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Few-boson tunneling in a double well with spatially modulated interaction
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We study few-boson tunneling in a one-dimensional double well with a spatially modulated interaction.
The dynamics changes from Rabi oscillations in the noninteracting case to a highly suppressed tunneling
for intermediate coupling strengths followed by a reappearance near the fermionization limit. With extreme
interaction inhomogeneity in the regime of strong correlations, we observe tunneling between the higher bands.
The dynamics is explained on the basis of the few-body spectrum and stationary eigenstates. For a higher number
of particles N � 3, it is shown that the inhomogeneity of the interaction can be tuned to generate tunneling
resonances. Finally, a tilted double well and its interplay with the interaction asymmetry are discussed.
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I. INTRODUCTION

Ever since the experimental realization of Bose-Einstein
condensation, ultracold atoms have been used to study an
enormous diversity of quantum effects with an unprecedented
degree of control [1,2]. Advancement in tools ,such as optical
lattices [3], offer us the chance to explore e.g., second-order
tunneling [4], quantum phase transitions [5], and nonequilib-
rium quantum dynamics of driven systems [6].

The double well especially serves as a prototype system to
study interference and tunneling in great detail. For instance,
the tunneling dynamics of a Bose-Einstein condensate has been
observed to undergo Josephson oscillations [7–9] in which
the population simply tunnels back and forth between the
two wells. However, when the interaction is raised beyond a
critical value, the atoms remain trapped in one well, a nonlinear
phenomenon known as self-trapping [7,9,10].

Of special interest are systems in lower dimensions, which
often display unique features. Quasi-one-dimensional (1D)
Bose gases have been prepared experimentally by freezing
the transverse degrees of freedom. There it is possible to
tune the interaction strength between the atoms by either
using confinement-induced resonances [11] or using magnetic
Feshbach resonances [12]. Thus, one can study the crossover
from a weakly interacting to a strongly correlated regime.
A particularly interesting case is the Tonks-Girardeau gas
appearing in 1D in the limit of infinitely repulsive short-ranged
interaction, which has been recently observed experimentally
[13,14]. This gas of impenetrable bosons is isomorphic with
that of free fermions via the Bose-Fermi mapping [15], and all
the local properties are identical to the free-fermion system.
The gas still retains the bosonic permutation symmetry, and
so, the nonlocal quantities differ from the fermionic case.

Theoretically, the quantum dynamics in the weakly interact-
ing case has been studied using the Bose-Hubbard (B-H) model
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assuming the validity of a lowest band approximation [16–19].
These studies illuminate relevant tunneling mechanisms and
resonances. However, to capture the rich physics present in
the stronger interaction regime, we need to go beyond the B-H
limit. Moreover, numerically exact calculations of the quantum
dynamics for few bosons through a 1D potential barrier [20]
or a bosonic Josephson junction [21] reveal deviations from
the results obtained with mean-field calculations as well as
establish a difference between the dynamics in attractive
and repulsive bosonic systems [22]. The crossover from the
uncorrelated to the fermionization regime has been investi-
gated for few bosons [23,24] and reveals a transition from
Rabi oscillations to fragmented pair tunneling via a highly
delayed tunneling process analogous to the self-trapping for
condensates. The quantum dynamics of an asymmetric double
well while keeping a constant interaction strength has been
explored in Refs. [17,18,23,24].

In this investigation, we go one step further and envi-
sion a different approach to asymmetry by introducing an
inhomogeneous (i.e., spatially varying interaction strength).
This can be achieved experimentally by employing magnetic-
field gradients in the vicinity of Feshbach resonances or by
combining magnetic traps with optically induced Feshbach
resonances [12,25]. We will demonstrate how spatially varying
interaction strengths enrich the tunneling dynamics in the most
fundamental case of a double well. This has to be seen as
a potential ingredient for more complex problems, such as
quantum transport in optical lattices. Specifically, we study
the crossover from the noninteracting to the fermionization
limit for a fixed inhomogeneity ratio of interaction and
the effect of varying inhomogeneity ratio. An interplay of
suppression and resumption of tunneling is observed. For three
or more particles, the interaction asymmetry can be tuned to
generate various many-particle tunneling resonances. Lastly,
we examine a tilted double well and investigate the interplay
between the tilt and the inhomogeneity to generate tunneling
resonances.

The paper is organized as follows. In Sec. II, we discuss
our model and setup. In Sec. III, we briefly describe our
computational method. Subsequently, we present and discuss
the results for tunneling in a symmetric double well for two
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atoms first (Sec. IV) followed by more atom systems (Sec. V).
In Sec. VI, we discuss the case of an asymmetric double well.
Section VII concludes the paper.

II. SETUP AND INTERACTIONS

Our Hamiltonian (for N particles) is given by (see Ref. [26]
for details)

H =
N∑

i=1

[
1

2
pi

2 + U (xi)

]
+ g

∑
i<j

δ(xi − xj ). (1)

The double well U (x) = 1
2x2 + hδω(x) is modeled as a

harmonic potential with a central barrier shaped as a

Gaussian δω(x) = e−x2/2ω2

√
2πω

(of width ω = 0.5 and height h = 8,
where dimensionless harmonic-oscillator units are employed
throughout).

For ultracold atoms, only the s-wave scattering is relevant,
and the effective interaction in 1D can be written as a contact
potential [11], which we sample here by a very narrow
Gaussian. We focus on repulsive interaction only.

The inhomogeneity of the interaction is modeled as [26]

g(R) = g0

[
1 + α tanh

(
R

L

)]
,

where 2R = xi + xj and L is the modulation length, which
we fix at L = 1.

For R � L, g takes the asymptotic values,

g± = g0(1 ± α).

Thus, the parameter α regulates the relative difference in
interaction strength between the left and the right wells,

�g ≡ |g+ − g−| = 2g0α,

and the corresponding ratio is given by

g+
g−

= 1 + α

1 − α
.

III. COMPUTATIONAL METHOD

Our goal is to study the bosonic quantum dynamics for
weak to strong interactions in a numerically exact fashion.
This is computationally challenging and can be achieved only
for a few atom systems. Our approach is the multiconfiguration
time-dependent Hartree (MCTDH) method [27,28] being
a wave-packet dynamical tool known for its outstanding
efficiency in high-dimensional applications.

The principal idea is to solve the time-dependent
Schrödinger equation,

i�̇(t) = H�(t),

as an initial value problem by expanding the solution in terms
of Hartree products �J ≡ ϕj 1 ⊗ · · · ⊗ ϕj N

:

�(t) =
∑

J

AJ (t)�J (t). (2)

The unknown single-particle functions (SPFs) ϕj (j =
1, . . . ,n, where n refers to the total number of SPFs used

in the calculation) are, in turn, represented in a fixed primitive
basis implemented on a grid. The correct bosonic permutation
symmetry is obtained by symmetrization of the expansion
coefficient AJ . Note that in the preceding expansion, not only
are the coefficients AJ time dependent, but also the SPFs ϕj .
Using the Dirac-Frenkel variational principle, one can derive
the equations of motion for both AJ and �J . Integrating these
differential equations of motion gives us the time evolution of
the system via Eq. (2). This has the advantage that the basis
�J (t) is variationally optimal at each time t . Thus, it can be
kept relatively small, rendering the procedure more efficient.

Although MCTDH is designed primarily for time-
dependent problems, it is also possible to compute stationary
states. For this purpose, the relaxation method is used [29]. The
key idea is to propagate a wave function �0 by the nonunitary
operator e−Hτ . As τ → ∞, this exponentially damps out
any contribution but that stemming from the true ground
state such as e−(Em−E0)τ . In practice, one relies upon a more
sophisticated scheme called the improved relaxation [30,31],
which is much more robust especially for excited states. Here,
〈�|H |�〉 is minimized with respect to both the coefficients
AJ and the orbitals ϕj . The effective eigenvalue problems
thus obtained are then solved iteratively by first solving AJ

with fixed orbital ϕj and then optimizing ϕj by propagating
them in imaginary time over a short period. This cycle is then
repeated.

IV. TUNNELING DYNAMICS FOR TWO-BOSON SYSTEM

We first focus on the tunneling dynamics in a symmetric
double well with two bosons initially (t = 0) prepared in
the left well. This is achieved by adding a tilt or a linear
potential dx to the Hamiltonian, hence, making the left well
energetically favorable. Instantaneously, the ground state is
obtained by applying the relaxation method (imaginary time
propagation). For reasonably large d, this results in achieving
a complete population imbalance between the wells. With this
state as the initial state, the tilt is instantaneously ramped down
(d = 0) at t = 0 to study the dynamics in a symmetric double
well. Our aim is to study the impact of the correlations between
the bosons on the tunneling dynamics both with respect to the
interaction strength as well as the spatial inhomogeneity. We
start by fixing the inhomogeneity to α = 0.2 (with the left well
having lower interaction than the right) and analyze how the
dynamics varies with changing interaction strength g0.

A. Dynamics from the uncorrelated to the fermionization limit

In the absence of any interaction g0 = 0, the bosons
undergo Rabi oscillations between the two wells. This is
characterized by complete tunneling of both bosons between
the two wells with a single frequency and can be quantified
by the time variation of the population of the atoms in the
right well,

PR(t) = 〈
(x)〉�(t) =
∫

0

∞
ρ(x; t) dx,

where ρ is the one-body density. Figure 1 shows that PR

oscillates sinusoidally between 0 and 1. If we introduce a
very small interaction g0 = 0.005 (inset), the Rabi oscillations
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FIG. 1. (Color online) Population of the right-hand well over time
pR(t) for different interaction strengths at α = 0.2 for two bosons.
Inset: Long-time behavior for very low interaction strength g0 =
0.005. Barrier height h = 8 and width ω = 0.5 have been used for all
calculations. (All quantities are in dimensionless harmonic oscillator
units throughout.)

give way to a beat pattern due to the existence of two
very close frequencies. Increasing the interaction strength
further (g0 = 0.2), we observe a suppression of tunneling
with the maximum population in the right well P max

R ≈ 0.2.
This is a manifestation of the inhomogeneous interaction,
which drives the tunneling off-resonance and should be
carefully distinguished from the delayed pair tunneling and
self-trapping for the same g0 value in the case of homogeneous
interactions (see the following). The dynamics consists of a
slow tunneling envelope with suppressed amplitude, which
is modulated by a faster oscillation. For higher values of
interaction strength (g0 = 4.7), the tunneling is completely
suppressed. What remains is a fast oscillation with a tiny
amplitude.

However, contrary to the naive intuition, a reappearance
of tunneling occurs for larger values of the coupling strength.
We observe a partial restoration of tunneling with P max

R = 0.7
for the value g0 = 150, which is close to the so-called
fermionization limit. The dynamics is characterized by two
frequencies—one very close to the Rabi frequency modulated
by a faster oscillation. Ideally, at the fermionization limit
g0 → ∞, the system of hardcore bosons maps to a system
of free fermions [15], and all the local properties are identical.
Hence, in this limit, we would have complete two-mode
single-particle tunneling analogous to tunneling of two free
fermions.

Before we move on to analyze the previous observations in
detail, let us comment briefly on the differences between the
behavior observed in our setup and the case of a symmetric
double well with homogeneous interaction. Clearly, both for
the non- and infinitely interacting limits, the inhomogeneity
does not play a role. For homogeneous interactions and a
symmetric trap, tunneling is always resonant and complete.
However, different strengths of interaction yield different
dynamics, such as a transition from pair tunneling for low
interaction strength to a self-trapping mechanism for larger
interaction strength, which is characterized by extremely long
tunneling times [16,23,24,32,33]. In our case though, we
observe an actual suppression of the tunneling amplitude and
not so much a delayed process. In the case of an asymmetric
well with homogeneous interaction, the effects in the low

interaction regime are equivalent to our setup: The tilt has the
same effect as an interaction asymmetry, namely, it destroys
resonant behavior thereby leading to a suppression of tunneling
[17,18]. Nevertheless, our case is fundamentally different, and
this is evident in the strong interaction regime. Specifically,
the reemergence of tunneling we observe does not occur in the
tilted double-well system.

B. Analysis

The understanding of the above-described dynamics lies
in the variation of the few-body spectrum as g0 is changed
from zero to the fermionization limit [Fig. 2(a)]. Considering
the wave function �(t) = ∑

m e−iEmt cm�m with energy Em

corresponding to the stationary state �m, the population
imbalance δ(t) ≡ 〈
(x) − 
(−x)〉�(t) can be computed to be

δ(t) = 4
∑
m<n

Wmn cos(ωmnt) + 2
∑
m

Wmm − 1, (3)

where Wmn = 〈�m|
(x)|�n〉cmcn and ωmn = Em − En.
The energy spectrum of both the noninteracting and the

fermionization limit can be understood from the single-particle
energy spectrum of the double well, which is in the form of
bands each pertaining to a pair of symmetric and antisymmetric
orbitals.

In the uncorrelated limit (g0 → 0), the low-lying energies
of the spectrum are obtained by distributing the atoms
over the symmetric and antisymmetric single-particle orbitals
in the first band. This leads to N + 1 energy levels, N being
the number of bosons. Em = E0 + m�0 with m = 0, . . . ,N

where �0 = ε1 − ε0 is the energy difference between the two
single-particle orbitals in the first band. Thus, for g0 = 0,
the levels are equidistant [Fig. 2(a) inset], and we see Rabi
oscillation with frequency ω01 = ω12 = �0. As the interaction
is increased (g0 = 0.005), this equidistance is slightly broken
(ω01 
 ω12), and we get a superposition of two very close
frequencies. This results in the formation of the beat pattern
seen in the dynamics for g0 = 0.005.
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FIG. 2. (Color online) (a) Two-particle energy spectrum as a
function of the interaction strength g0 for α = 0.2. Inset: Lowest-
energy levels for low interaction strength. Bottom: Few-body energy
spectrum with g0 for (b) α = 0 and (c) α = 0.2.
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To understand the dynamics in the low interaction regime, it
is instructive to map our system to a two-site B-H Hamiltonian
[34,35],

Ĥ = −J (ĉ†LĉR + ĉ
†
RĉL) +

∑
j=L,R

Uj

2
n̂j (n̂j − 1), (4)

where J is the tunneling coupling, UL (UR) is the on-site
energy of the left (right) well, and n̂j ≡ ĉ

†
j ĉj .

Before proceeding, we note here that there is no direct
connection between the time-dependent SPF used within our
numerical MCTDH calculations and the parameters of the
B-H Hamiltonian. In the standard B-H model (which is valid
in the weak interaction regime), the parameters J , UL, and
UR are time-independent constants, while the shape of the
orbitals, such as the localized Wannier functions, retain the
shape throughout the course of the dynamics. Moreover, even
for low energies, the two most occupied modes for propagation
do not necessarily coincide with the two modes of the B-H
model. In this weak interaction regime, the B-H model is just
a good approximation for our exact calculation, and, thus, we
have used it as solely an explanatory tool to analyze the results.

Using the B-H Hamiltonian for UL,UR � J , the highest
two eigenvalues are approximately UR and UL. Whereas in
the homogeneous case α = 0, these two levels are close to
degenerate UL ≈ UR [Fig. 2(b)], here, we have a breaking
of the parity symmetry, since UR > UL [Fig. 2(c)]. This is
understandable, since the two particles localized in the left
well have lower energy than the two particles in the right well
leading to the energy level separation seen in Fig. 2(c). In
terms of the number-state representation in the localized basis
|NL

(0),NR
(0)〉, the degenerate eigenstates for the homogeneous

case read

φ1,2 ≈ 1√
2

(|0,2〉 ± |2,0〉),

and, consequently, the dynamics consists of shuffling the
probability between the two states corresponding to a complete
two-particle tunneling.

In the case of sufficiently strong inhomogeneous interac-
tion, the removal of the degeneracy of the energy levels leads
to a decoupling of the eigenstates into localized number states,

φ1 ≈ |2,0〉, φ2 ≈ |0,2〉.
This implies that the initial state ψ(t = 0) = |2,0〉 is very close
to the first excited state φ1 and, thus, is effectively a stationary
state of the system. This results in the suppression of tunneling
for corresponding values of g0.

In the fermionization limit (g0 → ∞), the system possesses
the same local properties as a system of noninteracting
fermions due to the Bose-Fermi mapping [15]. Thus, in an
ideal case, the inhomogeneity does not manifest (g± → ∞),
and the tunneling dynamics is identical to a system of free
fermions. As an idealization, if we consider the initial state as
two noninteracting fermions in the left well, then they would
occupy the lowest two orbitals localized in the left well. In
terms of the single-particle eigenstates of the double well |n(β)

aβ
〉

where n
(β)
aβ

denotes the occupation number of the symmetric
(aβ = 0) or the antisymmetric (aβ = 1) orbital in band β, the

tunneling frequencies ωnn′ = En − E′
n are given by [24]

ωnn′ =
∑

β

�β
(
n

β

1 − n′
1
β)

︸ ︷︷ ︸
=0,±1

, (5)

where �β denotes the energy splitting of the band β and n
β

1
represents the occupation of the antisymmetric orbital of the
band β. Thus, for two particles, the contributing frequencies
are the lowest band Rabi frequency �0 and the tunnel splitting
of the first excited band �1. The tunneling dynamics can be
pictured roughly as two fermions tunneling independently in
the first two bands.

In our system, however, the finiteness of the g0 value
leads to deviations from the ideal fermionic dynamics. The
inhomogeneity of the interaction still manifests leading to a
difference with respect to the localized two-particle energy
level in each well, and the tunneling remains incomplete.

C. Dynamics with varying inhomogeneity

Having analyzed how the dynamics varies with changing
interaction strength at a fixed interaction asymmetry, it is
worthwhile to study the dependence of the tunneling dynamics
on the strength of the inhomogeneity. For this, we study the
effect of different α values on the tunneling dynamics for a
fixed g0 = 0.2.

In Fig. 3, we observe that, for α = 0, we have complete
tunneling with a two-mode dynamics [i.e., fast oscillations
(ω01), which modulate slower tunneling oscillations (ω12)].
When α is increased to a value of 0.04, the tunneling
maximum is reduced to roughly 0.7 while still retaining
the two-mode character. As α is further increased to 0.2,
the tunneling is suppressed as described in Sec. IV B. The
characteristic display of fast and slow oscillations arising due
to the time-scale difference of the contributing frequencies is
not prominent here, and, for higher interaction asymmetry
(α = 0.5), we have effectively single-mode tunneling with
frequency ω01.

The variation of the maximum population P max
R with the

inhomogeneity α (Fig. 3 inset) shows a sharp drop with
increasing α before effectively reaching a constant value
∼0.12 for α � 0.3. The reader should note that P max

R does not
go to zero in the asymptotic limit α → 1 or UR

UL
→ ∞. This is

due to the fact that, with a finite value of g0 and a finite-barrier

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

time t

p
o
p
u
l
a
t
i
o
n
 
p
R

α =0
α=0.04
α=0.2
α=0.5

0 0.25 0.5
0

0.25
0.5

0.75
1

α

P
Rm
a
x

FIG. 3. (Color online) Population of the right well over time
PR(t) at g0 = 0.2 for different α values. Inset: Variation of maximum
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R with α for g0 = 0.2.
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height, the tunneling coupling (J ) is not negligible compared
to UR . As a consequence, there remains a finite probability of
bosonic tunneling between the two wells.

D. Strong interaction inhomogeneity

An extremely strong inhomogeneity at a high interaction
value leads to an interesting higher band tunneling dynamics.
We can realize such a system by having α = 1 at g0 = 25. This
setup effectively makes the bosons fermionized in the right
well and almost noninteracting in the left. Preparing the initial
setup with both bosons in the left well leads to the suppression
of tunneling. However, if we prepare the initial state with two
boson in the right well, then we observe substantial tunneling.
In Fig. 4(a), we see that the PR oscillates between 1 and 0.5
indicating a single-boson tunneling with a single dominant
frequency.

In order to understand the phenomenon, we look at the
energy spectrum at α = 1 [Fig. 4(b)]. While the ground
state remains unaffected, what we see is that, close to
the fermionization regime (g0 = 25), the first excited state
decouples from the higher three states, which come closer.
The main contribution to the first excited state is the state |2,0〉,
and its separation from the other states could be understood
from the fact that two bosons in the left well are almost
noninteracting and, thus, energetically far off-resonant from
two effectively fermionized bosons in the right well |0,2〉.
The consequences of this fact are the following: (i) The initial
configuration of |2,0〉 becomes a stationary state resulting in
a highly suppressed tunneling, and (ii) the state |0,2〉 of the
lowest band becomes energetically resonant and couples to
the states |11,10〉 and |10,11〉 in the higher bands [where the
superscripts refer to the ground (0) or the excited (1) orbital
of the corresponding well]. The latter leads to a tunneling
dynamics in the higher band states predominantly between
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FIG. 4. (Color online) (a) Population variation with time PR(t) at
g0 = 25 and α = 1 for PR(0) = 1 (i.e., initially populating the right
well). (b) Energy spectrum for α = 1.

the second and the fourth excited eigenstates [see Fig. 4(b)],
which have greater overlap with the initial state |0,2〉. These
orbitals mostly have contributions from the states |0,2〉 and
|11,10〉, while the other orbital has minimal overlap with the
initial state. As a result, we get a single-particle tunneling
with one dominant frequency given by the splitting of the
energy between these two levels. In other words, we effectively
have a single-boson tunneling between the wells in the
excited band. Note that this highly correlated single-particle
tunneling scenario is attributed to the high inhomogeneity
in the strong interaction regime, since the combination of
these two factors is responsible for turning the pair-tunneling
scenario off-resonance.

V. MULTIPARTICLE DYNAMICS

Having analyzed the tunneling dynamics of two atoms, let
us now focus on the case of three or more atoms to see the
general atom number dependence of tunneling in the presence
of spatially modulated interactions.

A. General behavior and mechanisms

Like in the two-boson case, we start with the initial state
of N = 3 bosons prepared in the left well. As shown in
Fig. 5(a), the main effects are similar to the two-atom case.
The dynamics is again governed by frequencies determined
by the energy difference of the low-lying spectrum. For very
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FIG. 5. (Color online) (a) Population of the right-hand well over
time PR(t), for three bosons for different interaction strengths at
α = 0.2. (b) Three-boson energy spectrum at α = 0.2.
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small interaction, the nearly equal energy difference gives rise
to the beat pattern similar to that of two particles. As we
increase the interaction strength, we observe suppression of
tunneling for g0 = 0.2 followed by a partial restoration at
g0 = 4.7 and a higher amplitude reemergence close to the
fermionization limit at g0 = 150. The general mechanism
for the suppression is the same as for the two-particle case.
Now, however, in the symmetric case α = 0, the contributing
nearly degenerate eigenstates are of the form |N,0〉 ± |0,N〉.
Consequently, we have a complete N -particle tunneling with a
frequency given by [16] ω ∼ 2NU/(N − 1)!(2�0/U )N where
U = UL,UR denotes the on-site interaction energy. Thus,
the tunnel period grows exponentially with N . When the
inhomogeneous interaction is introduced, the states decouple
to the localized number states |N,0〉 and |0,N〉, and, thus, the
initial state becomes a stationary one leading to the suppression
of tunneling. The important thing to note is that with increasing
N , the suppression of tunneling occurs for much smaller
values of g0. For instance, at g0 = 0.2 for N = 3, we have
almost complete suppression in contrast with N = 2 where
we still observed significant tunneling (see Fig. 1) for this
value of g0. This could be understood from the fact that
the contribution of the on-site energy on the cat state goes
as ∼UL(UR)N (N − 1)/2, while that of the tunneling term
is N independent. This fact is responsible for a significant
decoupling of these states at a lower g0 value leading to faster
suppression of tunneling as N increases.

Also unlike that of the two-boson case, the spectrum for the
three-boson case contains crossings between the higher-lying
states [see Fig. 5(b)], and, in the vicinity of these crossings,
there is a partial reappearance of tunneling. This can be seen,
for instance, at g0 = 4.7 where we observe a restoration in the
three-particle case; whereas for two particles, we still observed
a significant suppression (see Fig. 1). In this regime, the higher
bands contribute more significantly leading to the convoluted
dynamics observed. These higher band contributions lead to
further recovery with increasing interaction strength toward
the fermionization regime, although even for g0 = 150, we do
not get the exact fermionic dynamics, which is characterized
by the tunneling of three independent fermions.

B. Generating tunneling resonances by
interaction inhomogeneity

A very interesting phenomenon for the N � 3 particle case
is that, by tuning the asymmetry α, we get a controllable
reemergence of tunneling. To observe this, we study how the
tunneling dynamics changes with different values of α for
g0 = 0.2 (Fig. 6). The value of g0 is chosen such that the
inhomogeneity effect manifests but is still in the two-mode
regime. For three atoms, we observe [Fig. 6(a)] that a complete
tunneling for α = 0 gives way to suppressed tunneling with
increasing α value. However, at α = 0.5, we observe a
reappearance, which is in the form of a tunneling resonance
peaked at α = 0.5 with P max

R ≈ 0.6 corresponding to effective
two-boson tunneling. In the case of N = 4, we see two
resonances [Fig. 6(b) inset]—the larger one centered on
α = 0.3333 with an amplitude 0.75, and the smaller one
centered at α = 0.6667 with an amplitude 0.5 resulting in
the reappearance of tunneling shown in Fig. 6(b).
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FIG. 6. (Color online) Population of the right well over time PR(t)
at g0 = 0.2 for different α values for (a) three particles and (b) four
particles. Inset: Variation of maximum population of the right well
P max

R with α for g0 = 0.2.

In order to understand this, we have to study the spectra and
the underlying eigenstates for different α (Fig. 7). In the case of
N = 3, for no asymmetry α = 0, the highest two levels form
a doublet [Fig. 7(a)], and the corresponding eigenstates are
degenerate of the form 1√

2
(|3,0〉 ± |0,3〉). As α is increased,

the parity symmetry is broken, and the doublets separate,
and likewise, the eigenstates decouple [Fig. 7(b)]. The energy
eigenvalues (in the limit of very high g0) are given by UL, UR ,
3UL, and 3UR with the corresponding eigenstates |2,1〉, |1,2〉,
|3,0〉, and |0,3〉. However, when UR ≈ 3UL (α = 0.5), the first
and the second excited eigenstates become near degenerate
and form a doublet of the form 1√

2
(|1,2〉 ± |3,0〉) [Fig. 7(c)].

Thus, the initial state |3,0〉 is no longer a stationary state of the
system. As a consequence, we get a restoration of tunneling,
and the dynamics basically involves shuffling atoms between
these two number states. In other words, we have tunneling
of two particles between the two wells, while one particle
remains in the left well. This resonant two-particle tunneling
is what we observe for the α = 0.5 case. As α is increased
further, this degeneracy is once again broken, and the states
decouple leading back to the suppressed tunneling dynamics.
This is reminiscent of what happens in the asymmetric double
well for homogeneous interactions [17].

In a similar consideration, for the four-particle case, the
energy eigenvalues are 3UL, 6UL, (UL + UR), 3UR , and 6UR .
Now, if UR → 2UL (α = 0.3333), then we have two degenera-
cies viz. 3UR → 6UL and (UL + UR) → 3UL corresponding
to the eigenstates 1√

2
(|4,0〉 ± |1,3〉) and 1√

2
(|3,1〉 ± |2,2〉).

Since the initial state is |4,0〉, only the first degeneracy
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FIG. 7. (Color online) Three-particle energy levels for 0 < g0 <

0.3 for (a) α = 0, (b) α = 0.04, and (c) α = 0.5.

contributes. Thus, the dynamics in this case consists of
tunneling of three bosons between the wells, while one boson
remains in the left well. This results in the tunneling amplitude
of 0.75. The second tunneling peak occurs for UR → 5UL

(α = 0.6667), which leads to (UL + UR) → 6UL. The corre-
sponding degenerate eigenstates are 1√

2
(|4,0〉 ± |2,2〉), and we

observe tunneling of two bosons on top of others remaining
in the left well and, thus, the tunneling peak of 0.5. The
preceding analysis can be extended generically for N particles
where we would have N − 2 resonances corresponding to the
degeneracies between the eigenstates.

C. Correlations

In order to study the exact nature of tunneling dynamics, we
need to investigate the correlations between the particles. For
this, we study the temporal evolution of the pair probability
or the probability of finding two particles in the same well
defined by

p2(t) = 〈
(x1)
(x2) + 
(−x1)
(−x2)〉t , (6)

and the three-particle probability or the probability of finding
all three particles in the same well defined by

p3(t) = 〈
(x1)
(x2)
(x3) + 
(−x1)
(−x2)
(−x3)〉t .
(7)
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FIG. 8. (Color online) Temporal evolution of (a) pair probability
and (b) three-particle probability at α = 0 and α = 0.5 for N = 3
and g0 = 0.2.

In the case of N = 3, for homogeneous interaction α = 0 at
g0 = 0.2, both p2 and p3 oscillate close to unity (Fig. 8). This
implies that all three particles can be found in the same well,
or, in other words, they tunnel together between the wells.
This confirms the analysis of the dynamics by the eigenstate
analysis in Sec. IV as tunneling between |3,0〉 and |0,3〉
states.

Similarly, at resonance (α = 0.5), we find that p3 oscillates
from 0.1 and 1 implying that the system oscillates between
a three-particle state to a non-three-particle state, namely, the
pair state |1,2〉, which can be inferred from the variation of
p2 [Fig. 8(b)]. As a result, we have pair tunneling on top
of a particle remaining in the left well. (Ideally, in the case of
the B-H model, p2 should be oscillating between 1 and 0.33,
while p3 should be oscillating between 1 and 0. However, in
our case, the realistic potential and parameter regimes as well
as some higher band contributions lead to the some deviations
from this behavior.)

VI. ASYMMETRIC DOUBLE WELL

Thus far, we have investigated the dynamics in a symmetric
double well with inhomogeneously interacting bosons. An
interesting extension is to study the dynamics in an asym-
metric double well. This gives us the chance to examine
the interplay between the interaction inhomogeneity and the
tilt. A special interesting consideration would be to see if
the tilt could be tuned to offset the inhomogeneity in the
interaction and mimic the dynamics of symmetric interaction
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case or further, if it can generate some new tunneling
resonances.

A. Generating tunneling resonances by a tilt

In symmetric wells with homogeneous interaction, the
localized N -particle state |N,0〉 has the same energy as that
of the state |0,N〉 resulting in a complete N -particle tunneling
between the wells. With the introduction of the inhomogeneity
with respect to the interaction, this resonance is broken, and
the energy of N particles in the right well is higher than that in
the left well resulting in the suppression of tunneling as seen
before. Now, if we incorporate a tilt in the double well such
that the left well is lifted and the right well is pushed down
energetically in exactly the right amount to make the localized
N -particle energy levels resonant, then we should expect a
reemergence of tunneling.

To observe this, we prepare the initial state with both
particles in the right well ψ(0) = |0,2〉 and study the variation
of the tunneling maximum P max

L with a tilt d [Fig. 9(a)]
incorporated into the Hamiltonian as a linear term −dx.
We restrict ourselves to the α = 0.2 and g0 = 0.2 cases. We
observe a sharp resonance at d ≈ 0.0065 corresponding to
the tilt, which exactly balances the localized pair-state energy
difference due to inhomogeneous interaction. The result is
pair tunneling between the two wells as we would have it in a
completely symmetric setup.
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FIG. 9. (Color online) Variation of (a) tunneling maximum P max
L

with tilt d , (b) maximum single-particle probability p̄1 with tilt d for
N = 2, g0 = 0.2, and α = 0.2.

With higher tilt, the tunneling maximum falls off very
sharply as the pair state becomes off-resonant again, and we
get a suppression of tunneling. The next maximum occurs
when the tilt is large enough to make the localized pair
state |0,2〉 resonant with the state |1,1〉. This results in a
broad tunneling maximum at d ≈ 0.045 corresponding to
single-particle tunneling.

To confirm our analysis of the tunneling mechanism, we
look at the variation of maximum single-particle probability
p̄1 with tilt [Fig. 9(b)], defined as p̄1 = maxt [1 − p2(t)], which
gives the probability of having only one particle in a well. We
observe a negligible value at the first resonance d ≈ 0.0065
confirming that the dynamics is pair tunneling, while a very
broad maximum peaked at the second resonance d ≈ 0.045
corresponds to the maximum probability of finding a single
particle, which in our case is the |1,1〉 state, and the dynamics
is a single-particle tunneling between the |0,2〉 and |1,1〉states.

B. Spectral analysis

To understand the effect of the tilt on the tunneling
dynamics, we study the energy spectra E with varying tilt d

at fixed g0 = 0.2 and α = 0.2 (Fig. 10). At d = 0, the
eigenstates are basically number states in the localized basis.
With increasing d, the highest two levels |0,2〉 and |2,0〉
move closer and form a sharp avoided crossing at d ≈ 0.0065
corresponding to the first tunneling resonance. At this point,
the tilt exactly balances the interaction inhomogeneity, and the
eigenstate is in the form of the cat state |2,0〉 ± |0,2〉. This
state is very sensitive to the tilt, and a minute perturbation
decouples it into the localized number state resulting in a
very sharp tunneling resonance. The ground state, which
is the |1,1〉 state, is insensitive to the tilt, since this low-
ering of one particle and raising of another particle keeps
the state energetically unaffected within the linear regime.
This state forms a broad (anti)crossing with the lower excited
state at d ≈ 0.045 forming the broad single-particle tunneling
resonance seen in the dynamics. This behavior seen in the
two-particle case can be expected in general for N particles
giving N resonances corresponding to the avoided crossings
encountered. In particular, with increasing tilt, the successive
resonances correspond to a mechanism where one less particle
tunnels compared to that of the previous one, while the width
of the resonances becomes progressively broader.
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FIG. 10. (Color online) Two-particle energy spectrum with tilt d

for α = 0.2 and g0 = 0.2.
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VII. CONCLUSION AND OUTLOOK

We have investigated the double-well tunneling dynamics
with inhomogeneous interaction. More specifically, we mod-
eled the system such that we have two different interaction
strengths in the two wells. What we observe is that this
inhomogeneity leads to a suppression of tunneling. The reason
for this suppression can be attributed to the breaking up of
the doublet structure in the energy spectrum leading to a
decoupling of the eigenstates into the localized number state.
Increasing the interaction to the fermionization limit leads to
a reappearance of the tunneling. The dynamics is governed
by the band splitting of the first two bands, although the
finiteness of the interaction strength and the presence of the
interaction inhomogeneity lead to deviation from the ideal
fermionic behavior. For a very pronounced interaction inho-
mogeneity for strong interactions, we observe single-particle
tunneling between the localized excited bands of the double
well.

These basic considerations can be used to understand
the many-particle system. There we observed a more severe
suppression of tunneling for even lower g0 values. Most impor-
tantly, for N � 3 atoms, one can generate tunneling resonances
by tuning the interaction asymmetry. These resonances occur
as a result of the formation of degeneracies between different
eigenstates. For three particles, the exact tunneling mechanism
was investigated using the evolution of the pair probability and
the three-particle probability. These studies show that we get
correlated pair and triplet tunneling with a complete absence
of single-particle tunneling.

Finally, we explored the dynamics in an asymmetric double
well, and this gives us an understanding of the interplay
between the interaction inhomogeneity and the tilt. We observe
that the tilt can be tuned to offset the interaction inhomogeneity
leading to a tunneling resonance. These dynamics have
been explained through the spectral analysis in terms of
avoided crossings between the levels. Note that an interesting
prospective would be to try to describe the presently found
effects in the context of a generalized B-H model, where the
on-site energies and the coupling constants would be site and
occupation number dependent [36–38].

Understanding the few-body mechanisms of tunneling
with spatially modulated interactions can be used to design
schemes for selective transport of particles between different
wells and/or reservoir systems [39,40]. Furthermore, our
study could serve as a starting point for the investigation
of the quantum dynamics in the presence of time-dependent
interaction modulations and even be extended to multiwell
systems [41].
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