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Synergy dynamics of vortices and solitons in an atomic Bose-Einstein condensate
excited by an oscillating potential
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The hydrodynamics of quantized vortices and solitons in an atomic Bose-Einstein condensate excited by
an oscillating potential are studied by numerically solving the two-dimensional Gross-Pitaevskii equation.
The oscillating potential keeps nucleating vortex dipoles, whose impulses alternately change their direction
synchronously with the oscillation of the potential. This leads to synergy dynamics of vortices and solitons in
quantum fluids.
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I. INTRODUCTION

Topological defects are key concepts in general physics [1].
Quantum condensed systems are ideal for studying topological
defects. Quantized vortices and solitons have been thoroughly
characterized in superfluid 4He [2] and 3He [3,4]. Modern
research developments on quantum turbulence (QT) is still
based on understanding the dynamics of quantized vortices
[5]. An atomic Bose-Einstein condensate (BEC) can be
used to investigate quantum hydrodynamics. Atomic BECs
have several advantages over superfluid helium. In particular,
modern optical techniques enable the control of the condensate
and direct visualization of topological defects such as vortices
and solitons. Actually many important works have been
performed on quantized vortices [6]. Recently Henn et al.
made and observed QT in a BEC by introducing an external
oscillatory perturbation of the trapping potential [7].

Here we numerically address the response of an atomic
BEC to an oscillating repulsive potential. Vibrating structures
such as spheres, grids, and wires are used in superfluid 4He
and 3He to create QT [5,8]. Despite the differences between
these structures, the experiments show surprisingly similar
behavior.

A few works on oscillating potentials in atomic BECs
have already been numerically and experimentally performed
[9–11]. Dissipation which works above some critical velocity
was investigated theoretically by Jackson et al. [9] and
experimentally by Raman et al. [10]. However, they did not
observe the dynamics of vortices and solitons reported in
this work. Recently, Neely et al. observed the formation and
dynamics of vortex dipoles by forcing superflow around a
repulsive Gaussian potential within an oblate BEC [12].

Studying quantum hydrodynamics in an atomic BEC
subject to an oscillating potential should open up a research
area different from helium and other BEC cases for the
following reasons. First, since an atomic BEC is a clean system
free of remnant defects and impurities, it is possible to study
the intrinsic nucleation of topological defects. Second, the
oscillating potential leads to the observation of the synergy
dynamics of quantized vortices and solitons Linear motion
of the potential results in vortex dipoles with fixed charge
[12], whereas oscillatory motion leads to vortex dipoles with
alternating charges, causing rearrangement of dipoles and
a metamorphosis between vortices and solitons. Third, the
oscillation introduces another important parameter, namely,

frequency, into quantum hydrodynamics. Nucleation of defects
and the transition to QT depend on frequency, which should
be investigated in the future. Fourth, this work develops
a powerful method for making QT in a trapped BEC in
addition to other known methods [7,13,14]. Eventually the
dynamics of vortices and solitons can be visualized in atomic
BECs, enabling a direct comparison between experiments and
theoretical or numerical results.

In this work we investigate the quantum hydrodynamics of
a trapped BEC with an oscillating potential by numerically
solving the two-dimensional Gross-Pitaevskii (GP) equation.
In Sec. II the model and numerical calculation are described.
Section III presents the whole dynamics of vortices obtained
by our numerical calculation. Next we explain elementary
processes related to vortices and solitons in Sec. IV. The
oscillating potential may heat the condensate, which is
estimated in Sec. V. Finally we summarize our work in
Sec. VI.

II. MODEL AND NUMERICAL CALCULATION

We consider a dilute atomic BEC, assuming that the
condensate is pancake shaped. This system is well described
by a macroscopic wave function ψ obeying the GP equation

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + V ψ + g|ψ |2ψ, (1)

where m is the particle mass, V is the potential, and g

is an interaction parameter for the two-dimensional case.
The wave function ψ is normalized by the total particle
number N . Suppose the condensate is confined by a har-
monic potential Vh and penetrated by a Gaussian potential
VG, so that V = Vh + VG, where Vh = 1

2m(ω2
xx

2 + ω2
yy

2)
and VG = V0 exp(−{[x − x0(t)]2 + y2}/d2). Here, x0(t) is the
x coordinate of the center of the Gaussian potential and d is its
radius. Oscillate the Gaussian potential as x0(t) = ε sin(ωt).
We use a dimensionless form of Eq. (1) for numerical
calculations. Space and time are normalized by h̄/

√
2mgn0

and h̄/gn0, where n0 is the density near the center of the
condensate. Choose parameters g = 4.19 × 10−45 J/m2, m =
1.42 × 10−25 kg, N = 6.6 × 104, ωx = 2π × 5/s, ωy = 2π ×
25/s, d = 0.6 µm, ε = 7 µm, ω = 100/s, and V0 = 60gn0.
We use the Crank-Nicholson method to perform numerical
calculations without dissipation and noise. For the simulation,
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FIG. 1. (Color online) Migration of vortices. Density profile at (a) t = 0 s, (b) t = 0.0345 s, (c) t = 0.0591 s, (d) t = 0.0760 s,
(e) t = 0.0845 s, (f) t = 0.149 s, (g) t = 0.211 s, and (h) t = 0.240 s. The x and y dimensions of the images are 140 and 32.5 µm. The
symbol + (−) denotes a vortex with clockwise (counterclockwise) circulation. There are two kinds of holes. The central large hole is the
Gaussian potential, while the other small holes are vortices.

space in the x and y directions is discretized into 2048 × 640
bins.

III. WHOLE DYNAMICS

The dynamics of vortices in which they experience a
lengthy migration are shown in Fig. 1. Following the destiny
of vortices nucleated by the oscillating potential enables us to
survey their dynamics. The initial state in the static Gaussian
potential in Fig. 1(a) is obtained by an imaginary time step of
the GP equation. A vortex pair is nucleated behind the Gaussian
potential in Fig. 1(b) as the potential starts to move. Then the
oscillating potential nucleates vortex pairs whose impulses
alternately change direction. They reconnect with each other
to make new vortex pairs, leaving the potential in Fig. 1(c).
This phenomenon is not observed for the case of uniform
motion of the potential, but only for an oscillating potential.
Reaching the surface in Fig. 1(d), the vortex pairs interact with
ghost vortices, which are vortices in the low-density region and
described later in Sec. IV A. Then the vortices head toward the
bow of the condensate along the surface in Figs. 1(e) and
1(f). A vortex coming up from the left side reaches the bow
to meet one from the right side in Fig. 1(g), thus making a
new vortex pair. Finally, the pair comes back to the center
of the condensate in Fig. 1(h). Thus the vortices nucleated
by the potential enjoy a lengthly migration in the “sea” of
BEC; the vortices are nucleated from the potential, reconnect,
move away from it, reach the surface, head toward the bow,
and come back to the center. In the following, we illustrate
elementary processes related to the synergy dynamics.

IV. ELEMENTARY PROCESSES

In this section we discuss elementary processes, which are
nucleation of vortices, reconnection of vortex pairs near the
potential, divorce of vortex pair at the surface, nucleation of

solitons and collapse of solitons. These processes occur in the
dynamics of Fig. 1.

A. Nucleation of vortices

A key issue is to understand how quantized vortices are
nucleated. For a condensate to have vortices, it should bring
some seeds of the topological defects from somewhere. This
situation is reminiscent of the formation of a vortex lattice in
a rotating BEC [15]. Rotation nucleates “ghost vortices” in
the low-density region at the outskirts of the condensate, and
they are dragged into the interior to become the usual vortices
having the condensate density. Our condensate has to do a
similar thing. Ghost vortices can appear in two low-density
regions in our system; one is inside the oscillating potential
and the other is at the outskirts of the condensate. As soon
as the potential starts to oscillate, a pair of ghost vortices is
nucleated inside the potential and the condensate surface is
filled with them.

Vortex nucleation induced by the potential is shown in
Fig. 2. It follows that ghost vortices inside the potential cause
vortex nucleation. We consider nucleation of both kinds of
vortices in this work. There are two critical velocities; vc1

for a pair of ghost vortices and vc2 for a pair of vortices with
vc1 <vc2. When the velocity vp = εω of the potential is smaller
than vc1, vortices are not nucleated in the condensate. When
vp exceeds vc1, a pair of ghost vortices is nucleated inside
the Gaussian potential. If vp is smaller than vc2, however,
those ghost vortices are annihilated. The repeated nucleation
and annihilation of pairs of ghost vortices are characteristic
of the oscillating case with vc1 <vp <vc2. The observable
critical velocity is vc2 ∼ 580 µm/s for the present case, but
vc2 strongly depends on the frequency ω of the oscillation,
which is an important target in future. The critical velocity vc2

is smaller than the sound speed 1.33 × 103 µm/s, which is
reported by Jackson et al. [9]. When vp exceeds vc2, vortices
are nucleated. These processes are shown in Fig. 2. A velocity
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FIG. 2. (Color online) Vortex nucleation by the potential: (a) t =
0.002 53 s, (b) t = 0.004 90 s, and (c) t = 0.0118 s. The upper and
lower panels are density and phase profiles. The x and y dimensions
of each image are 13 and 8 µm. The symbol + (−) denotes a vortex
with clockwise (counterclockwise) circulation. Black arrows in the
density profile indicate the direction of motion of the potential, while
the white arrows in the phase profile show the backflow. The value of
the phase varies from −π (white) to π (black).

field with backflow is induced by the potential in Fig. 2(a).
Then a pair of ghost vortices is nucleated inside the potential
in Fig. 2(b). Finally, the ghost vortices move away from it and
a vortex pair appears in Fig. 2(c).

B. Reconnection of vortex pairs near the potential

Figure 1(c) shows a phenomenon characterized by the
oscillating case after vortex nucleation, as detailed in
Figs. 3(a)–3(d). After a vortex pair is nucleated behind the
potential, it has an impulse in the direction of the velocity of
the potential. Hence the pair follows the potential in Fig. 3(a).
Thereafter the oscillating potential changes the direction of its
velocity in Fig. 3(b), and it makes a new ghost vortex pair
whose direction of impulse is opposite to that of the old pair.
Then the ghost pair gets away from the potential, becoming
a new vortex pair. The pair immediately reconnects with the
old pair in Fig. 3(c). This process produces new vortex pairs

FIG. 3. (Color online) Reconnection of vortices near the po-
tential: Density profile at (a) t = 0.0507 s, (b) t = 0.0551 s,
(c) t = 0.0571 s, and (d) t = 0.0596 s. The x and y dimensions
of each image are 39 and 24 µm. The symbol + (−) denotes a vortex
with clockwise (counterclockwise) circulation. Black arrows indicate
the direction of motion of the potential. The dashed arrows indicate
the direction of the motion for vortices in (d).

leaving the potential, and the pairs go toward the surface of
the condensate in Fig. 3(d).

C. Divorce of vortex pairs at the surface

The vortex pair escaping from the potential in Fig. 3(d)
reaches the surface and interacts with many fluctuating ghost
vortices there. The pair divorces, and the two resulting vortices
move in opposite directions along the surface. The motion is
caused by the following mechanism. The normal component
of the velocity field at the surface is suppressed when vortices
are close to the surface. This makes the velocity field parallel
to the surface, which moves the vortices along the surface.
This motion may be understood in a simplified way by using
the idea of image vortices [16], though the idea assumes that
the boundary is a solid wall, which is not exactly the case.

D. Nucleation of solitons

The most interesting phenomenon in our research is the
synergy dynamics between solitons and vortices. Nucleation,
collision, and collapse of solitons are observed. These occur
after Fig. 1(e). A soliton can be identified by its low density
and phase jump of about π . Figures 4(a)–4(h) show the
nucleation of a soliton, which is peculiar to the dynamics by an
oscillating potential. After the process in Figs. 3(a)–3(d) occurs
twice in both the right and left regions, the configuration of
Fig. 4(a) is obtained. The vortex pairs in the right region in
Fig. 4(a) get near the surface, and reconnect with other vortices
in Fig. 4(b). The vortex pairs are depicted by closed loops
with dashed lines. The pairs head toward the center of the
condensate in Fig. 4(c). Subsequently, annihilation of a pair
occurs as it reaches the center, becoming a soliton in Fig. 4(d).
The change from a vortex dipole to a soliton is related to the
nucleation of the rarefaction pulse [17,18].

One may think that the edges of the solitons have quantized
vortices so that the low-density regions inside the closed
loops in Fig. 4(d) are merely vortex dipoles. However, there
is a clear distinction between a vortex dipole and a soliton,
which is obviously seen in the phase profiles [Figs. 4(e) and
4(h)] corresponding to Figs. 4(c) and 4(d). Figures 4(e) and
4(f) show the phase profiles before and after the annihilation
of the dipoles. Their enlarged phase profiles are Figs. 4(g)
and 4(h), which show, respectively, the vortex dipole and the
soliton. Figure 4(g) shows apparently that the dipole has the
topological defects in the phase profile, while the soliton in
Fig. 4(h) does not have such defects and the velocity field
around the edges does not have quantized circulation as seen
by the arrows referring to superflow. There remains the velocity
field related to quantized vortices outside the edges, whereas
the velocity field which tends to cancel the outside flow is
induced in the low-density region between the edges. Thus
we can identify the soliton by checking the density and phase
profiles.

E. Collapse of solitons

The collapse of the solitons nucleates vortex pairs in (a)–(d)
of Fig. 5. The solitons in Fig. 4(d) have opposite impulse,
so they collide with each other. However, they pass through
each other without changing shape, in accord with the nature
of solitons. The solitons then move toward the surface in
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FIG. 4. (Color online) Nucleation of solitons: (a) t = 0.0929 s, (b) t = 0.106 s, (c) t = 0.111 s, and (d) t = 0.114 s. The panels (a)–(d)
and (e)–(h) show the density (upper) and phase (lower) profile. The x and y dimensions of (a)–(f) and (g), (h) are 39 × 24 and 9 × 6 µm. The
phase profiles for (c) and (d) are, respectively, (e) and (f). The figures (g) and (h) are the enlarged figures corresponding to the square boxes in
(e) and (f). The symbol + (−) denotes a vortex with clockwise (counterclockwise) circulation. Black arrows indicate the direction of motion
of the potential in (a)–(d), but it shows the velocity field in (h). In the process from (a) to (b), reconnection of vortices occurs, then two new
vortex pairs, which will become solitons, are created. These pairs are depicted by closed loops with dashed lines. The closed loops with solid
lines show the solitons. The dashed arrows indicate the direction of the motion for vortices in (c), and one for solitons in (d). The value of the
phase varies from −π (white) to π (black).

Fig. 5(a). A two-dimensional soliton is unstable, and collapse
of the solitons occurs at the surface. As a result, a soliton
decays into a vortex pair at the surface, as shown in Fig. 5(b).
These vortex pairs are depicted by closed loops with solid lines.
Immediately after the collapse, the vortex pairs interact with
ghost vortices in Fig. 5(c). Then, the vortices move toward
the bow of the condensate along the surface in Fig. 5(d)
because of the mechanism described in Sec. IV C. This process
repeats as long as the Gaussian potential oscillates. This sort of
transformation between vortex dipoles and solitons has been
reported by Huang et al. [19].

FIG. 5. (Color online) Collapse of solitons: Density profile at
(a) t = 0.126 s, (b) t = 0.131 s, (c) t = 0.136 s, and (d) t = 0.138 s.
The x and y dimensions of each image are 39 and 24 µm. The
symbol + (−) denotes a vortex with clockwise (counterclockwise)
circulation. Black arrows indicate the direction of motion of the
potential. The closed loops with solid lines show the solitons. The
symbols ⊕ and � from (b) to (d) denote the vortices created through
the collapse of the soliton. The dashed arrows indicate the direction
of the motion for solitons in (a).

V. HEATING OF THE CONDENSATE

It is possible to heat a condensate by an oscillating potential.
We numerically calculate the increase in the total energy,
estimating the temperature change by using the specific heat
of the equilibrium state of the system. The change is found
to be only 1 nK even by the time of the last image in Fig. 1.
Hence the heating is negligible, and use of the GP model is
valid.

VI. CONCLUSION

We have performed numerical calculations of the two-
dimensional GP equation to investigate the dynamics of vor-
tices and solitons in a trapped BEC induced by an oscillating
potential. This paper reveals the dynamics characterized by
oscillation. It is essential that the oscillating potential makes
vortex dipoles with different charges, which results in the syn-
ergy dynamics between vortices and solitons. The parameters
used in these calculations are appropriate to experiments on
atomic BECs. We confirm the dynamics not only for the single
fixed geometry but also for similar sets of parameters and
geometry. Hence, the dynamics obtained in our study should
be experimentally observable. However, the dynamics by the
oscillating potential should be dependent on the frequency and
amplitude of the oscillation. Preliminary calculations indicate
that a potential with lower amplitude creates more solitons, in
contrast to the present result. In addition, the aspect ratio of the
condensate shape should affect the dynamics. The systematic
studies of how the dynamics depends on the parameters or
geometry are reported elsewhere.
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