the higher-order version of the master
equation (19).

To derive the third-order correction to Eq. (19), we need
to find the form of ρ(2)(t), which satisfies equation similar to
Eq. (7), but now with the inhomogeneous term

− i

h̄

[
HI (t),Vρ

(0+1)
12 ⊗ |0〉〈0|V †]

= iJ13

h̄

{[√
2α1(t)f ∗

2 (t)b2
1(t)ρ(0)

12 ⊗ |2〉〈0| − H.c.
]

− 2iIm[α1(t)]b1(t)ρ(0)
12 b

†
1(t) ⊗ |1〉〈1|

+ [
α1(t)b†1(t)b1(t)ρ(0)

12 − H.c.
] ⊗ |0〉〈0|

+ [
f ∗

1 (t)b1(t)ρ(1)
12 ⊗ |1〉〈0| − H.c.

]} + O(ε2), (22)

where U3(t)|2〉 = f2(t)|2〉, i.e., f2 = e−2i
(ε+U )

h̄
�t . The first three

lines of Eq. (22) give the terms additional to those in Eq. (13).
Expression (22) also defines the general form of ρ(2)(t):

ρ(2) = B00(t) ⊗ |0〉〈0| + B11(t) ⊗ |1〉〈1|
+ (B10(t) ⊗ |1〉〈0| + B20(t) ⊗ |2〉〈0| + H.c.), (23)

where the operators Bij (t) = O(ε2) act on the subspace of the
side wells. They satisfy, in view of Eqs. (20), (13), (15), (21)
and (22), the following equations:

dB11

dt
= −�B11 + �Rb1(t)ρ(0)

12 b
†
1(t), (24a)

dB00

dt
= �B11 − i

h̄

[
εRn1(t),ρ(0)

12

]
− �R

2

(
n1(t)ρ(0)

12 + ρ
(0)
12 n1(t)

)
, (24b)

B10 = α1(t)f ∗
1 (t)b1(t)ρ(1)

12 , (24c)

B20 = α2(t)f ∗
2 (t)b2

1(t)ρ(0)
12 , (24d)

where α1(t) is given by Eq. (18) and

dα2

dt
= −

[
�

2
+ i

ε + U

h̄

]
α2 + i

√
2J13

h̄
α1(t). (25)

One can easily solve Eq. (24a) and by using integration by
parts represent the result as

B11(t) = �R

�
b1ρ

(0)
12 b

†
1 + O(ε3) + O(e−��t ). (26)

Substituting Eq. (26) into Eq. (24b) and using the master
equation (19) one obtains

B00(t) = ρ
(2)
12 + O(e−��t ). (27)

Finally, the solution to Eq. (25) reads

α2(t) = −2
√

2J 2
13

h̄2�2

[
1 + i

2ε

h̄�

]−1[
1 + i

2(ε + U )

h̄�

]−1

+O
(
e− �

2 �t
) = α2

1(t)√
2

+ O(ε3) + O
(
e− �

2 �t
)
. (28)

The fact that the operators B11 and B20 and B02 do not
contribute to the equation for ρ12 and the explicit expressions
for B00 and B10, Eqs. (26) and (27), lead to the same Lindblad
form of the reduced master equation, i.e., in the Schrödinger
picture we get

dρ12

dt
= − i

h̄
[H12 + εRn1,ρ12] + �RD1{ρ12} + O

(
e− �

2 �t
)
,

(29)

which is now valid up to correction of order O(ε4).
Equations (23), (26)–(28) also show that the density matrix of
the full system ρ can be rewritten as (now in the Schrödinger
picture)

ρ(t) = V [ρ12(t) ⊗ |0〉〈0|]V † + O(ε3) + O
(
e− �

2 �t
)
, (30)

where ρ12(t) is taken up to the second order in ε, V (t) =
exp{α1b1b

†
3} = I + α1b1b

†
3 + 1

2α2
1b

2
1(b†3)2 with α1 given by

Eq. (18). Equations (29) and (30) are the main results of
this section. Obviously, the full density matrix (30) is not
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FIG. 2. (Color online) Comparison between the full three-mode
Eq. (1) and the reduced two-mode Eq. (29). The population of a3

is given by the dashed lines. The populations of modes a1 and a2

(solid lines) of the three-mode model are compared to that of the two-
mode model (dotted lines). Here � = 5J/h̄, U = 0.2J , εj = 0. We
have used 5000 quantum trajectories. The inset shows the short-time
dynamics of populations for larger � = 50J/h̄. The initial state is the
Fock state with the total of ten atoms (five occupying the mode a1

and five occupying the mode a3).

factorized, nevertheless, the reduced density matrix of a
subsystem satisfies the Markovian master equation (29) in the
Lindblad form. Note that the difference between the density
matrix ρ12 and the one obtained by tracing the full density
matrix of Eq. (30) is a constant term of the second order given
by B11 in Eq. (26), which does not contribute to Eq. (29).
Hence, Eq. (30) is consistent with the approximation made.

In Fig. 2, we use the Monte Carlo wave-function method
[20] and find that an excellent agreement of the reduced
master equation (29) with the full Eq. (1) extends also to the
intermediate values of � (we have there ε = 0.2). We have
also verified that, for large �, the modes a1,2 (and, hence, b1,2)
stay practically unchanged while the dissipating mode b3 = a3

is quickly emptied (the inset of Fig. 2).
Let us note the specific features of Eq. (29). We see that

in the strongly dissipative case, quite similar to Eq. (1), mode
b2 can retain a significant part of its population, while b1

loses almost all atoms, on the time scale t ∼ 1/�R , and after
that stays practically empty. In the long run, on the time scale
much longer that 1/�R , the population of mode b2 drops to the
single-atom level (this is seen also in Fig. 2, where it happens
on the short time-scale due to a small �).

In the linear case Eq. (29) acts like a dispersive beam-splitter
(see, for example, Ref. [21]). Thus, a strong loss in the central
well induces quantum correlations between the side wells, i.e.,
for times t � 1/�R the cold atoms occupy the state

|	n〉 ∼ (b†2)n|0〉 ∼ (a†
1 − a

†
2)n|0〉 (31)

which is unaffected by the dissipation described by Eq. (29).
In the nonlinear case, the dissipation of the π -phase mode

b2 is surprisingly nontrivial. This can be clearly demonstrated
in the case when the decay of the zero-phase mode b1 occurs
on the faster scale than the intermode dynamics. To uncover
the details, let us use the higher-order validity of Eq. (29) and
reduce it to a single-mode master equation for b2, by assuming
that U 〈n2〉/h̄ 	 �R and J12/h̄ 	 �R .

IV. THE REDUCED MASTER EQUATION FOR π -PHASE
COHERENT MODE

We now reduce the master equation (29) to that for the
mode b2 alone, in the case of a strong dissipation of mode b1 as
compared to the Hamiltonian dynamics of the coherent modes
b1 and b2. The derivation is similar to that of the previous
section. First, we pass to the interaction representation:

ĤII (t) = U †(t)HIIU (t), ρ̂12 = U †(t)ρ12(t)U (t),
(32)

U (t) = U1(t) ⊗ U2(t) = exp

{
− i

h̄
(H1+H2)�t

}
,

where the respective Hamiltonian terms, derived from
Hamiltonian (3) with account of the Lamb shift (21), read

H1 = εRn1 + U

2
n2

1, H2 = U

2
n2

2,

HII = −J12(b†1b2 + b
†
2b1) + 2Un1n2 + U

2
[b†1b2]2 + U

2
[b†2b1]2.

(33)

Introducing the small parameter ε′ = O(J12/h̄�R), and
assuming that U 〈n2〉/(h̄�R) = O(ε′), one can derive the equa-
tions for the density matrix in the interaction representation,
which turn out to be similar to those of the previous section
[see Eqs. (6)–(9)] with the obvious changes. The form of the
density matrix ρ

(1)
12 is also similar to that of Eqs. (7) and (11):

ρ
(1)
12 (t) = W (t)

[
ρ

(0+1)
2 ⊗ |0〉〈0|]W †(t) + O

(
e− �1

2 �t
)
, (34)

where W (t) reads

W (t) = I + s1(t)b2(t)b†1(t) + s2(t)b2
2(t)[b†1(t)]2, (35)

with some scalar functions sj (t) = O(ε′). Using the same
routine as in the previous section, one obtains the equations
for the parameters sj (t):

ds1

dt
= −

[
�R

2
+ i

εR

h̄

]
s1 + i

J12

h̄
, (36a)

ds2

dt
= −

[
�R + i

2εR

h̄

]
s2 − i

U

2h̄
. (36b)

These can be easily solved to give

s1 = 2iJ12

h̄�R

[
1 + i

2εR

h̄�R

]−1

+ O
(
e− �R

2 �t
)
,

s2 = − iU

2h̄�R

[
1 + i

2εR

h̄�R

]−1

+ O
(
e− �R

2 �t
)
.

Define the following parameters:

�j = K2
j

h̄2�R

[
1 +

(
2εR

h̄�R

)2 ]−1

, κj = −εR

�j

�R

, (37)

where K1 = 2J12 and K2 = U . Then, in a similar way as in the
previous section, by taking the partial trace over the subspace
of mode b1, one derives a closed master equation for mode b2.
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In the Schrödinger picture we have

dρ2

dt
= − i

h̄
[H̃2,ρ2] + �1D1{ρ2} + �2D2{ρ2} + O

(
e− �R

2 �t
)
,

(38)

where the Hamiltonian, augmented by the Lamb shifts, and
the two dissipation channels read

H̃2 = U

2
n2

2 + κ1n2 + κ2n2(n2 − 1), (39)

D1{ρ} = b2ρb
†
2 − 1

2n2ρ − 1
2ρn2, (40)

D2{ρ} = b2
2ρ(b†2)2 − 1

2 (b†2)2b2
2ρ − 1

2ρ(b†2)2b2
2. (41)

Finally, let us gather together the conditions used in derivation
of the reduced equation (38). We have

UN

h̄
,

J12

h̄
	 �R ∼ J 2

13

h̄2�
,

J13

h̄�
	 1. (42)

The validity conditions (42) can be recast in terms of the
characteristic tunneling times and the nonlinear time. Defining
τ13 = h̄/J , τ12 = h̄/J12 and τnl = h̄/U , we have: τ13

τ12
, Nτ13

τnl
	

(�τ13)−1 	 1. The rates of the two dissipation channels of
mode b2 have the following orders: �1 ∼ (τ13/τ12)2/� and
�2 ∼ (τ13/τnl)2/�.

We note that a master equation similar to Eq. (38) has
already appeared before in connection with one- and two-
photon absorption in quantum optics, where its special cases
were studied [22]. It was shown that two-particle absorption
has properties drastically different from the single-particle one.
In particular, the decay is nonexponential and, irrespectively
of the number of particles in the initial state of the mode b2,
number of particles in this mode drops to the single-particle
level during the same time-interval [22].

Equation (38) has a number of specific features. First, we
see that in the symmetric potential (when �1 = 0) the decay
occurs due to loss of two particles at once and the quantum
parity, being average of the quantum parity operator

P = (−1)b
†
2b2 (43)

remains constant. For example, for the state with the
〈P (0)〉 = −1 (odd parity), one will have 〈P (t)〉 = −1; the
superposition state with only the odd (even) number of atoms
will remain the state with the odd (even) number of atoms
during all the evolution time. Second, for a biased potential
(�1 �= 0) there is a resonance between the two different
dissipation channels, under the condition �1 = 2�2, resulting
in a polynomial decay of population. To see this, consider
evolution of the average population

d〈n2〉
dt

= −(�1 − 2�2)〈n2〉 − 2�2〈n2〉2 − 2�2(�n2)2, (44)

where (�n2)2 = 〈n2
2〉 − 〈n2〉2. The initial state of mode b2, to

be used in Eq. (38), is a Fock state with a good approximation
(mode b1 is emptied on a much faster time scale). Hence,
discarding �n2 (which is justified by numerical simulations,
see Fig. 3), we get an approximation

〈n2(t)〉 ≈ 〈n2(t0)〉e−γ (t−t0)

1 + 2�2
�1−2�2

〈n2(t0)〉[1 − e−(�1−2�2)(t−t0)]
(45)
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FIG. 3. (Color online) Comparison of the two-mode master
equation (29) with the single-mode master equation (38) and the
analytical approximation of Eq. (45). The solid lines give the
two-mode equation, the dashed gives the single-mode, and the dotted
give the analytical approximation. Here N = 40, �Rτ12 = 200, and,
from the top to bottom, � ≡ UN/2J12 = 20, N/

√
2, 40. To compare

the results in the domain of their validity, i.e., after the atoms are
removed from mode b1, we have used the Fock initial state with all
atoms occupying mode b2 (a Gaussian with a small dispersion leads
to the same results).

giving, for �1 = 2�2, the t−1 decay: 〈n2(t)〉−1 ≈ 〈n2(t0)〉−1 +
�1(t − t0). Thus, we have a quantum resonance between two
different (linear and nonlinear) dissipation channels of a sub-
system (mode b2). The matching between them is expressed in
terms of matching between the linear bias and nonlinear inter-
action coefficient: U = √

2J12 = (ε2 − ε1)/
√

2. In Fig. 3 we
show an excellent agreement of the analytical approximation,
Eq. (45), with the numerical simulations, i.e., the Monte Carlo
wave-function method [20], of the single-mode (38) and the
two-mode (29) master equations.

V. THE MEAN-FIELD APPROXIMATION

The quantum derivations of the reduced master equations
from the first principles, presented above, are involved. One
then may inquire if the mean-field approximation, commonly
applied to the many-boson models with large number of bosons
and which is much simpler to analyze, can substitute the
quantum derivation. Here we remind that the two-site model
with a local dissipation is perfectly described by the mean-field
approximation [18,19]. This, however, turns out to be not the
case for the three-site Bose-Hubbard model, as we will show
below.

The mean-field Hamiltonian can be obtained from
Hamiltonian (3) by replacing the boson operators with c-
numbers (bj → βj ) [1], we get

H = −J13(β∗
1 β3 + β∗

3 β1) − J12(β∗
1 β2 + β∗

2 β1) + ε|β3|2

+U |β3|4 + U

2
([|β1|2 + |β2|2]2 + [β∗

1 β2 + β∗
2 β1]2).

(46)

Note that the total number of atoms is given as
∑3

j=1 |βj |2 =
N . The local atom loss (dissipation) part of Eq. (1) can be
simply added to the mean-field Hamiltonian equations as an
atom loss of mode β3 (as we will see shortly, it is describable
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classically; see also Refs. [18,19]), that is

dβj

dt
= − i

h̄

∂H
∂β∗

j

− δj,3
�

2
β3. (47)

Thus, the mean-field equations read

dβ1

dt
= iJ13

h̄
β3 + iJ12

h̄
β2 − iU

h̄
(|β1|2 + 2|β2|2)β1 − iU

h̄
β2

2β∗
1 ,

(48a)

dβ2

dt
= iJ12

h̄
β1 − iU

h̄
(|β2|2 + 2|β1|2)β2 − iU

h̄
β2

1β∗
2 , (48b)

dβ3

dt
= iJ13

h̄
β1 −

(
�

2
+ iε

h̄

)
β3 − 2iU

h̄
|β3|2β3. (48c)

A. The first reduction: Equations for β1 and β2

Consider the strongly dissipated case of Sec. III. The small
parameter is ε = J13

h̄�
with the conditions J12

h̄�
= O(ε) and UN

h̄�
=

O(ε). For t � 1/�, β3 = O(ε) and one can integrate Eq. (48c)
by rewriting it in the integral form and neglecting the higher-
order nonlinear term. Using the integration by parts, we get

β3(t) = 2iJ13

h̄�

(
1 + 2iε

h̄�

)−1

β1(t) + O(ε2) + O
(
e− ��t

2
)
. (49)

This result corresponds to the expression for the full density
matrix (10) with Eqs. (11) and (18), where the amplitude β3

is locked to that of β1 and β2 with the same coefficient as in
the full quantum case [α1 of Eq. (18)]. Equation (49) can be
now inserted into Eqs. (48a) and (48b). We obtain a reduced
system describing the coherent modes:

dβ1

dt
= −

(
�R

2
+ iεR

h̄

)
β1 + iJ12

h̄
β2 − iU

h̄
β2

2β∗
1

− iU

h̄
(|β1|2 + 2|β2|2)β1 + O(ε3) + O

(
e− ��t

2
)
, (50a)

dβ2

dt
= iJ12

h̄
β1 − iU

h̄
(|β2|2 + 2|β1|2)β2 − iU

h̄
β2

1β∗
2 , (50b)

where �R is given by Eq. (20) and the Lamb shift εR by Eq. (21)
(i.e., by the corresponding quantum results).

B. The second reduction: Equation for β2

Now, let us perform the second reduction to an equation for
the amplitude β2, similar as in the quantum case of Sec. IV. In
Sec. IV we have assumed that the new small parameter is ε′ =
J12
h̄�R

with the additional condition on the nonlinearity U〈n2〉
h̄�R

=
O(ε′). However, let us for a while broaden the derivation and
discard the condition on the nonlinearity. For times t � 1/�R

boson mode β1 is practically empty, i.e., β1 = O(ε′). This
allows us to simplify Eqs. (50a) and (50b) as follows:

dβ1

dt
= −

[
�R

2
+ iεR

h̄

]
β1 + iJ12

h̄
β2 − iU

h̄

[
β2

2β∗
1 + 2|β2|2β1

]
+O(ε′3) + O

(
e− �R�t

2
)
, (51a)

dβ2

dt
= iJ12

h̄
β1 − iU

h̄
|β2|2β2 − iU

h̄
β2

1β∗
2 + O(ε′3) + O

(
e− �R�t

2
)
,

(51b)

where, for simplicity, we have dropped the term O(ε3).
Already from this system it is clear that the mean-field
approach will not account for the boson-pair dissipation
channel (41) of mode b2, present in the full quantum Eq. (38).
Indeed, Eq. (51a) must be somehow integrated with the result
to be inserted into Eq. (51b). However, one can notice that the
parameter U enters Eq. (51a) only in the conjunction with a
factor ∼|β2|2, hence all the terms in Eqs. (51a) and (51b) scale
as

√
N (the scale of β) if we fix the nonlinearity parameter

� = UN , whereas in the quantum case the N scaling of the
boson-pair channel is O(1).

Now, under the condition on the nonlinearity as in the full
quantum case, i.e., U〈n2〉

h̄�R
= O(ε′), one can proceed to derive

the reduced equation for the amplitude β2. To this end,
the system of equations for β1 and β∗

1 in the required order
can be written in the following form:

d

dt

(
β1

β∗
1

)
= �R

2
M

(
β1

β∗
1

)
+ iJ12

h̄

(
β2

−β∗
2

)
, (52)

where

M =
(−γ − 4iU

h̄�R
|β2|2 − 2iU

h̄�R
(β2)2

2iU
h̄�R

(β∗
2 )2 −γ ∗ + 4iU

h̄�R
|β2|2

)
, (53)

with γ = (1 + 2iεR

h̄�R
). Equation (53) can be put into the integral

form and integrated for times t � 1/�R , in this case the matrix
�R

2 M(t) enters the exponent under the integral, with the result(
β1

β∗
1

)
= −2iJ12

h̄�R

M−1

(
β2

−β∗
2

)
+ O

(
e− �R�t

2
) + O(ε′2). (54)

We need only the first row of the matrix M−1:

(M−1)11 = −γ −1 + γ −2 4iU

h̄�R

|β2|2 + O(ε′2), (55)

(M−1)12 = −|γ |−2 2iU

h̄�R

(β2)2 + O(ε′2). (56)

From Eqs. (54)–(56) we obtain

β1 = γ −1 2iJ12

h̄�R

β2 + O(ε′2) + O
(
e− �R�t

2
)
. (57)

Inserting this expression into Eq. (51b) we arrive at the reduced
equation for the amplitude β2, the mean-field analog of the
coherent π phase mode b2:

dβ2

dt
= −

(
�1

2
+ iκ1

h̄

)
β2 − iU

h̄
|β2|2β2 + O(ε′3) + O

(
e− �R�t

2
)
,

(58)

with �1 and κ1 given in Eq. (37). Observe that, while the
single-boson dissipation channel, Eq. (40), is accounted by
the mean-field Eq. (58) (the first term on the right hand side),
the boson-pair channel, Eq. (41), is not.

In conclusion of this section, we have shown that, while
the single-boson dissipation channel of the coherent mode
b2 can be described by the mean-field approach, the boson-
pair dissipation channel cannot be captured by the mean-field
approximation and, thus, it has quantum nature.
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VI. DISCUSSION OF THE RESULTS

We have considered the derivation of the reduced master
equations in the limit of strong dissipation on the example
of the Bose-Hubbard model with a local external dissipation
(i.e., the atom loss from the central site). The method we have
used is not based on the assumption of the factorization of
the full density matrix, instead we demonstrate that one can
effectively solve the master equation directly in the lowest
orders of a small parameter (inversely proportional to the local
dissipation rate). On this way, one is able to obtain the reduced
master equations for the subsystems (the coherent modes) of
the higher-order in the small parameter (e.g., we have derived
the equation up to the third order).

The derivation reveals the following features. First of all,
the full density matrix is not factorized (which is the usual
assumption, see for instance Ref. [17]) but is expressed in
the form of a “dressed” factorized density matrix, where the
population of the strongly dissipated mode depends on that of
the other modes. Nevertheless, the reduced density matrix of a
subsystem is shown to satisfy a master equation in the Lindblad
form. This feature appears in the two reduced master equations
derived in the present paper, thus suggesting an universality.
Moreover, the Lamb shifts and the dissipation rates of the
subsystem turn out to be given by the similar expressions in
the two cases, suggesting even the universality of the form of
expressions for these quantities.

We have analyzed the relation between the full quantum
derivation of the reduced master equation for the density
matrix of a subsystem and the mean-field adiabatic elimination
procedure. We have found that the mean-field approximation
applied to the Bose-Hubbard model cannot capture all dissipa-
tion channels of a subsystem, even if the external dissipation
applied to the system is describable classically (in our case,
the single-boson dissipation channel describing the removal
of atoms). Namely, in the three-site Bose-Hubbard model the
π -phase coherent mode has the boson-pair dissipation channel,
which is not captured by the mean-field approximation, and the
single-boson dissipation, captured by it. This is a quite distinct
situation from the two-site model, where the dissipation
dynamics is described by the mean-field approximation with a
good accuracy [18,19]. Here we note, however, that in the two-
site model with dissipation the boson-pair tunneling is not pos-
sible. Though we have considered the three-site Bose-Hubbard
model, the boson-pair dissipation channel is a general feature
of the multisite models, since it is the result of a nonlinearity of
the model and the fact that more than one filled site is coupled
to the dissipated site, which serves as a common reservoir.

The failure of the mean-field approximation to the quan-
tum master equation means that the dissipation channels
not accounted by the mean-field have a genuine quantum
nature. This imposes severe limitations on the applicability of
the semiclassical mean-field approach to the Bose-Hubbard
models considered as open quantum systems, even when
the external dissipation is describable classically. Invoking

the link to the discrete WKB approach, mentioned in the
Introduction, one has to develop a more general approach
by going to the first-order approximation in the effective
Planck constant 1/N , i.e., a 1/N -correction to the mean-filed
equations, to capture the boson-pair dissipation channel. This
is an important conclusion, in view of the current experiments
on the single-site addressability and controlled measurement
via the local atom losses of Bose-Einstein condensate loaded
in the optical lattices [12,13], describable by the open multisite
Bose-Hubbard models.

Finally, we would like to make a connection to the recent
studies of the non-Hermitian quantum Hamiltonians [23],
where a dissipation is introduced by hand. Such an approach
may prove to be useful for capturing some quantum features,
on this way discarding the need to work with the density matrix
evolution which is also numerically expensive to simulate.
However, so far only the two-mode Bose-Hubbard model (a
dissipated dimer) was studied and it remains to see whether this
approach is capable of capturing, for instance, the boson-pair
dissipation channel in the three-site case considered here.

APPENDIX: THE EFFECT OF THE TERM
PROPORTIONAL TO THE TOTAL NUMBER OF BOSONS

Let us show that the form of the master equation does not
depend on the discarded term proportional to the total number
of bosons N = n1 + n2 + n3. The consideration below applies
to any situation where a term linear in the number of bosons
N is discarded from a N -conserving Hamiltonian H . To be
specific, consider the master equation (1) with the Hamiltonian
(2). Set H = HR + cN , where the effect of the last term is to
be considered [in Eq. (3) c = (ε1 + ε2)/2]. Let us introduce a
transformation of the density matrix as follows:

ρ(t) = exp

{
− i

c

h̄
tN

}
ρR(t) exp

{
i
c

h̄
tN

}
≡ Z(t)ρR(t)Z†(t),

(A1)

where Z(t) is a unitary operator. It does not change the form of
the master equation (except the cN term is dropped). Indeed,
since [H,N ] = 0 and Z†(t)a3Z(t) = e−ict/h̄a3, we have

dρR

dt
= − i

h̄
[HR,ρR] + �

(
a3ρRa

†
3 − 1

2
n3ρR − 1

2
ρRn3

)
.

(A2)

The only effect of the N -dependent term on the original master
equation is in the N -dependent phases in the density matrix,
according to Eq. (A1), which, in our case, have no effect
whatsoever. Note that the phase differences appear between
the quantum states with the different total number of bosons,
thus it is questionable if they are observable at all.

It is clear that the above argument is valid for
any master equation where the Lindblad term is ex-
pressed through the boson creation and annihilation
operators.
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