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Phonon resonances in atomic currents through Bose-Fermi mixtures in optical lattices
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We present an analysis of Bose-Fermi mixtures in optical lattices for the case where the lattice potential of the
fermions is tilted and the bosons (in the superfluid phase) are described by Bogoliubov phonons. It is shown that
the Bogoliubov phonons enable hopping transitions between fermionic Wannier-Stark states; these transitions
are accompanied by energy dissipation into the superfluid and result in a net atomic current along the lattice. We
derive a general expression for the drift velocity of the fermions and find that the dependence of the atomic current
on the lattice tilt exhibits negative differential conductance and phonon resonances. Numerical simulations of
the full dynamics of the system based on the time-evolving block decimation algorithm reveal that the phonon
resonances should be observable under the conditions of a realistic measuring procedure.
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I. INTRODUCTION

One of the most intriguing prospects opened up by recent
advances in atomic physics is the possibility of studying
many-body quantum systems. In particular, ultracold atoms
confined to optical lattice potentials have been shown to
be perfectly suitable for implementing physical models of
fundamental interest not only to the field of atomic physics
but also to condensed matter physics [1,2]. Specific examples
of a highly versatile many-body system include Bose-Fermi
mixtures in optical lattices, which have been used recently to
analyze the effect of fermionic impurities on the superfluid
to Mott-insulator transition [3–5]. A further experimental
setup closely related to condensed matter systems consists
of ultracold atoms in tilted optical lattice potentials. Sev-
eral fundamental quantum mechanical processes related to
nonequilibrium transport of particles have been observed in
this setup such as, e.g., Landau-Zener tunneling [6], Bloch
oscillations [7,8], and processes analogous to photon-assisted
tunneling [9].

Of particular importance, collisionally induced transport
of fermions confined to an optical lattice and coupled to an
ultracold bosonic bath has been observed in an experimental
setup of a similar type to the one considered in this article
[10]. Furthermore, a closely related theoretical analysis of
collision-induced atomic currents along a tilted optical lattice
was provided by Ponomarev et al. [11] based on a random
matrix approach. In essence it was pointed out in Ref. [11]
that the atomic current exhibits Ohmic and negative differential
conductance (NDC).

In the present article we study a natural extension of the
mentioned experiments, namely lattice Bose-Fermi mixtures
with the fermions confined to a tilted optical potential.
Motivated by earlier considerations [12,13] we show that
this system is highly appropriate for exploring the effects
of electron-phonon interactions on nonequilibrium electric
transport through a conductor. Specifically, we demonstrate
that electron-phonon resonances, predicted to exist in solids
nearly 40 years ago [14–16], yet for which there seems to be
no conclusive experimental evidence [17,18], can be realized
using ultracold atoms.

In our model the fermions take the role of electrons, whereas
the bosons provide a nearly perfect counterpart to acoustic
phonons in solids. The tilt imposed on the lattice potential
of the fermions corresponds to an applied bias voltage to the
system. The collisions between fermions and bosons result
in fermion-phonon relaxation processes, which give rise to a
net atomic current along the tilted lattice potential [11,13,19],
as illustrated in Fig. 1. We show that in our case, where both the
fermions and bosons are trapped in an optical lattice, phonon
resonances in the atomic current occur. They arise as the
momentum of the phonon emitted in the relaxation process
approaches a so-called Van Hove singularity [20] at the upper
edge of the phonon band. Moreover, we shall see that phonon
resonances, at least on the level of approximations made in
this article, are also expected to occur in Bose-Bose mixtures
[21].

There are crucial advantages of our cold atom implemen-
tation over a solid-state system: First, neither impurities nor
imperfections in the system suppress the resonances in the
current [17] and hence fermion-phonon scattering is the only
relaxation process, which can be fully controlled via the
bosonic system parameters [5,22]. Second, large lattice tilts

FIG. 1. (Color online) Fermions confined to a tilted potential
V (x) form a Wannier-Stark ladder with a constant energy separation
� between adjacent lattice sites. The fermion-boson interaction
enables phonon-assisted transitions from site i to j at the rate Wi→j .
The released energy (i − j )� is dissipated in the form of a phonon
emitted into the superfluid.
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can be achieved with an energy mismatch between neighboring
fermion sites that exceeds the bandwidth of both the fermions
and the phonons. This makes it possible to study the influence
of the phonon density of states on the atomic current over the
entire phonon band. In addition, it allows us to observe negative
differential conductance [11,13,19], which is realized in a
solid-state system with difficulty by resorting to semiconductor
superlattices [15,18,23]. Last, the parameters of our system
can be chosen to ensure that Landau-Zener tunneling to higher
fermion bands—often a significant effect in high field transport
[18]—is negligible despite the large lattice tilts [13] justifying
the use of a tight-binding framework.

The key experimental techniques required for our scheme
are twofold: first, the independent trapping of atoms of differ-
ent species in species-specific optical lattice potentials [24,25]
and, second, the tunability of the boson-boson and boson-
fermion interactions by Feshbach resonances [5,26]. Also,
we exploit the possibility of implementing low-dimensional
systems by strongly increasing the depth of the optical
potentials along specific directions. In this way effectively
one-dimensional systems can be realized by tightly confining
atoms to an array of tubes [2].

The structure of this article is as follows: In Sec. II we
start from the Bose-Fermi Hubbard model and outline the
effective description of the Bose-Fermi mixture in terms of
Bogoliubov phonons and Wannier-Stark states. In Sec. III we
derive a general expression for the drift velocity of the fermions
and show that this expression encompasses the phenomena
of negative differential conductance and phonon resonances.
Section IV contains the results of a near-exact numerical
simulation of a realistic experimental procedure to determine
the dependence of the atomic current on the lattice tilt. We end
with the conclusions in Sec. V.

II. EFFECTIVE MODEL

The specific system we consider consists of a homogeneous,
one-dimensional Bose-Fermi mixture of bosons and spin-
polarized fermions, both trapped in separate optical lattice
potentials. If the potentials are sufficiently deep so that only
the lowest Bloch band is occupied, then the Bose-Fermi mix-
ture can be described by the Bose-Fermi Hubbard model [27]

Ĥbf = −Jb

∑
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where 〈i,j 〉 denotes the sum over nearest neighbors. The
operators â

†
j (âj ) create (annihilate) a boson and, similarly,

the operators ĉ
†
j (ĉj ) create (annihilate) a spinless fermion

in a Wannier state localized at site j . The bosonic and
fermionic hopping parameters are Jb and Jf , respectively,
and the on-site boson-boson and boson-fermion interactions
are characterized by the energies Ub and Ubf , both positive
and independently tunable. In contrast to the bosons, the
lattice potential of the fermions is assumed to be tilted with
an energy splitting � � 0 between adjacent sites.

At low temperatures and for sufficiently small boson-boson
interactions Ub/Jb ∼ 1 most bosons are in the superfluid

FIG. 2. (Color online) The dispersion relation of acoustic
phonons in a solid with h̄ωq ∼ | sin(qa/2)| (dashed line) and of
Bogoliubov phonons in a superfluid confined to an optical lattice
(full line) in units of the bandwidth w = 4Jb

√
1 + Ubnb/2Jb for

the parameters Ubnb/Jb = 0.5. (b) The corresponding density of
states Dq = |∂h̄ωq/∂(qa)|−1 (full line) of the Bogoliubov phonons is
approximately constant for small momenta and exhibits a Van Hove
singularity near the edge of the first Brillouin zone (dashed line).

phase and accurately described by the phononic excitations of
the superfluid. This description is obtained by transferring the
bosonic part of the Hamiltonian Ĥbf into momentum space
and adopting the Bogoliubov approach [28], which results in
the phonon Hamiltonian

Ĥph =
∑

q

h̄ωqb̂
†
q b̂q . (2)

Here, q is the momentum running over the first Brillouin
zone, i.e., −π/a < q � π/a with a the lattice spacing,
and the bosonic operators b̂

†
q (b̂q) create (annihilate)

a Bogoliubov phonon. The excitation spectrum of the
phonons is given by the Bogoliubov dispersion relation
h̄ωq = √

Eq(Eq + 2Ubnb), where nb is the bosonic occupation
number and Eq = 4Jb sin2(qa/2) is the dispersion relation of
noninteracting bosons in the optical lattice. The dispersion of
the Bogoliubov phonons, albeit not identical, is remarkably
similar to the dispersion of acoustic phonons in a solid-state
system with h̄ωq ∼ | sin(qa/2)|, shown in Fig. 2(a). The
common features are a linear dispersion in the limit q → 0
and the band structure with a gap at the boundary of the first
Brillouin zone. It should be pointed out that the accuracy of
the Bogoliubov description of phonons has been demonstrated
experimentally [22], thus we have perfect knowledge of and
control over the phonons in our system.

The fermions confined to the tilted potential are represented
by the eigenstates of the fermionic part of Ĥbf , i.e., the
Wannier-Stark states [29,30]. The unitary transformation that
relates the Wannier operators ĉj to the Wannier-Stark operators
d̂j is given by

d̂j =
∑

i

Ji−j (2Jf /�)ĉi , (3)

where Jn(z) are Bessel functions of the first kind [31].
It follows immediately from the properties of the Bessel
functions Jn(z) that the Wannier-Stark states are centered at
lattice site j and have a width of the order of Jf /�. By invoking
the identities for the Bessel functions

∑
n Jn−m(z)Jn−m′(z) =
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δm,m′ and (2n/z)Jn(z) = Jn+1(z) + Jn−1(z) one finds that the
transformed fermionic part of Ĥbf takes the diagonal form

Ĥws =
∑

j

(j�)d̂†
j d̂j . (4)

The spectrum of Ĥws constitutes a so-called Wannier-Stark
ladder [29,30] with a constant energy separation � between
adjacent sites, shown in Fig. 1. We emphasize that the Wannier-
Stark states are stationary and hence a net current of fermions
along the tilted lattice only develops in presence of additional
relaxation processes. In particular, it results from the inverse of
the transformation in Eq. (3) that a fermion initially localized
at a single lattice site undergoes coherent Bloch oscillations
with frequency �/h̄ [7].

To rewrite the boson-fermion interaction in terms of
Bogoliubov phonons and Wannier-Stark states we apply the
same transformations as for the purely bosonic and fermionic
parts of Ĥbf . Invoking the results established in Refs. [28,29]
we find the fermion-phonon interaction Hamiltonian

Ĥint = Ubf nb

∑
j

d̂
†
j d̂j +

∑
j,�,q

[fq,�b̂qe
−iqaj + H.c.]d̂†

j+�d̂j

(5)

with the corresponding matrix elements

fq,� = Ubf

(
nbEq

Nh̄ωq

)1/2

J�

(
4Jf

�
sin

qa

2

)
i�e−iqa�/2, (6)

where N is the number of lattice sites. We note that Ĥint

coincides exactly with the description of the electron-phonon
interactions in a solid-state system [29] and thus is perfectly
adequate for investigating related phonon effects.

The fermion-phonon interaction Ĥint describes the creation
of a Bogoliubov phonon out of the superfluid phase and
the reverse process, both caused by the hopping process of
the fermions. These incoherent processes involving a single
phonon enable fermions to make transitions between Wannier-
Stark states separated by � lattice sites. On the other hand,
coherent processes resulting from Ĥint, in which a virtual
phonon is emitted and reabsorbed, lead to a phonon-mediated
fermion-fermion interaction, a renormalized fermion hopping,
and a mean-field energy shift of the fermions [12,13].

The effective fermion-fermion interaction, being short
range, can be safely neglected if we assume a filling factor
of the fermions much lower than 1. However, we have to
take into account the renormalization of the fermion hopping
Jf when comparing our theoretical model to experimental or
numerical results. As expected from theoretical considerations
[12,13] and confirmed by the numerical results in Sec. IV, the
renormalization reduces the bare hopping. Last, the mean-field
energy shift is explicitly given by Ubf nb + ∑

q |fq,0|2/h̄ωq ,
which is readily determined in the regime Ubnb/Jb � 1 by tak-
ing the continuum limit.1 For a single delocalized fermion with
Jf /� � 1 the shift is simply Ubf nb, whereas for a localized

1Explicitly, the continuum limit of the sum over all momenta in the
lowest band is (Na)−1

∑
q → ∫ π/a

−π/a
dq/2π .

fermion with Jf /� � 1 we find Ubf nb(1 − aUbf /2h̄cs), with
cs = (a/h̄)

√
2JbUbnb the speed of sound in the superfluid.

It is essential for our model that neither interactions with
the fermions nor the trapping potential confining the fermions
destroy the phononic excitations of the superfluid. These
conditions are met by using species-specific optical lattice
potentials [24,25] and by limiting the number of fermions in the
system [3–5]. Moreover, we restrict our analysis to fermions
moving slower than superfluid critical velocity, which is cs

according to Landau’s criterion [32], to avoid excitations other
than those caused by the hopping transitions. More precisely,
we consider the parameter regime ζ = 2aJf /h̄cs � 1, where
2aJf /h̄ is the maximal group velocity of the fermions in the
lowest Bloch band.

III. ATOMIC CURRENTS

Since the number of fermions is significantly smaller than
number of bosons we effectively treat the superfluid as a
phonon bath. Accordingly we describe the dynamics of the
fermions by a master equation for the probabilities Pj that a
fermion occupies a Wannier-Stark state at site j . The master
equation reads

∂tPi =
∑

j

[Pj (1 − Pi)Wj→i − Pi(1 − Pj )Wi→j ], (7)

where Wi→j are the rates for a phonon-assisted transition from
site i to site j and the factors (1 − Pj ) take the Pauli exclusion
principle into account. The probabilities Pi either describe
the occupation of a single fermion or the distribution of an
ensemble of fermions; in both cases we choose

∑
j Pj = 1.

The average position x̄ of the fermions at time t is accordingly
x̄ = ∑

j (aj )Pj and the average drift velocity v̄d , which
quantifies the atomic current along the lattice, is given by
v̄d = ∂t x̄ = ∑

j (aj )∂tPj .
To obtain a useful expression for the drift velocity v̄d we

exploit the fact that the system is homogeneous so that the
transition rates Wi→j only depend on the jump distance � =
i − j , where jumps with � > 0 are defined to be downward the
tilted lattice, as depicted in Fig. 1. By using Fermi’s golden
rule based on the interaction Hamiltonian Ĥint, i.e., to second
order in the coupling Ubf , we find

WE
� = 2π

h̄

∑
q

|fq,�|2(Nq + 1)δ(h̄ωq − ��),

(8)
WA

� = 2π

h̄

∑
q

|fq,�|2Nqδ(h̄ωq − ��),

where Nq = (eh̄ωq/kBT − 1)−1 is the mean number of phonons
with momentum q in the superfluid at temperature T and kB is
Boltzmann’s constant. The rate WE

� (WA
� ) corresponds to the

process, where a fermion jumps � sites down (up) the lattice
and thereby emits (absorbs) a single phonon of energy ��. The
expressions for the jump rates WE

� and WA
� are valid as long as

heating effects caused by the emitted phonons are negligible.
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To determine v̄d in terms of transition rates we substitute
the expression in Eq. (7) for ∂tPj and find after some
rearrangement that

v̄d =
∑
j,�>0

(a�)
[
W 0

� Pj (1 − Pj+�) − WA
� Pj (Pj+l − Pj−�)

]

(9)

with W 0
� = (2π/h̄)

∑
q |fq,�|2δ(h̄ωq − ��) the phonon emis-

sion rate at zero temperature. The first term in the sum
in Eq. (9) vanishes if the fermions are degenerate at zero
temperature with all lattice sites j � jc occupied, i.e., Pj = 1
for j � jc and Pj = 0 for j < jc with jc fixed by the
number of fermions, whereas the second term represents finite
temperature effects. For the system far from degeneracy and
for small fermion occupation numbers we may make the
approximation PiPj ≈ 0 and use the condition

∑
j Pj = 1,

which yields v̄d = ∑
�>0(a�)W 0

� for the drift velocity. We note
that at this level of approximation the expression for the drift
velocity and all subsequent analytical considerations apply,
mutatis mutandis, also to lattice Bose-Bose mixtures [21].

Taking the continuum limit of the sum over all phonon
momenta (appearing in W 0

� ) and integrating over the first
Brillouin zone we finally obtain

v̄d = a2N

h̄

�max∑
�>0

�

∣∣∣∣∂h̄ωq

∂q

∣∣∣∣
−1

|fq,�|2|q=q�
, (10)

with q� implicitly defined by Eq�
=

√
(��)2 + (Ubnb)2 −

Ubnb. The latter relation also yields the maximum jump
distance �max, which is compatible with energy conservation in
the fermion-phonon relaxation process. We see from Eq. (10)
that the total drift velocity v̄d is determined by the sum over all
admissible jump distances � weighted by the phonon density of
states |∂h̄ωq/∂q|−1 and the fermion-phonon coupling |fq,�|2.

We first determine the mobility µ of the fermions in the
Ohmic regime, which we define by the relation v̄d = µδ

in the limit δ → 0, where δ = �/4Jb is approximately the
ratio of the lattice tilt and the phonon bandwidth for the
small values of Ubnb/Jb we consider here. We find that
v̄d/δ ∝ ∑∞

�=1 �2J 2
� (�ζ ) for δ → 0, with ζ = 2aJf /h̄cs as

previously defined. This sum is a Kapteyn series of the second
kind, for which a closed form is known [31], yielding for the
mobility

µ = aU 2
bf

8
√

2Ubh̄

(
Jb

Ubnb

)1/2
ζ 2(ζ 2 + 4)

(1 − ζ 2)7/2
. (11)

The mobility diverges in the limit ζ → 1, however, it is well
defined in the regime ζ � 1. For the practically important
case, where the potential depth for the fermions and hence the
hopping parameter Jf is varied, the mobility scales as µ ∼ J 2

f

in the limit Jf → 0.
The dependence of the drift velocity v̄d given in Eq. (10)

on the full range of accessible lattice tilts δ is shown in Fig. 3.
We see that the atomic current makes a sharp transition from
Ohmic conductance to negative differential conductance. The
main reason is that the width of the Wannier-Stark states,
proportional to Jf /�, and hence the overlap between states at
different sites decreases as the tilt � is increased. This reduced
overlap results in a low drift velocity v̄d—in analogy to NDC

FIG. 3. (Color online) The total drift velocity v̄d (full line) as a
function of the lattice tilt δ = �/4Jb. The contributions from different
jump distances � (dashed lines) result in a distinct NDC peak and a
series of phonon resonances at the positions δ ≈ 1/�. The system
parameters are Ubnb/Jb = 0.5, Jf /Jb = 0.4 yielding for the phonon
bandwidth 1.12 × 4Jb and ζ = 0.5. The drift velocity is given in units
of v̄0 = anbU

2
bf /4Jbh̄.

in semiconductor superlattices [15,18]—and is determined by
the matrix elements fq,�. The drift velocity v̄d depends on
the tilt as (Jf /�)2� for each jump distance � in the limit of
small fermionic bandwidth Jf /� � 1, which can be readily
achieved in cold atom systems. As can be seen in Fig. 3
the NDC is particularly pronounced due to the superposed
contributions from different jump distances � to the total
current. These findings are in accordance with predictions for
a free homogeneous superfluid [11,13,19]; however, the result
for v̄d in Eq. (10) describes additional features stemming from
the influence of the phonon density of states.

Specifically, the drift velocity exhibits anomalies in the
form of sharp peaks, which correspond to the anticipated
electron-phonon resonances in a solid-state system [14,16]. As
shown in Fig. 2(b), the phonon density of states |∂h̄ωq/∂q|−1

is approximately constant for small momenta, but exhibits a
Van Hove singularity [20] at the edge of the first Brillouin
zone. Therefore phonon resonances arise as the momentum of
the emitted phonons approaches the edge of the phonon band.
It can be found from Eq. (10) that the resonance condition
is given by �δ = √

1 + Ubnb/2Jb with � = 1,2, . . . ,�max and
thus the current displays a peak at δ ≈ 1/� corresponding to
each admissible jump distance �. Since the fermion-phonon
interaction provides the only relaxation process in the system
these anomalies are directly reflected in the tilt dependence
of the current. Further, the current vanishes as the lattice tilt
exceeds the phonon bandwidth because there are no phonon
states available in order to dissipate energy into the superfluid.

Let us briefly discuss the effect of an additional (shallow)
harmonic trapping potential of the bosons on the phonon
resonances. If the system is aligned along the x axis the
potential takes the form V (x) = mbω

2
xx

2/2 with the trap
frequency ωx . In the experimentally relevant case, where
the harmonic oscillator length lx = √

h̄/mbωx satisfies the
condition lx/N � nba, the local density approximation (LDA)
is applicable [27,33]. The LDA consists of replacing the
bosonic density nb by the position-dependent density nb(x),
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determined by V (x), with the other parameters of the
model unmodified. Consequently, the average drift velocity
in Eq. (10) has to be replaced by v̄LDA

d = ∫
dxp(x)v̄d [nb(x)],

where p(x) denotes the normalized spatial distribution of the
fermions. This averaging might cause some broadening of the
phonon resonances. However, the position of the resonances
δ = �−1√1 + Ubnb/2Jb and more generally v̄d (except for
the prefactor v̄0) depend on nb only through the expression
Ubnb/Jb � 1. Thus the trap-induced broadening can be made
arbitrarily small by reducing the boson-boson interaction
energy Ub, which sets the smallest energy scale close to reso-
nance. This is partly explained by the fact that the resonances
involve only phonons from the upper edge of the phonon band
with wavelengths comparable to the lattice spacing a.

IV. NUMERICAL SIMULATION

The theoretical results derived in the previous section are,
strictly speaking, valid for stationary atomic currents in a
homogeneous system. We now show based on numerical sim-
ulations that the predicted negative differential conductance
and the phonon resonances are observable in a system of finite
size under the conditions of a realistic measuring procedure. In
order to measure the atomic current in an experimental setup
we envisage a procedure consisting of the following three
steps:

(a) Initially, both the bosons and fermions are prepared in a
horizontal optical lattice and the total system is in equilibrium.2

The fermions are each localized in separate sites sparsely
distributed through the fermionic lattice of sufficient depth
so that PiPj ≈ 0 holds. In this configuration the fermions are
automatically cooled by the surrounding superfluid [34], which
is only slightly distorted [13].

(b) Subsequently, the lattice of the fermions is tilted for
a fixed evolution time τ of the order of h̄/Jf to let them
evolve. To obtain a detectable displacement of the fermions the
fermionic hopping Jf may have to be increased by reducing
the depth of the lattice.

(c) Finally, the spatial distribution of the fermions is
detected, e.g, by in situ single-atom resolved imaging [35,36].
From the difference between the initial and final distributions it
should be possible to extract a reliable estimate for the atomic
current. Alternatively, the momentum distribution and hence
the drift velocity of the fermions may be determined directly
by a time-of-flight measurement.

To demonstrate the feasibility of this procedure we have
simulated the fully coherent dynamics at zero temperature
of both the bosons and fermions based on the complete
Bose-Fermi Hubbard model given in Eq. (1). To this end
we have used the time-evolving block decimation (TEBD)
algorithm [37], which is essentially an extension to the well-
established density matrix renormalization group (DMRG)
method [38,39]. The TEBD algorithm permits the near-
exact dynamical simulation of quantum many-body systems

2Our numerical simulations show that the total equilibration of the
system is not an essential requirement for the procedure to work. We
obtain similar results if the fermions are immersed into the superfluid
in a nonadiabatic way.

FIG. 4. (Color online) The displacement of the fermion as a
function of the lattice tilt δ determined numerically (symbols +, ◦,
×) and corresponding analytical fits (solid lines). The dominant NDC
peak and the � = 1 phonon resonance at the boundary of the phonon
band can be clearly recognized. The ratio V between the height of
the � = 1 resonance and the NDC peak is V = {0.09,0.14,0.18} for
increasing Jf . The � = 2 resonance is visible for sufficiently large
fermionic hopping Jf . The system parameters are Jf = {0.2,0.4,0.8},
Ub = 0.1, Ubf = 0.5 and the fitting parameters are ε = 0.1, J̃f =
0.7Jf , �max = 2, with energies in units of Jb.

far from equilibrium, which is crucial for our purposes.
The experimental procedure was simulated for a system
consisting of 101 lattice sites with a bosonic filling factor
nb = 1 and a single fermion initially located at the center
of the lattice. We used box boundary conditions and the
evolution time was limited to τ = 24h̄/Jb to minimize
finite-size effects, primarily reflections of phonons from the
boundaries.

Figure 4 shows the displacement of the fermion as a
function of the lattice tilt δ for a set of realistic experimental
parameters, in particular, for three different values of the
fermion hopping Jf . The main features predicted by our theo-
retical analysis can be clearly recognized, namely the dominant
NCD peak, the phonon resonance at δ ≈ 1 corresponding to
the jump distance � = 1, and the suppression of the current
for δ � 1. In addition, for sufficiently large values of Jf

the phonon resonance at δ ≈ 1/2 corresponding to the jump
distance � = 2 is visible. For lower values of Jf the phonon
resonance for � = 2 may still lead to a characteristic drop in the
current once the lattice tilt exceeds half the phonon bandwidth.
The resonances for higher values of the jump distance � seem
to be masked mainly by broadening effects for the parameter
regimes tested.

The ratio between the height of the � = 1 phonon resonance
and the NDC peak, i.e., their relative visibility V , depends
nontrivially on the fermion hopping Jf . The hopping Jf enters
the expression for v̄d in Eq. (10) through the matrix elements
fq,� in the form ofJ�(s�Jf /Jb), where the parameter s depends
on the lattice tilt. Close to resonance we have s ≈ 1, whereas
for small tilts �� � Ubnb we obtain s ≈ √

2Jb/Ubnb and
hence s � 1 in the superfluid regime. Accordingly, the height
of the � = 1 phonon resonance (s ≈ 1) varies only slowly with
Jf as opposed to the height of the NDC peak (s � 1), which is
characterized by the oscillatory nature of the Bessel functions.
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Thus a careful choice of Jf allows us to optimize the visibility
V , i.e., to minimize the height of the NDC peak, by tuning
s�Jf /Jb close to a zero of the relevant Bessel functions. For
the increasing values of Jf considered in our simulation the
first zero of the Bessel function J2(z) is approached, which
explains the improved visibility V for higher Jf , shown in
Fig. 4.

The general broadening of the phonon resonances may
be caused by finite-size effects and multiphonon processes.
The finite-size effects include reflections of phonons from the
boundary of the system that in turn affect the motion of the
fermion. Multiphonon processes, which have been neglected
in our theoretical analysis, also cause some broadening of
the single-phonon resonances. In particular the continuous
drop in the current to zero can be explained by the emis-
sion of several low-energy phonons during a jump process,
which is allowed even if the lattice tilt exceeds the phonon
bandwidth.

In order to compare the numerical and the theoretical
results, at least qualitatively, we adapt our expression for
the drift velocity v̄d to a system of finite size. In addition,
we introduce the observed broadening effects characterized by
the energy ε into the theory. Explicitly, we calculate the average
drift velocity by using the expression v̄ε

d = ∑�max
�>0(a�)Wε

�

with the rates Wε
� = (2π/

√
πεh̄)

∑
q |fq,�|2 exp[−(h̄ωq −

��)2/ε2]. The rates reduce to the previous expression W 0
�

in absence of broadening, i.e., limε→0 Wε
� = W 0

� . The average
displacement of the fermion (in units of lattice sites) after the
evolution time τ is then approximately given by x̄a ≈ v̄ε

dτ/a.
We fit this theoretical model to the numerical results with

the broadening ε, the maximal jump distance �max, and the
effective fermionic hopping J̃f as free parameters. The first
two parameters allow us to extract a quantitative value for the
broadening and to determine the dominant hopping process
in the experiment. The fermionic hopping needs adjustment
because the bare hopping Jf is renormalized by coherent
phonon processes, which lead to a reduced hopping J̃f < Jf

as discussed in Refs. [12,13]. This is in direct analogy to the
increased effective mass of polarons due to the drag of the
phonon cloud [40].

As can be seen in Fig. 4 the fit describes the numerical
results very accurately with moderate broadening ε and a
minor reduction of the fermionic hopping Jf . Further, we find
that �max = 2 and thus the dominant transport processes are
nearest- and next-nearest-neighbor hopping; this is consistent
with the absence of higher-order phonon resonances noted
earlier. The high level of agreement between our theoretical
model and the numerical results is partly explained by two
observations: First, the numerical results show that the fermion
reaches a constant drift velocity on a time scale much shorter
than the evolution time τ , thus transient effects due to
the sudden tilting of the lattice are negligible. Second, the
drift velocity remains approximately constant over the entire
evolution time, as illustrated in Fig. 5, resulting in a stationary
atomic current.

Since our numerics simulates the full dynamics of the
system we can monitor the average position of the fermion
at different evolution times τ and extend the range of
parameters considered so far. In particular, we are interested
in the atomic current in presence of strong boson-fermion

FIG. 5. (Color online) The displacement of the fermion as a
function of the lattice tilt δ for different evolution times τ determined
numerically (connected data points). The NDC peak and the � = 1
phonon resonance are clearly visible also in presence of strong boson-
fermion and boson-boson interactions. The additional peaks between
the NDC peak and the phonon resonance are due to finite-time effects.
The displacement increases approximately linearly with the evolution
time τ . The system parameters are Jf = 0.5, Ub = Ubf = 1, with
energies in units of Jb.

and boson-boson interactions, where our theory, assuming a
superfluid phase, is no longer applicable. Figure 5 shows the
displacement of the fermion as a function of the lattice tilt δ

for the interaction strengths Ub = Ubf = Jb and for different
evolution times τ . We see that the NDC peak and the � = 1
phonon resonance are not noticeably affected by the presence
of strong interactions, thus they both seem to be robust features
of the atomic current. We note that the additional peaks in the
displacement-tilt dependence (located between the NDC peak
and the � = 1 phonon resonance) are due to finite-time effects,
which is revealed by a more detailed analysis of the time
dependence of the numerical results. Furthermore, we observe
an approximately linear increase of the displacement of the
fermion with the evolution time—a finding also confirmed for
weaker interactions.

V. CONCLUSIONS

In our analytical and numerical investigation of phonon-
assisted atomic currents along a tilted potential we have shown
that Bose-Fermi mixtures in optical lattices lend themselves
naturally to investigate nonequilibrium transport phenomena
present in solid state systems. In more detail, we have
formulated an effective model for the Bose-Fermi mixture
describing the bosons and fermions in terms of Bogoliubov
phonons and Wannier-Stark states, respectively, with a generic
fermion-phonon interaction of an identical type to the one
encoutered in solids.

We have studied the dependence of the atomic current
on the lattice tilt from first principles and found that our
model accommodates negative differential conductance and
phonon resonances. To demonstrate that these features are
observable by using ultracold atoms in the context of a
finite-size system and a realistic measuring procedure we have
calculated the atomic current numerically by using the TEBD
algorithm including the full dynamics of both the bosons
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and the fermions. Our numerical results show that the phonon
resonance at the boundary of the phonon band is a robust
phenomenon that occurs over a wide range of system param-
eters despite broadening, which might be increased by finite
temperature effects [13,19] not directly taken into account in
our model. Finally, we note that in an obvious extension of
this work we will investigate the effect of the transition of the
bosons from the superfluid to the Mott insulator regime on the
atomic current through the system.

ACKNOWLEDGMENTS

M.B. thanks the Swiss National Science Foundation for the
support through Project No. PBSKP2/130366. M.B., W.B., and
A.P. acknowledge financial support from the German Research
Foundation (DFG) through SFB 767. S.R.C. and D.J. thank the
National Research Foundation and the Ministry of Education
of Singapore for support. D.J. acknowledges support from the
ESF program EuroQUAM (EPSRC Grant No. EP/E041612/1).

[1] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen,
and U. Sen, Adv. Phys. 56, 243 (2007).

[2] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).
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