
PHYSICAL REVIEW A 82, 043616 (2010)

Resonance states and quantum tunneling of Bose-Einstein condensates
in a three-dimensional shallow trap
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A correlated quantum many-body method is applied to describe resonance states of atomic Bose-Einstein
condensates (BEC) in a realistic shallow trap (as opposed to the infinite traps commonly used). The realistic van
der Waals interaction is adopted as the interatomic interaction. We calculate experimentally measurable decay
rates of the lowest quasibound state in the shallow trap. The most striking result is the observation of a metastable
branch besides the usual one for attractive BEC in a pure harmonic trap. As the particle number increases the
metastable branch appears and then gradually disappears, and finally the usual metastable branch (associated
with the attractive BEC in a harmonic trap) appears, eventually leading to the collapse of the condensate.

DOI: 10.1103/PhysRevA.82.043616 PACS number(s): 03.75.Hh, 31.15.xj, 03.65.Ge, 03.75.Nt

I. INTRODUCTION

In experiments with Bose-Einstein condensation (BEC),
the evolution of the atomic cloud and its instability strongly
depends on the external confinement, which is usually chosen
as either isotropic or anisotropic pure (i.e., of infinite extent)
harmonic potential. But, in the actual experimental setup, the
trap is of finite extent. During the last few years, attention
has been shifted to shallow optical dipole traps [1]. As
the quadratic trapping potential takes the shallow Gaussian
envelope form, the anharmonicity of the potential must be
taken into account. BEC in such a shallow trap of finite width
supports resonance states which are quasibound. In such an
experimental trap, the decay mechanism of the condensate
becomes an important issue, as the condensate can escape
from the trapping potential by quantum tunneling through
intermediate barriers, in addition to the usual collapse of
attractive condensates. Several attempts have been made to
calculate the lifetimes of quasibound states and to study the
transition from a resonance to a bound state by solving the
Gross-Pitaevskii equation (GPE) using contact δ interaction
[2–6]. The GPE is based on the mean-field description
and ignores correlations in the many-body wave function.
But near the criticality, the energy of the resonance state
becomes very close to the barrier height and the condensate
becomes highly correlated. Thus incorporation of interatomic
correlation becomes important. Naturally the full quantum
many-body treatment incorporating a realistic interatomic
interaction is indeed necessary. In particular the present
experiments consider only a finite number of atoms in the
external trap. Such condensates are quantum depleted, which
again deserve a full quantum many-body treatment. The
external shallow potential can be modeled by a quadratic plus
a quartic potential, viz., V (r) = 1

2mω2r2 + λr4, where λ is the
anharmonic parameter. In our earlier work in this direction, we
investigated the ground-state properties in such a trap. We also
observed dramatic change in the stability factor Ncr|asc|

aho
(where

Ncr is the critical number of atoms beyond which the attractive
condensate collapses) due to the anharmonicity [7].

Thus the aim of our present work is to employ a correlated
quantum many-body approach incorporating a finite-range

realistic interatomic interaction to study resonance states
in shallow traps. We calculate decay rates of quasibound
condensates and study how the interatomic interaction and the
anharmonicity interfere with the decay process. Deviations
from earlier works which used the mean-field equation can
be attributed to two-body correlations and a finite range
of the realistic interaction. Due to the realistic nature of
our calculation we expect results which are relevant to
experiments. We observe resonance states associated with
an unusual metastability for the repulsive BEC. The most
striking result is the observation of two metastable branches
for an attractive BEC. The attractive BEC containing N

atoms in a pure harmonic trap is associated with a metastable
branch, which ultimately collapses for N > Ncr. In the
present study we observe that, with an increase in particle
number, a metastability first appears and then gradually
disappears, and finally the usual metastability (associated
with attractive BEC in a pure harmonic trap) appears, even-
tually leading to the collapse. We also study macroscopic
quantum tunneling and calculate decay rates for these two
branches.

In Sec. II we introduce the methodology which con-
tains the many-body approach used in this work based
on the correlated potential harmonic expansion method.
Section III contains numerical results and discussions.
Conclusions are drawn following a summary of our work in
Sec. IV.

II. CORRELATED POTENTIAL HARMONIC EXPANSION
METHOD (CPHEM)

We adopt the potential harmonic expansion method with
a short-range correlation function which has already been
established as a very successful and useful technique for the
study of dilute BEC [8–10]. Here we describe the technique
briefly.

We consider that a system of A = (N + 1) identical bosons,
each of mass m, is confined in an external trap [Vtrap(r)] which
is modeled as a harmonic potential (of frequency ω) perturbed
by a quartic term. The time-independent quantum many-body
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Schrödinger equation is written as[
− h̄2

2m

A∑
i=1

∇2
i +

A∑
i=1

Vtrap(�xi) +
A∑

i,j>i

V (�xi − �xj ) − E

]

×�(�x1, . . . ,�xA) = 0, (1)

where E is the total energy of the system, V (�xi − �xj ) is the
two-body potential, and �xi is the position vector of the ith
particle. We define a set of N Jacobi vectors as

�ζi =
√

2i

i + 1

⎛
⎝�xi+1 − 1

i

i∑
j=1

�xj

⎞
⎠ (i = 1, . . . ,N). (2)

The center of mass coordinate is �R = 1
A

∑A
i=1 �xi . As the

labeling of particles is arbitrary, we choose the relative
separation of the (ij )-interacting pair (�xij = �xi − �xj ) as �ζN .
We define the hyperradius r as [11]

r2 =
N∑

i=1

ζ 2
i = 2

A

A∑
i,j>i

x2
ij = 2

A∑
i=1

r2
i , (3)

where �ri = �xi − �R is the position vector of the ith particle
with respect to the center of mass of the system. The relative
motion of the bosons is given by[

− h̄2

m

N∑
i=1

∇2
ζi

+ Vtrap + Vint(�ζ1, . . . ,�ζN ) − ER

]

×�(�ζ1, . . . ,�ζN ) = 0, (4)

where Vtrap is the effective external trapping potential and
Vint is the sum of all pairwise interactions. ER is the relative
energy of the system, that is, E = ER + 3

2h̄ω. The laboratory
BEC is designed to be very dilute, so that the probability of
three or more atoms coming within the range of interaction
is negligible. This is done in laboratory experiments, in order
to avoid molecule formation through three-body collisions.
Hence, when the (ij ) pair interacts, the rest of the atoms are
far apart and are inert spectators. Therefore, only two-body
correlations in the many-body wave function and pairwise in-
teractions among atoms are important. For the (ij )-interacting
pair, we define a hyperradius ρij for the remaining (N − 1)
noninteracting bosons as [12]

ρij =
√√√√N−1∑

K=1

ζ 2
K, (5)

so that r2 = x2
ij + ρ2

ij . A hyperangle φ is introduced through
xij = r cos φ and ρij = r sin φ. The full set of 3N hyperspher-
ical variables is chosen as

(a) r,φ,ϑ,ϕ (ϑ and ϕ are the polar angles of �xij correspond-
ing to the interacting pair), and

(b) (3N − 4) hyperangular variables associated with the
remaining (N − 1) inert spectators. Out of these, 2(N − 1) are
the polar angles associated with (N − 1) Jacobi vectors and
another (N − 2) “hyperangles” define their relative lengths.

In the potential harmonic expansion method (PHEM), we
decompose the many-body wave function(�) into Faddeev
components φij for the (ij )-interacting pair as

� =
A∑

i,j>i

φij (�xij ,r)· (6)

Then Eq. (4) can be expressed as

[T + Vtrap − ER]φij = −V (�xij )
A∑

kl>k

φkl (7)

where

T = −h̄2

m

N∑
i=1

∇2
ζi
.

Since only two-body correlations are relevant, the Faddeev
component φij is independent of the coordinates of all the
particles other than the interacting pair. Hence the total
hyperangular momentum quantum number as also the orbital
angular momentum of the whole system (composed of all
bosons) is contributed by the interacting pair only. We expand
φij in the subset of hyperspherical harmonics (HH) necessary
for the expansion of V (�xij ). Thus

φij (�xij ,r) = r−( 3N−1
2 )

∑
K

P lm
2K+l

(



ij

N

)
ul

K (r), (8)

where 

ij

N denotes the full set of hyperangles in the 3N -
dimensional space corresponding to the (ij )-interacting pair.
This new basis set {P lm

2K+l(

ij

N )} is called the potential
harmonics (PH) basis and it is independent of (�ζ1, . . . ,�ζN−1).
Thus the total angular momentum of the condensate and
its projection are simply l and m, which comes from the
interacting pair, and all other quantum numbers coming from
(N − 1) noninteracting bosons are kept frozen. An analytic
form of the potential harmonics can be found in Ref. [12].
Substitution of Eq. (8) into Eq. (7) and taking projection on a
particular PH gives [8]

[
− h̄2

m

d2

dr2
+ h̄2

m

LK (LK + 1)

r2
+ Vtrap(r) − ER

]
Ul

K (r),

+
∑
K ′

f 2
K ′lVKK ′ (r)Ul

K ′(r) = 0, (9)

where VKK ′ is the potential matrix and is given by

VKK ′ (r) =
∫

P lm∗
2K+l

(



ij

N

)
V (xij )P lm

2K ′+1

(



ij

N

)
d


ij

N , (10)

where LK = 2K + l + 3N−3
2 and f 2

Kl is the overlap of the PH
for ij partition with the sum of PHs of all partitions [8]. K is the
grand orbital quantum number in 3N -dimensional space. All
other intermediate angular momentum quantum numbers take
zero eigenvalues. As the number of active variables is now
only four (global hyperradius r and three others for �xij ) for
any number of bosons, the numerical complication is greatly
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simplified. Equation (9) can be put in symmetric form as{
− h̄2

m

d2

dr2
+ Vtrap(r) + h̄2

mr2
[L(L + 1)

+ 4K(K + α + β + 1)] − ER

}
UKl(r)

+
∑
K ′

fKlVKK ′ (r)fK ′lUK ′l(r) = 0, (11)

where L = l + 3A−6
2 , UKl = fKlu

l
K (r), α = 3A−8

2 and β =
l + 1/2.

In experimentally achieved BEC, because the energy of
the interacting pair is extremely small, the two-body inter-
action is reproduced by the s-wave scattering length (asc).
Positive (negative) asc corresponds to a repulsive (attractive)
condensate. In the Gross-Pitaevskii equation, the interatomic
interaction is a contact interaction and is absolutely determined
by its strength asc only. Thus the two-body potential is purely
repulsive or purely attractive, depending on the sign of asc. But
the van der Waals potential has two terms, one part represents
a strong repulsion (usually represented by a hard core of
radius rc) at very short separation and the other part goes
by −C6

x6
ij

, and asc can be either positive or negative depending

on the value of rc [9]. Thus we determine asc by solving the
zero-energy two-body Schrödinger equation for the two-body
wave function η(xij ):

−h̄2

m

1

x2
ij

d

dxij

(
x2

ij

dη(xij )

dxij

)
+ V (xij )η(xij ) = 0. (12)

The value of asc is determined from the asymptotic part of
η(xij ) [13]. The zero-energy two-body wave function η(xij ) is
also a good representation of the short-range behavior of φij

and is taken as the two-body correlation function in the PH
expansion basis to improve the rate of convergence [14]. Thus
in the CPHEM, we replace Eq. (8) by

φij (�xij ,r) = r−( 3N−1
2 )

∑
K

P lm
2K+l

(



ij

N

)
ul

K (r)η(xij ). (13)

Introduction of η(xij ) enhances the rate of convergence of the
PH expansion dramatically. This has been actually verified
in our numerical calculation. In our numerical procedure we
solve Eq. (12) for the zero-energy two-body wave function
η(xij ) in the chosen two-body potential V (xij ). We adjust the
hard-core radius rc, such that asc has the desired value [9,13].
This η(xij ) is then used in Eq. (13) and the potential matrix
becomes

VKK ′ (r) = (
h

αβ

K h
αβ

K ′
)− 1

2

∫ +1

−1

[
P

αβ

K (z)V

(
r

√
1 + z

2

)

× P
αβ

K ′ (z)η

(
r

√
1 + z

2

)
Wl(z)

]
dz, (14)

where P
αβ

K (z) is the Jacobi polynomial, and its norm and
weight function are h

αβ

K and Wl(z), respectively [15]. We trun-
cate the K sum in Eq. (13) to an upper limit Kmax, providing the
desired convergence. Finally the coupled differential equation
(CDE), Eq. (11), is solved by the hyperspherical adiabatic
approximation (HAA) [16]. In the HAA, one assumes that

the hyperradial motion is slow compared to the hyperangular
motion. Hence the latter is separated adiabatically and solved
for a particular value of r , by diagonalizing the potential
matrix together with the diagonal hypercentrifugal repulsion
in Eq. (11). The lowest eigenvalue, ω0(r) [corresponding
eigencolumn vector being χK0(r)], provides the effective
potential for the hyperradial motion. We choose the lowest
eigenpotential [ω0(r)] as the effective potential in which the
entire condensate moves as a single entity. Thus in the HAA,
the approximate solution (the energy and wave function) of
the condensate is obtained by solving a single uncoupled
differential equation,[

− h̄2

m

d2

dr2
+ ω0(r) − ER

]
ζ0(r) = 0, (15)

subject to appropriate boundary conditions on ζ0(r). The
function ζ0(r) is the collective wave function of the condensate
in the hyperradial space. The lowest-lying state in the effective
potential ω0(r) corresponds to the ground state of the conden-
sate. The total energy of the condensate is obtained by adding
the energy of the center of mass motion ( 3

2h̄ω) to ER .
The main advantages of our CPHEM are the following.
(i) Potential harmonic basis keeps all possible two-body

correlations and yet the number of variables is reduced to
only four for any number of bosons in the trap. So despite
incorporating all the two-body correlations, we can treat quite
a large number of atoms in the trap without much numerical
complication.

(ii) We can use a realistic interatomic interaction like the
van der Waals potential having a finite range, which itself takes
care of the short-range repulsion and interatomic correlations.

(iii) Unlike the GPE, CPHEM does not have any pathologi-
cal singularity, since the two-body interaction is a realistic one
and has a strong short-range repulsion.

Thus the CPHEM reveals the realistic picture. Clearly it is
an improvement over the GPE. Finally, by using the HAA,
we reduce the multidimensional problem into an effective
one-dimensional one in hyperradial space and the effective
potential ω0(r) of this one-dimensional problem provides a
clear qualitative picture and a quantitative description of the
system.

III. RESULTS

We choose the interatomic potential as the van der Waals
potential with a hard core of radius rc, viz., V (xij ) = ∞
for xij � rc and = −C6

x6
ij

for xij > rc. The strong short-range

repulsion is parametrized by the hard core and the strength
(C6) is known for a given type of atom, for example, C6 =
6.4898 × 10−11 o.u. for Rb atoms [13]. The value of rc is
adjusted to get the desired value of asc. In oscillator unit (o.u.),

length and energy are given in the units of aho =
√

h̄
mω

and h̄ω,
respectively. As C6 → 0, the potential becomes a hard-core
potential and rc coincides with the s-wave scattering length.
As detailed in the previous section, we solve the zero-energy
two-body Schrödinger equation for the interacting pair to
get the value of rc, which corresponds to the experimental
scattering length asc. With a tiny change in rc, asc may change
by a large amount, including sign [13]. With each additional
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change in sign, the potential supports an extra two-body bound
state resulting in an additional node in η(xij ). Thus the choice
of rc is very crucial. We choose rc such that it corresponds
to the zero node in the two-body wave function for attractive
interaction and one node for repulsive interaction [10]. For a
repulsive BEC we choose 87Rb atoms with asc = 0.004 33 o.u.
as in the JILA trap [17]. For an attractive BEC, we choose
asc = −1.832 × 10−4 o.u., which is one of the values as
reported in the controlled collapse experiment of 85Rb atoms
[18,19]. In both cases rc is determined by the method discussed
above.

In the optical dipole trap, the trapping potential takes the
shallow Gaussian form and the external trap is given by
V (r) = 1

2 r2 + λr4. For λ > 0 the frequency is blue shifted
and for λ < 0 the frequency is red shifted. In the exper-
iment [20,21], quartic confinement is created with a blue
detuned Gaussian laser directed along the axial direction. The
nonrotating condensate was cigar shaped and the strength
of the quartic confinement was ≈10−3. In the present study
we choose λ as a controllable parameter and |λ| � 1. For
λ > 0, as the quartic confinement becomes more tight, the
frequency will increase for repulsive BEC and the attractive
BEC will again be associated with a metastability [7]. These
have been studied earlier in both one and three dimensions
[22,23]. However, the most dramatic features are expected
for λ < 0, and the potential can be easily approximated as
V (r) = 1

2 r2exp(−cr2) with λ ≈ c
2 . Our present calculation

considers only λ < 0.

A. Repulsive BEC

For harmonic trapping with repulsive interaction, the
condensate is always stable for any number of bosons.
However, due to the presence of anharmonicity we observe
a new and different metastablity of the condensate. In Fig. 1
we plot the effective potential ω0(r) as a function of r

for 500 atoms of 87Rb in a shallow trap corresponding to
λ = −2 × 10−5 o.u. and asc = 0.004 33 o.u. We observe a

 800
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FIG. 1. (Color online) Plot of the effective potential ω0(r) against
r (both expressed in appropriate o.u.) for N = 500 atoms of 87Rb
with asc = 0.004 33 o.u. and λ = −2 × 10−5 o.u. The metastable
region (MSR) and the intermediate barrier on the right side (RIB) are
indicated in the figure.

dramatic change in the effective potential from that of a purely
harmonic trap: a metastable region (MSR) appears bounded by
an intermediate barrier on the right side (RIB), beyond which
ω0(r) decreases gradually, where the quartic term dominates
over the quadratic term. In our earlier work [7], we studied
how the ground-state properties and the low-energy collective
excitations get modified due to anharmonicity and calculated
the stability factor Ncr|asc|

aho
in such a shallow trap. In the present

work, we calculate the decay rate of quasibound states in
the MSR, as the metastable condensate will tunnel through
the intermediate barrier. The macroscopic tunneling rate is
calculated semiclassically by the WKB tunneling formula:

�tunnel
N = Nν exp

(
−2

∫ r2

r1

√
2[ω0(r) − E] dr

)
= Nν exp(−2σ ), (16)

where the limits of integration r1 and r2 are the inner and outer
turning points of the intermediate barrier on the right (RIB)
of ω0(r), E is the energy of the metastable condensate, and
exp(−2σ ) is the WKB tunneling probability. The frequency
of impact (ν) of the condensate on the RIB is approximately
given by

ν ∼
(

2
∫ r1

r0

dr√
2 [E − ω0(r)]

)−1

, (17)

where r0 and r1 are the classical turning points of the
metastable region. As N increases, the net effect of the negative
anharmonicity increases fairly rapidly. Hence, even though
the minimum and stiffness of ω0(r) increases with N , the
difference (�ω) of the maximum of RIB (ωmax) and the
minumum of the MSR (ωmin) decreases with increasing N .
Consequently, RIB disappears (�ω = 0) when N exceeds
a critical value, Nfirst

cr [to distinguish the critical numbers
associated with the right side and the left side (see later in
this article) barriers, we name them as Nfirst

cr and N second
cr ,

respectively]. This causes a new type of instability and eventual
collapse. The tunneling rate is appreciable only when E is
close to ωmax, and it increases rapidly as E approaches ωmax.
In Fig. 2, the tunneling rate (�tunnel

N ) of the lowest resonance
state is plotted against the number of condensate atoms close to
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FIG. 2. (Color online) Plot of �tunnel
N (in atoms per second) vs N

for the lowest resonance state near the criticality for various values
of λ (in o.u.).
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FIG. 3. (Color online) Plot of the resonance wave function
(in o.u.) vs r (in o.u.) for N = 567 and N = 568 for λ = −2 × 10−5

o.u. and asc = 0.004 33 o.u.. The oscillatory part of the wave
function immediately outside the barrier is shown magnified in the
inset.

the critical point for various values of anharmonic distortion.
Near the criticality N ∼ Nfirst

cr , the macroscopic tunneling is
quite high and observation of this tunneling may be possible
experimentally. The sharp peak near the criticality is attributed
to the fact that the energy of the resonance state is close to the
barrier height. Note that with increasing anharmonicity the
right-side barrier becomes lower, which makes �tunnel

N larger.
For example, for λ = −1.75 × 10−5 o.u., the lowest resonance
state near the critical point has a tunneling probability of 30%,
whereas for λ = −2 × 10−5 o.u. the corresponding tunneling
probability increases to 74%. Consequently, Nfirst

cr decreases
with increasing |λ|.

In Fig. 3, we plot the resonance wave functions for two
values of N close to critical point (viz., N = 567 and N = 568,
the critical number being Nfirst

cr = 570). The wave function
within the metastable region is large and it has a small
oscillatory part just outside the RIB. This clearly signifies
that a part of the wave function leaks. For better clarity,
the rapidly oscillatory part of the wave function is shown
magnified in the inset of Fig. 3. Note that the amplitude of
the leaked part increases as N increases. At the critical point
(�ω = 0) the metastable region disappears and the whole
wave function leaks, which corresponds to the collapse. The
picture is qualitatively the same as that observed for attractive
BEC in a pure harmonic trap. However the phenomena near
the present collapse is a bit different from the commonly
observed collapse of attractive BEC in a harmonic trap. In
the latter case the metastable region is associated with a deep
attractive well on the left side of the MSR, the metastable
condensate tunnels through the left intermediate barrier (LIB)
near the origin and settles down in the deep well to form
clusters. In a typical attractive condensate we have checked
that the size of the well is ∼0.05 µm. Hence, due to the high
two-body and three-body collision rates within such a narrow
well, atoms form clusters. The width of this wave function
in the narrow well is of the order of 0.003 µm, which is the
order of the size of the atomic cluster. But in the present case

TABLE I. Decay rates of lowest resonance states for different λ

in a repulsive BEC (asc = 0.004 33 o.u.).

λ = −1 × 10−5 o.u. λ = −2 × 10−5 o.u.

|Nasc| �tunnel
N |Nasc| �tunnel

N

(o.u.) (atoms/s) (o.u.) (atoms/s)

4.304 02 2202.6475 2.459 44 9096.678 62

4.299 69 53.7088 2.455 11 1738.7188

4.295 36 1.3083 2.450 78 108.5416

4.291 03 0.1107 2.446 45 1.5149

4.286 70 0.0158 2.442 12 0.1794

the atoms which escape by tunneling outward will form a
noncondensed Bose gas.

As a further study to observe transition from a resonance
state to a bound state, we calculate decay rates for different
values of effective interaction |Nasc|. By decreasing the ef-
fective repulsive interaction, we effectively enhance attraction
between the atoms. Table I clearly shows that even for a very
slow decrease in |Nasc|, �tunnel

N decreases rapidly and very
soon reaches a vanishingly small value, which manifests the
transition from resonance to a bound state.

Our result is qualitatively similar to earlier findings of
Moiseyev et al. [2] where the transition from resonance to
bound state was discussed. However the earlier calculations
[2,5] used singular δ-function potential in the mean-field
equation, and a negative offset potential was required to
facilitate conversion of a quasibound state into a bound state,
in a three-dimensional BEC. In our present calculation we
need no such offset. This deviation from GPE results is
attributed to the use of a realistic interatomic interaction having
a hard-core repulsive part at shorter separation. Moreover,
our results provide realistic aspects which are relevant to
experiments.

B. Attractive BEC

The situation becomes more interesting for the attractive
BEC in a shallow trap. We choose a condensate of 85Rb atoms
with asc = −1.832 × 10−4 o.u. For a clear understanding, we
plot the effective potential in Fig. 4. The intermediate MSR
is now bounded by two neighboring barriers, one on the left
(LIB) and one on the right (RIB) of unequal height. On the left
side of LIB, a deep and narrow attractive well (NAW) appears.
In the same vertical scale, we could not plot this deep well;
hence it is not shown in Fig. 4. The RIB is the effect of negative
anharmonicity, which basically corresponds to a finite optical
trap, whereas the LIB is the effect of the negative asc, which
is commonly seen for attractive BEC in pure harmonic trap.
The heights of the two barriers very strongly depend on two
factors: first the anharmonic parameter and second the effective
attractive interaction. Basically there is a competition between
these two effects which causes the shape of the effective
potential to change in a complicated fashion with the increase
in N . So throughout our study we fix λ = −9.37 × 10−6 o.u.
and the effective attractive interaction is tuned by changing
the number of bosons. The metastable condensate will have a

043616-5



HALDAR, CHAKRABARTI, AND DAS PHYSICAL REVIEW A 82, 043616 (2010)

 2595

 2595.5

 2596

 2596.5

 2597

 2597.5

 2598

 2598.5

 2599

 65  70  75  80  85  90  95

ω
0(

r)

Hyperradius r

LIB

MSR

RIB

FIG. 4. (Color online) Plot of the effective potential ω0(r) in o.u.
against hyperradius r in o.u. for a condensate of 85Rb atoms with
N = 2660, λ = −9.37 × 10−6 o.u., and asc = −1.832 × 10−4 o.u..

finite probability of macroscopic quantum tunneling through
both the barriers.

We start with few hundreds 85Rb atoms in the trap, the
two neighboring barriers are quite high and tunneling of
the condensate through either of them is negligible. We
have checked that in such a situation there is no substantial
leakage of the condensate through the associated barriers.
With further increase in particle number, we observe that the
metastable region gradually becomes flatter, the corresponding
condensate wave function expands slowly. With this wave
function we calculate the average size of the condensate
(rav) [24] as the root-mean-square distance of individual atoms
from the center of mass of the condensate:

rav =
〈

1

A

A∑
i=1

( �xi − �R)2

〉1/2

= 〈r2〉1/2

√
2A

, (18)

where �R is the center-of-mass coordinate. In Fig. 5(a), we
plot rav as a function of N , for N increasing from a few
hundred to a few thousand bosons. We find that rav increases
slowly as expected (as RIB decreases and LIB does not change
substantially, and as a consequence, the wave function spreads
outward). Finally at N = 2460, RIB vanishes and there is no
MSR to hold the condensate, we call it a partial collapse.
This is also reflected in the sharp fall in rav at N = 2460
[Fig. 5(a)]. Thus Nfirst

cr = 2460. The associated tunneling rate
�tunnel

N near the first collapse is shown in Fig. 6(a). Near Nfirst
cr ,

the condensate is associated with a large tunneling probability.
Thus Nfirst

cr is associated with the first branch of the metastable
condensate.

With further increase in particle number we observe that
the MSR reappears at N = 2605, the second branch starts
to develop, and the LIB decreases gradually. This is due
to the fact that the net attractive interaction now dominates
over the effect arising from the anharmonic distortion, as the
former increases as N(N−1)

2 while the latter increases as N .
Due to a substantial increase in attraction, both the height
of the LIB and the local minimum of ω0(r) decrease rapidly,
compared with the decrease of the height of the RIB. Hence the
MSR revives. As the LIB decreases, the metastable condensate
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FIG. 5. (Color online) Plot of average size of the attractive
condensate rav (in o.u.) as a function of N in the the anharmonic
trap (λ = −9.37 × 10−6 o.u. and asc = −1.832 × 10−4 o.u.) near the
first [panel (a)] and second [panel (b)] criticality.

shrinks inward, and we observe its behavior to be quite similar
to what is seen in a pure harmonic trap: rav decreases sharply
with increasing N , as seen in Fig. 5(b). Unlike the first
metastable branch, in the second branch the fall of rav is
fairly sharp (note the difference in the horizontal scales in
the two panels) and quicker collapse occurs at N = 2667.
We name this as the second criticality (N second

cr ). We also
observe that near the second critical point, the condensate
wave function is associated with an oscillatory part in the
left side of the LIB. At N > N second

cr , the entire condensate
collapses into the deep well, forming clusters. The associated
tunneling rate �tunnel

N for the second metastable branch has
been calculated using Eqs. (16) and (17) with the limits of
the integrations suitably changed and is shown in Fig. 6(b).
The physical explanation for the appearance of two distinct
metastabilities is as follows. The attractive interaction lowers
the effective potential [ω0(r)] and the amount of lowering
increases with N as N(N−1)

2 . This lowering decreases rapidly
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FIG. 6. (Color online) Plot of �tunnel
N (in atoms/s) against N near

the first (a) and the second (b) criticality.
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as r increases. On the other hand, the anharmonic term
also lowers the effective potential, but the corresponding
lowering is appreciable only for large r and it increases with
r as well as with N . The increase with N being roughly
proportional to N . Hence, when |λ| is not too small and
N increases from a small value (<Nfirst

cr ), the lowering due
to anharmonicity (first lowering) at large r is much larger
than that due to the interaction (second lowering). Hence,
with increasing N , ω0(r) decreases for large r , giving rise
to the first metastability and the appearance of the RIB. As
N increases the RIB decreases, leading to the first criticality
with the partial collapse at N = Nfirst

cr . With further increase
of N , the second lowering at a smaller r increases faster
than the first lowering. This causes reappearance of the MSR,
whose minimum now gradually moves inward. As N increases
even further, the second lowering for smaller r increases very
rapidly, inducing a deep attractive well and an intermediate
barrier on the left (LIB) between this well and the MSR.
The second lowering decreases very rapidly with increasing
r and is not strong enough at the position of RIB to alter it
appreciably. As N increases further, the LIB disappears and
the second criticality with collapse at N = N second

cr results.
However the two branches are discontinuous in the range
2461 � N � 2604 for the present choice of parameter sets. As
we have said earlier, there is a competition between the two
controllable parameters, viz., interaction and anharmonicity.
Thus the existance of the discontinuous metastable branch will
strongly depend on the choice of interaction and anharmonic
distortion parameters. Our present study considers only a
particular value of anharmonic distortion. So further study
with other values of λ is essential.

IV. CONCLUSION

In summary, we have applied a correlated many-body
method in three dimensions, incorporating a realistic in-
teratomic interaction (van der Waals potential) to study
metastable condensates confined in a trapping potential with a
finite barrier. The potential is taken as a sum of a quadratic term
plus a quartic term, which approximates an optical dipole trap,
that is, a harmonic confinement combined with a Gaussian
envelope. We obtain the complete quantitative description
of the decay process of the quasistationary condensate with
both repulsive and attractive interatomic interactions. Due to
the use of a realistic interatomic interaction together with
interatomic correlations in the many-body wave function
and consideration of a finite number of atoms in the trap,

our results exhibit a more realistic picture. For a repulsive
BEC, the quasi-stationary condensate can be stabilized by
controlling the effective two-body interaction (through asc) and
also the anharmonicity of the trap. By employing the WKB
approximation, we calculate decay rates of such systems,
which would be possible to measure experimentally. However,
in contrast with earlier findings, in our present calculation no
offset potential is required for the transition from a quasibound
resonance state to a bound state. This difference is attributed to
the use of a realistic interatomic interaction having a hard core
at short range which prevents a catastrophic singularity at the
origin as in the GP theory and produces a deep but finite well on
the left of the LIB. On the other hand, for an attractive BEC, in
addition to the usual metastable condensate in a harmonic trap,
we observe a new metastable branch which appears only for an
intermediate range of particle number below the critical value
for collapse due to attractive interaction only. The metastable
branch is also associated with an eventual collapse, for which
the critical number is Nfirst

cr . We also determine the decay
rates of the metastable BEC due to quantum tunneling from
both the metastable regions. However, the transition between
these two branches is discontinuous. We have observed
that this discontinuity strongly depends on the distortion
parameter. However as the decay rate of the 85Rb atom in
the new metastable region is quite high, the experimental
study of this new phase may be difficult. But this technical
difficulty may be circumvented by the proper choice of the
parameters.

Prediction of two branches of criticality, in particular, the
fact that the criticality associated with the right-side barrier
appears and then disappears as N increases from a small
value up to Nfirst

cr and then beyond, are the most significant
physics outcome of this work. From a technical point of view,
the use of a many-body theory, incorporating all two-body
correlations in the many-body wave function and a realistic
finite-range interatomic interaction with a strong short-range
repulsion are the realistic features. Deviations from earlier
results are attributed to these.
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