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Microscopic dynamics of ultracold particles in a ring-cavity optical lattice
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The quantum dynamics of particles optically trapped in a symmetrically pumped high-Q ring cavity exhibits
much richer physics than for a standing-wave resonator. In addition to modifying the lattice depth, light scattering
by the particles shifts and reshapes the trapping potential. We calculate the corresponding changes in tunneling
amplitudes and damping by an effective bipotential (two-level) model for the particle motion. As a crude
truncation of the Bose-Hubbard model, expansion to the lowest band decouples particle and field dynamics.
Only including excitations to higher bands can capture this essential additional physics and correctly describe
decoherence, damping, and long-range correlations of the particle dynamics. The validity limits of the analytic
models are confirmed by quantum Monte Carlo wave-function simulations, which exhibit correlated particle-field
quantum jumps as unambiguous quantum signature of the system dynamics.
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I. INTRODUCTION

In the past decade the theoretical and experimental study
of ultracold quantum gases in optical potentials has seen
tremendous progress and growth [1–3]. Optical lattices gener-
ated by spatially periodic laser fields can be routinely loaded
with atoms very close to T = 0 with different filling factors
and including multiple species [4]. Using magnetic fields
or extra lasers the local interactions between the particles
can be controlled providing for a versatile test ground of
many-particle quantum phenomena. In most of these cases the
backaction of the particles on the trapping and control fields is
so small that the forces are well described by prescribed exter-
nal potentials. Nevertheless for large lattices this backaction
cannot be ignored and couples particle and field dynamics [5].
This coupled dynamics gets a particularly important new
dimension when the light fields generating the potentials are
enclosed in optical resonators [6] and the field amplitudes thus
constitute separate dynamical quantum variables. Following
initial theoretical studies [7] recent experiments now opened
this new dimension by loading Bose-Einstein condensates
(BECs) into optical resonators of high finesse [8–10]. Due to
the large number of atoms the so-called strong-coupling limit
of cavity QED was surpassed by several orders of magnitude
reaching new parameter regimes of cavity QED and nonlinear
quantum dynamics [9,11,12].

From a theoretical point of view, a dynamic lattice potential
with quantum properties creates a wealth of new phenomena
like atom-field entanglement, long-range interactions, and
phononlike excitations with controllable properties. In partic-
ular, if several field modes are involved as in a ring cavity, new
phenomena related to long-range (phonon-type) interactions
of solid-state physics should become accessible for thorough
tests in cold-atom setups. As a striking example, translation
invariance and momentum conservation of the combined atom-
field system induce pair correlations in the momentum space of
the particles. Similarly, even small momenta transferred from
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atoms to the field should lead to measurable optical phase
shifts [13], which might give a direct handle to observe the
onset of superfluidity of the atoms or construct ultrasensitive
acceleration detectors with BECs.

Of course, these new quantum degrees of freedom strongly
increase the mathematical complexity of the theoretical model.
As a first consequence the fairly simple, and for free-space
optical lattices very successful, description of the system
properties in terms of a single-band Bose-Hubbard model [1]
cannot be directly applied in the case of dynamic potentials
of varying depth and position. For standing-wave cavities
an effective description in terms of self-consistent effective
parameters has already been developed [14–16]. It will be a
central goal of this work to develop improved approximative
model descriptions for ring resonators and to study the limits,
where a generalized version of the Bose-Hubbard model can
still be applied to understand key features of the underlying
physics.

Initially, setups of atoms in ring cavities were mainly
considered to generalize and test cavity cooling of a wide class
of polarizable particles, where no alternative laser cooling
schemes exist. A ring geometry offers a wider capture range,
faster cooling times [6], as well as lower temperatures [17],
including even the idea of stopping and cooling a fast
molecular beam [18]. An ultimate goal here is the development
of an all-optical route to a BEC of polarizable point objects
replacing evaporative cooling by cavity cooling which
involves no particle loss. More recently, an alternative research
direction studies quantum dynamics of atomic ensembles
of very low temperature stored within a ring-cavity optical
lattice [19,20]. As discussed in early theoretical work [21,22],
controlling phase and amplitude of both pump fields of the
ring cavity, which was verified in various experiments [19,23],
gives great flexibility in controlling position and depth of the
generated optical potential as well as the mode properties of
lattice beams [24]. In the limiting case of a single-side pump
one also recovers the model of the collective atomic recoil
laser (CARL) [25,26]. First experiments using a single-side
pump were already performed [20]. So far, the theoretical
descriptions of BECs in ring cavities were mainly based on
a Gross-Pitaevskii description of the atoms [20,27,28]
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and a coherent-state approximation for the cavity
modes.

As for ultracold atomic gases in general the theoretical focus
now shifts toward new quantum phases of degenerate gases
near T = 0 [7,14,15,29,30], where mean-field approximations
have to be abandoned. Interestingly, for the case of a single-
mode standing-wave cavity it was possible to derive an
effective Bose-Hubbard-type model which still proved valid
for a dynamical quantized field creating the optical potential.
This could capture important aspects of the dynamics and
predict surprising modifications of the corresponding phase
diagram [14–16]. As expected this dynamics in general
invokes particle-field entanglement and nonlinear optics as
well [31,32]. Here we investigate in which cases an extension
of the Bose-Hubbard model for a ring-resonator-generated
optical lattice is feasible. This is complicated by the fact that
not only the lattice depth but also the lattice position are now
fluctuating quantum variables. Thus already the definition of
the proper Wannier basis functions is hard.

The article is organized as follows: We start with a
tutorial review of the classical point-particle motion in
ring-cavity-generated optical potentials and the presentation
of the general atom-field Hamiltonian in Sec. II. In the
following Sec. III we concentrate on the weak-coupling case,
where only a single or a few excitations are generated in
the unpumped mode and adiabatic effective potentials for
the atomic motion can be derived on elimination of the mode
dynamics. Here the cavity dynamics modifies tunneling and
induces damping of nonlocal coherence. Subsequently, in
Sec. IV we set out to derive an effective Bose-Hubbard-type
model. Interestingly we miss central physical effects if we
use the standard single-band approximation. Actually, central
properties of ring-resonator-generated lattices appear in a
two-band expansion presented in Sec. IV C, where tunneling
is accompanied by photon scattering and jumps to the higher
band. Finally, in Sec. V we compare an effective multiband
model with numerical simulations of the coupled atom-field
dynamics in full momentum space.

II. ONE POLARIZABLE POINT PARTICLE IN A RING
RESONATOR

Let us first exhibit some essential physical properties of
particle motion in ring cavities by considering a single linearly
polarizable point particle moving inside a symmetrically
driven ring resonator, cf. Fig. 1. The two counterpropagating
modes with wave number k are pumped with amplitudes η±
and decay at a rate κ . The pump frequency is detuned by
�c = ωpump − ωcavity with respect to the bare cavity resonance.
Symmetric pumping, i.e., η+ = η−, generates a standing-wave
field with spatial dependence ∝ cos(kx) in the empty cavity.
The second orthogonal field mode with spatial dependence
∝ sin(kx) thus will not be excited by the pump [13], but it
still cannot be ignored for the dynamics. Note that physical
differences between a standing-wave resonator and a ring
resonator have been investigated before, e.g., in Ref. [33].
At this point for simplicity we assume sufficient transverse
localization of the particle so we can restrict ourselves to
an effective one-dimensional description along the resonator
axis.

FIG. 1. (Color online) Sketch of the system: One polarizable
particle in a symmetrically driven ring cavity (pumping fields η+
and η−). The resonator loss is characterized by the decay rate κ .

A. Classical and semiclassical description

Before turning to the quantum model we shall briefly
review the corresponding classical field equations [6,22] to
obtain a first qualitative insight into the underlying dynamical
principles of the system. These classical equations of motion
for the two driven and damped amplitudes of the counter-
propagating modes coupled by a polarizable point particle
read [22]

α̇± = [i(�c − U0) − κ − �0]α± − (�0 + iU0)α∓e∓2ikx + η±.

(1)

The central parameters U0, which denotes the frequency
shift of the mode induced by the particle, and �0, which
gives the particle-induced extra loss of the mode, are directly
related to the real and imaginary parts of the particle’s linear
susceptibility [34,35]. These parameters also play a central
role in the light forces determining the equations of motion for
the particle [6]

Fdip = −4h̄kU0Im(α∗
+α−e−2ikx), (2a)

Frp = 2h̄k�0(|α+|2 − |α−|2), (2b)

where (2a) is the dipole force and (2b) the radiation-pressure
force. We see that U0 gives the optical light shift and �0

the photon scattering rate per photon in the mode. The dipole
force can be derived from a potential proportional to the
intracavity intensity and is—in a quantum picture—associated
with the coherent redistribution of photons between the two
modes. Depending on sgnU0 the particles are trapped either
at the intensity minima (U0 > 0, “low-field seekers”) or
at the intensity maxima (U0 < 0, “high-field seekers”). As
we will focus on the dispersive, far-detuned limit where
�0 � |U0|, we will neglect the radiation-pressure force (2b)
and scattering loss in the following. Nevertheless, photons leak
out of the resonator irreversibly and carry away momentum
of the particle, which generates a nonconservative dynamics,
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FIG. 2. (Color online) Particle motion in a ring cavity as solution
of Eqs. (1) and (2). The particle moves along the cavity axis and
eventually gets trapped. (a) Position, (b) momentum, (c) intensities
split into symmetric (left y axis) and antisymmetric (right y axis)
parts, and (d) phase shift from an initially cos2(kx)-shaped potential.
Parameters: �c = −2.6ωR, κ = ωR, U0 = −0.3ωR, and η+ = η− =
4ωR.

including friction and diffusion of particle motion [22].
The fluctuations in the photon numbers inducing diffusion
(heating) then limit the final steady-state temperature [36] of
the particle. Computation of this friction coefficient stemming
from the dipole force indicates a cooling regime for U0 < 0 and
�c < 0 [6,22]. We will therefore concentrate on this parameter
regime for the rest of this work.

We show a typical result of the combined particle-field
equations in Fig. 2. An initially fast moving particle slows
down while moving along the resonator axis before eventually
getting trapped and oscillating around a potential minimum.
This is reflected clearly in the field dynamics as well since
symmetric pumping of the counterpropagating running waves
corresponds to a pumped [∝ cos(kx)] and an unpumped
[∝ sin(kx)] standing wave. A moving particle will scatter
light from the cosine to the sine mode so that the resulting
superimposed fields correspond to a shifted cosine mode.
Hence also the resulting optical potential [∝ cos2(kx)] gets
shifted due to excitations of the sine mode as long as the
particle moves. This can be clearly seen in Figs. 2(c) and 2(d).
In the classical limit a particle at rest will scatter no more
light into the sine mode and we obtain a pure cosine field in
the resonator. In quantum mechanics the uncertainty relation
will prevent this and quantum fluctuations of the particle
position and momentum will couple the two modes even at
zero temperature [17].

B. Quantum description

Let us now turn to a quantum description of the particle
motion and the field modes. For convenience, we use a basis of
{cos(kx), sin(kx)} mode functions rather than the propagating
wave modes {exp(±ikx)}. This facilitates a straightforward
comparison with the case of the standing-wave resonator
by putting the coupling to the sine mode to zero and also
allows for a better separation of the classical part of the field
amplitude in the cosine mode. The corresponding Hamiltonian

for symmetric pumping thus reads:

H = p2

2m
+ h̄U0[a†

cac cos2(kx) + a†
s as sin2(kx)]

+ h̄U0

2
(a†

cas + a†
s ac) sin(2kx)

− h̄�c(a†
cac + a†

s as) − ih̄ηc(ac − a†
c). (3)

While the first line contains the optical potentials induced by
the two field modes independently, the second line describes
the particle-position-dependent coherent scattering of photons
between the two modes. The third line contains the free-field
evolution for both modes as well as the pumping of the cosine
mode.

Let us first look at the corresponding Heisenberg equations
for the particle momentum,

ṗ = h̄kU0(a†
cac − a†

s as) sin(2kx)

− h̄kU0(a†
cas + a†

s ac) cos(2kx), (4a)

and for the mode amplitudes (dropping the input noise
operators),

ȧc = {i[�c − U0 cos2(kx)] − κ}ac − iU0

2
sin(2kx)as + ηc,

(4b)

ȧs = {i[�c − U0 sin2(kx)] − κ}as − iU0

2
sin(2kx)ac. (4c)

The first line of Eq. (4a) describes a force which solely depends
on the photon numbers in the modes, whereas the second line
is phase dependent and stems from the interference terms of
the two modes of the intracavity electric field. In the special
case of only one mode (e.g., setting as = 0) we recover the
case of a standing-wave resonator. Small field amplitudes in
the sine mode then simply induce a phase-dependent force on
the particle while small deviations of the particle position from
x = 0 determine the phase of the sine-mode field.

In the Schrödinger picture the time evolution of the density
matrix ρ of the coupled system is determined by the master
equation

ρ̇ = 1

ih̄
[H,ρ] + Lcρ + Lsρ, (5)

where the Liouvillean superoperator describing photon losses
is given by [37]

Liρ = κ(2aiρa
†
i − a

†
i aiρ − ρa

†
i ai), i ∈ {c,s}. (6)

In general the field damping time will be shorter than the time
scale of particle motion so the fields will reach a particle-
dependent quasistationary state. For strong coherent pumping
of the cosine mode one thus can approximate ac by a coherent
field of amplitude αc and only treat the sine mode quantum
mechanically. In the limit of very deep optical potentials, where
particles are trapped near x ≈ 0, this leads to the equations
[17]

ṗ = 2h̄kU0(|αc|2 − a†
s as)kx − h̄kU0(α∗

c as + αca
†
s ), (7a)

ȧs = (i�c − κ)as − iαcU0kx, (7b)

which are well known in optomechanics. In the opposite limit
of a very weak potential and an initially flat particle distribution
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(k = 0) the sin(2kx) term will only amount to scattering to
particle waves with p = ±2h̄k [38], where again a simple
coupled-oscillator model can be applied. In this work we will
concentrate on the general case where the particles are weakly
trapped in the optical potential but still can tunnel between
adjacent sites. This should finally lead to a Bose-Hubbard-type
description with new types of long-range interactions.

III. EFFECTIVE POTENTIALS AND DYNAMICS IN THE
WEAK-COUPLING LIMIT

As the general quantum dynamics is too complex for a
direct solution we have to resort to interesting limiting cases.
In this section we first work out the cavity-induced corrections
to the particle dynamics in a classical potential. As outlined
above the particles moving in the cavity field will scatter light
between the modes and thus change the depth and shape of the
optical potential. If the adjustment time of the field, i.e., the
cavity decay, is faster than the typical particle motion, one can
still expect to be able to define an effective potential for the
particle. These cavity losses, from another viewpoint, can also
be seen as a continuous measurement of the particle dynamics
[39] which modifies the system dynamics via measurement
backaction [40]. In the following we try to address these new
key aspects in the strong-damping and weak-coupling limit,
where they give only small corrections.

In a cavity the optical potential felt by the the particle is
no longer conservative and constant as fluctuations in the field
amplitude (quantum jumps) lead to momentum diffusion and
dephasing of the wave function. This behavior is generic for
a quantum system coupled to an open system. For free-space
optical lattices the most important part of the decoherence
stems from spontaneous photon scattering from the trap field
to free space. However, for typical operating conditions far
off any resonance, decoherence times are of the order of
minutes rendering the light fields to constitute conservative
classical potentials [2]. In a resonator-generated potential one
has a second important contribution to decoherence via cavity
decay. For sufficient atom-field coupling, the corresponding
decoherence times can be quite short. Actually, one recovers
the free-space conservative-field limit in the case of a very bad,
“infinitely” fast decaying cavity together with a very strong
pump and weak coupling, where the particles cannot induce
any changes to the field dynamics.

In the following, we calculate corrections to this limit in the
bad-cavity case via adiabatic elimination of the field dynamics.
We first demonstrate semiclassically in secular approximation
within the Schrödinger picture that the field always relaxes
to a very low-excited state for properly chosen parameters.
This allows us to derive an effective potential for the coherent
particle dynamics. Still, the field dynamics induces dephasing
as can be clearly observed on the decay of coherent tunneling
oscillations due to photon scattering. In the following we will
study this dephasing and derive an estimate for this decay rate.

A. Low-excitation limit in the Schrödinger picture

As seen from the Heisenberg equations (4) for the field
modes the sine mode will only be populated by photons
scattered in by the particles from the strongly pumped cosine

mode. On the other hand, the driven cosine mode will be highly
occupied and close to a coherent state |αc〉 with |αc| � 1.
This generates an optical potential of depth V0 = h̄|U0||αc|2
forming a periodic optical lattice. In the limit of small
|αc||U0|/|�c| we find only a very small field corresponding
to at most one photon in the second mode. The wave function
of the total system thus can be well approximated by the sum
of a zero-photon and a one-photon component in the sine
mode and a coherent state in the cosine mode. Neglecting
higher sine-mode photon numbers as well as constant terms
an effective approximate Hamiltonian in this limit thus can be
conveniently written as

H =
(

p2

2m
+ h̄U0|αc|2 cos2(kx)

)
− h̄[�c − U0 sin2(kx)]σ̃+σ̃−

+ h̄U0

2
sin(2kx)(α∗

c σ̃
− + αcσ̃

+), (8)

where we have introduced the (photonic) raising and low-
ering operators σ̃+ := |1〉〈0| and σ̃− ≡ (σ̃+)† = |0〉〈1|. For
simplicity and without loss of generality we choose the pump
phase in a way that Im αc = 0 in the following. The rather
familiar-looking Hamiltonian (8) now exactly corresponds to
a two-level particle moving in an optical potential, whose
internal degrees of freedom are interacting with a classical
spatially varying light field. Note that while the two states
here physically describe zero or one photon in the sine mode
and not actual internal particle excitations, the mathematics is
the same as for an internal atomic excitation. Actually, in the
past decades numerous ways to treat this generic laser-cooling
Hamiltonian in different approximations have been developed.

Here we will follow the well-established dressed-states
approach, based on the possibility to analytically diagonalize
the Hamiltonian for any fixed-particle position x and determine
the corresponding adiabatic field states. Hence x and p

are treated as classical variables [41]. Alternatively, it would
be also possible to directly solve the optical Bloch equations.
Both methods start from a semiclassical approximation of the
external particle variables. However, as shown in Refs. [42,43]
there exists a corresponding consistent quantum-mechanical
interpretation of the dressed-states picture. Here we will follow
both approaches. The semiclassical approximation allows to
obtain analytical results for the effective potential, which will
give significant qualitative insight to the expected system
dynamics and the latter treatment allows for an estimate of
the effective motional decoherence and damping rates.

Diagonalization in the semiclassical limit yields the eigen-
values (the “adiabatic potentials” [44])

V±(x) = h̄U0

(
|αc|2 − 1

2

)
cos2(kx)

− h̄(�c − U0)

2
± h̄	(x)

2
(9)

and the corresponding normalized eigenvectors

|x; +〉 = cos ϑ |0〉 + sin ϑ |1〉, (10a)

|x; −〉 = − sin ϑ |0〉 + cos ϑ |1〉, (10b)
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where we have defined

�(x) := �c − U0 sin2(kx), (11a)

	(x) :=
√

�2(x) + U 2
0 |αc|2 sin2(2kx), (11b)

sin ϑ(x) := sgn[U0αc sin(2kx)]

√
	(x) − �(x)

2	(x)
, (11c)

cos ϑ(x) :=
√

	(x) + �(x)

2	(x)
. (11d)

For |U0||αc| � |�c| the state |x; −〉 contains only a very small
amount of the one-photon state (it is thus a “quasidark state”
[44]) since in leading order

cos2 ϑ(x) � |αc|2
4

U 2
0

�2
c

sin2(2kx), (12a)

sin2 ϑ(x) � 1 − |αc|2
4

U 2
0

�2
c

sin2(2kx). (12b)

The equations of motion for the two populations (in secular
approximation which is valid for well-resolved lines, i.e.,
	(x) � κ ⇒ |�c| � κ) read [41,45]

�̇+ = −�eff
+ �+ + �eff

− �−, (13a)

�̇− = −�eff
− �− + �eff

+ �+, (13b)

with the position-dependent effective rates

�eff
+ (x) = 2κ sin4 ϑ(x), (14a)

�eff
− (x) = 2κ cos4 ϑ(x). (14b)

Its steady-state solution reads

�+ = �eff
−

�eff+ + �eff−
� �eff

−
�eff+

=
(

	 + �

	 − �

)2

, (15a)

�− = �eff
+

�eff+ + �eff−
� 1 − �eff

−
�eff+

= 1 −
(

	 + �

	 − �

)2

. (15b)

This state is reached within a time determined by the popula-
tion decay rate �pop = 2κ(sin4 ϑ + cos4 ϑ). Since �eff

− � �eff
+

the field will always end up in the local |x; −〉 state provided
that ωR � �pop. The low-excitation approximation is thus well
justified. For U0/�c � 1 the steady-state populations (15)
reduce to

�+ � |αc|4
16

U 4
0

�4
c

sin4(2kx), (16a)

�− � 1 − |αc|4
16

U 4
0

�4
c

sin4(2kx). (16b)

A small photon number in the sine mode is thus consistent
with the approximation �− � 1 as the photon number scales
with U 2

0 /�2
c and the population with U 4

0 /�4
c . Hence, in steady

state the effective potential reads

〈V (x)〉 � h̄U0|αc|2 cos2(kx) + |αc|2
4

h̄U 2
0

�c
sin2(2kx). (17)

This is, of course, the same result as obtained for optical lattice
potentials (ac Stark shift) [2]. There the potential is found to be
V (x) = h̄|	(x)|2/4δ, where 	(x) is the Rabi frequency and δ

the detuning of the two-level system with respect to the driving
laser. Setting 	(x) := U0αc sin(2kx) and δ := �c, the second
part of equation (17) is recovered. The first part is just some
additional classical potential which in our case does not affect
the “internal” variables of the particle.

Let us now treat the problem in a closely related quantum-
mechanical way. To this end we apply the unitary transforma-
tion

U =
(

cos ϑ sin ϑ

− sin ϑ cos ϑ

)
(18)

on the Hamiltonian (8). Assuming adiabaticity (nonadiabatic
off-diagonal terms much smaller than the difference between
the adiabatic eigenvalues [42]), the resulting Hamiltonian in
the adiabatic basis {|+〉,|−〉} reads [42]

Had =
[

p2

2m
+ h̄U0

(
|αc|2 − 1

2

)
cos2(kx)

]

+ h̄	(x)

2
(|+〉〈+| − |−〉〈−|). (19)

The eigenstates of (19) are

|±
n,q〉 = ∣∣φn,±

q

〉|±〉, (20)

where |φn,±
q 〉 denotes the Bloch state with quasimomentum q

for the nth energy band of the two adiabatic potentials V±(x)
defined in (9). Looking again at the rate equations stemming
from the master equation, including photon decay, one finds
the effective decay rates [46]

�+
n,q = 2κ

〈
φn,+

q |sin2 ϑ |φn,+
q

〉
, (21a)

�−
n,q = 2κ

〈
φn,−

q |cos2 ϑ |φn,−
q

〉
. (21b)

The dynamics described by the corresponding rate equa-
tions is shown in Fig. 3. Again, as in the semiclassical case
we have �+

n,q � �−
n,q , and only the subspace belonging to

|−〉 will be significantly populated in steady state. Therefore
the adiabatic potential V−(x) can be treated as an effective
potential for the particle motion as long as the incoherent
processes within this subspace are sufficiently small [2].
Decoherence manifests itself as finite lifetime of the Bloch
states within this potential, leading to a damping of the
particle motion. This can be understood in the following way:
Localized particles within the lattice are described by coherent
superpositions of Bloch states [47]. If these coherences get lost
due to a finite life time of the Bloch states, the particles can no
longer coherently move through the lattice and experience an
additional friction force. We estimate the effective rate to be

� ∼ max
q

�−
0,q � 2κ

|αc|2U 2
0

4�2
c

max
q

〈
φ0

q |sin2(2kx)|φ0
q

〉
, (22)

which in a very crude approximation gives

� <∼ 2κ
|αc|2U 2

0

4�2
c

= |V0|
2

|U0|κ
�2

c

. (23)

This rate has to be compared to the tunneling time T , which
is determined by the inverse bandwidth of the lowest Bloch
band. A high Q factor requires

�T � 2κT
|αc|2U 2

0

4�2
c

!� 1. (24)

043605-5



NIEDENZU, SCHULZE, VUKICS, AND RITSCH PHYSICAL REVIEW A 82, 043605 (2010)

n = 5

n = 4

n = 3

n = 2

n = 1

n = 0

ωRt

∑
q
Π

− n
,q

2000150010005000

1

0.8

0.6

0.4

0.2

0

FIG. 3. (Color online) Time evolution of the band populations
stemming from the rate equations in the basis (20) containing the
rates (21). The potential depth is V0 = 25ER and thus the first three
bands are bound. Hence the lowest three curves (n = 3, 4, 5, from top
to bottom) correspond to unbound states. We have assumed a double-
well potential hence each band consists of two Bloch states with
different quasimomenta. The initial state was �−

0,−1 = �−
0,0 = 0.5.

There is no significant population transfer to the subspace belonging
to the |+〉 adiabatic eigenstate, whereas the population distribution
within the |−〉 subspace changes, the particle is heated. Parameters:
U0 = −ωR, αc = 5, �c = −500ωR, and κ = 100ωR.

B. Effective potential via adiabatic elimination in the
Heisenberg picture

As a second alternative approach we will directly work in
the Heisenberg picture. In contrast to the previous section,
where we applied a two-level approximation for the field, we
consider the full mode operator a here. Its equation of motion
apart from the vacuum input noise operator reads

ȧ = [i�(x) − κ]a − iη(x), (25)

where we have defined

η(x) := αcU0

2
sin(2kx). (26)

Its formal steady-state solution reads

a = −iη(x)

κ − i�(x)
. (27)

Hence one obtains the photon number

a†a = |η(x)|2
κ2 + �2(x)

� |αc|2
4

U 2
0

κ2 + �2
c

sin2(2kx), (28)

where the latter is valid in the limit U0/�c � 1. For |�c| �
κ it converges to the result (12a) obtained previously in the
Schrödinger picture in secular approximation. The scattered
coherent field |α(x)〉 with amplitude (27) coincides with the
steady-state solution |x; −〉 of the rate equations (13) in the
same limit up to a phase depending on the (arbitrary) global
phase of the eigenstates |x; ±〉. Note that without the secular
approximation κ also appears in the steady-state solution of the
rate equations and thus in the photon number and the effective
potential. The steady-state solution then can contain coherent

superpositions of |x; +〉 and |x; −〉 as the states are not well
enough separated.

The effective potential for the particle thus reads

Veff(x) = h̄U0|αc|2 cos2(kx) + h̄�(x)|η(x)|2
κ2 + �2(x)

� h̄U0|αc|2
[

cos2(kx) + 1

4

�cU0

�2
c + κ2

sin2(2kx)

]
,

(29)

which equals the adiabatic potential V−(x) in the aforemen-
tioned approximation.

Now we can proceed exactly as before and estimate the
particle’s motion damping rate via the rates between the Bloch
states,

�eff ∼ max
q

2κ

〈
φ0,eff

q

∣∣∣∣ |η(x)|2
κ2 + �2(x)

∣∣∣∣φ0,eff
q

〉

� 2κ
|αc|2

4

U 2
0

�2
c + κ2

max
q

〈
φ0,eff

q |sin2(2kx)|φ0,eff
q

〉
. (30)

We have plotted this rate in Fig. 4 and the effective potential
in Fig. 5. Figure 6 shows the particle motion for different
parameters. The adiabatic elimination of the field dynamics
results in a loss of information about the system and a
broadening of the effective potential wells for the particles
(cf. Fig. 5). Physically, this can be interpreted as a mixture of
a shift of the cosine-squared potential to the left as well as to
the right. These shifts originate from the single-photon field
of undetermined phase in the sine mode. A similar situation
occurs in transversally pumped standing-wave resonators [48],
where for a given cavity-field phase every even potential well
gets deepened (leading to self-organization of the particles)
and for the opposite phase every odd well is deeper. After
adiabatic elimination of the field the mixture of both effects
can be observed which deepens the whole lattice. Note that the

Bose–Hubbard model

Monte Carlo simulations

adiabatic elimination

κ/ωR

Γ
/ω

R

600500400300200100

0.06

0.05

0.04

0.03

0.02

0.01

0

FIG. 4. (Color online) Damping coefficient � stemming from the
adiabatic elimination (solid lines), from Monte Carlo wave-function
(MWCF) simulations [dots, cf. Sec. V, model (ii)] and computed
with the two-band Bose-Hubbard model (dashed lines) presented in
Sec. IV C. The statistical error from the MCWFs is of the order of the
point size. From bottom to top: U0 = (−1, − 3, − 5)ωR. The other
parameters are αc = √

12ωR/|U0| and �c = U0 − κ .

043605-6



MICROSCOPIC DYNAMICS OF ULTRACOLD PARTICLES . . . PHYSICAL REVIEW A 82, 043605 (2010)

h̄U0|αc|2 cos2(kx)
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FIG. 5. (Color online) Effective potential Veff (x) compared to
the unperturbed potential V (x) = h̄U0|αc|2 cos2(kx). At kx = nπ/2
(n ∈ Z) the two potentials agree as for these points the coupling
to the mode vanishes. Parameters: U0 = −50ωR, αc = √

2.4, �c =
−150ωR, and κ = 100ωR.

effect of different atoms in the same state adds up coherently
here, so even a tiny single-particle effect could have dramatic
consequences for a superfluid many-particle state in the lattice.

In principle the model could also be applied to the case of a
BEC of N particles in the same motional state. In this case the
backaction effect on the potential would be strongly enhanced
and modifications of tunneling will lead to significant changes
of the collective nonlinear dynamics of a corresponding mean-
field model. We will, however, not pursue this route any further
here and rather turn to a description in terms of localized basis
function in the spirit of a Bose-Hubbard model.

IV. BOSE-HUBBARD MODEL FOR A RING-CAVITY
POTENTIAL

The many-body version of the single-particle Hamiltonian
(3) is conveniently obtained through a second-quantization
formalism. With (x) denoting the bosonic particle field
operator, the corresponding Hamilton operator reads

H =
∫

dx†(x)H1(x) − h̄�c(a†
cac + a†

s as) − ih̄ηc(ac − a†
c)

+ g1D

2

∫
dx†(x)†(x)(x)(x), (31)

with

H1 = p2

2m
+ h̄U0(a†

cac − a†
s as) cos2(kx) + h̄U0a

†
s as

+ h̄U0

2
(a†

cas + a†
s ac) sin(2kx). (32)

The two-body interaction at very low temperatures (s-wave
scattering) is modeled by a short-range pseudopotential con-
taining the scattering length [49]. As our central goal is to study
the implications of the quantized potential, we will, however,
neglect any direct particle-particle interaction for the moment.
It can be reintroduced later by effective on-site interactions in
the corresponding generalized Bose-Hubbard model.

In order to obtain a Bose-Hubbard description of the
particle dynamics, the standard procedure is to expand

ωRt

〈k
x
〉/

(π
/2

)

250200150100500

1

0.5

0

-0.5

-1

ωRt
〈k
x
〉/

(π
/2

)

250200150100500

1

0.5

0

-0.5

-1

FIG. 6. (Color online) Particle motion simulated with three
different models [cf. models (i)–(iii) in Sec. V]. [Red (solid line
without additional points)] Solution of the complete ring resonator
with both dynamical modes. [Green (squares)] Solution setting the
coupling to the unpumped mode to zero, i.e., a standing-wave lattice
formed by the pumped mode. [Blue (triangles)] Solution of the model
(8), where the pumped mode has been set to a static coherent state.
The blue (dashed) envelope is the exponential decay predicted in
Eq. (30). As the photon number in the pumped mode is high (and
thus the fluctuations small), most of the damping originates from
fluctuations in the unpumped mode. Tunneling is slightly enhanced
compared to the standing-wave lattice, which is consistent with the
shape of the effective potential: A broader potential results in slightly
larger hopping matrix elements. However, stronger damping can
be observed whenever tunneling gets enhanced as the coupling to
the unpumped mode increases. Ensemble averages over 100 Monte
Carlo wave-function trajectories. Parameters: U0 = −ωR, αc = √

12,
�c = U0 − κ , and κ = 600ωR (upper plot) and κ = 200ωR (lower
plot), respectively.

the field operators appearing in (31) using a suitable set of
localized Wannier functions which can be obtained from Bloch
eigenfunctions of the single-particle Hamiltonian [47]. In the
limit of particle energies well below the trap frequency ωT =√

4V0ER/h̄ (V0 is the potential depth), the expansion may be
even restricted to the lowest Bloch band [1,2]. In many cases,
this approximation is very good and thus the consideration of
higher bands is not necessary—even in the presence of any
direct particle-particle interaction. Although one has to take
extra care in choosing the correct Wannier basis, to some
extent this procedure can still be applied when the optical
lattice is generated not by a classically described coherent
light field but rather by a quantized standing-wave mode of an
optical resonator [14–16,50]. As long as the photon-number
uncertainty is much less than the average photon number,
a self-consistent average potential depth can be chosen to
calculate suitable particle basis states for the expansion of
the field operator. The relevant parameters like tunneling and
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on-site energies then only weakly depend on the photon-
number fluctuations in the mode. Note that this procedure gets
doubtful or even inapplicable if the cavity damping rate gets
comparable with the time scale of particle motion or when
only few photons are present in the field mode generating the
potential.

Naturally, one is tempted to try an analogous approach for
the ring-cavity lattice formed by two quantized light modes
as a first step. In the case of symmetric pump, only the
cosine mode is excited in the empty cavity, and thus we can
start with a Wannier basis involving only the lowest band
of the highly excited cosine-mode potential. Interestingly,
we find that within this ansatz a restriction of the particle
dynamics to the lowest band immediately implies a complete
decoupling of the sine mode from the dynamics. The ring
resonator then behaves exactly as a standing-wave cavity
because the possibility of a lattice displacement is neglected
by this ansatz. In principle, one needs to consider displaced
Wannier functions, which is not an obvious task: Treating
the displacement δx as a self-consistent c-number (in the
spirit of the afore discussed self-consistent potential depth)
would result in a vanishing displacement for all times, if
it was zero initially. This obviously does not reproduce the
scattering of photons into the unpumped mode. On the other
hand, differently displaced Wannier functions—which would
take into account that the Hamiltonian modifies the lattice—are
not orthogonal and hence do not form a suitable basis for a
lattice model. One way to overcome this problem by taking
into account higher Bloch bands will be presented in Sec. IV B,
where we show that the corresponding cooperative tunneling
and scattering processes are needed for a correct physical
modeling of the dynamics.

A. Single-band model

As just discussed, in a first attempt we restrict the particle
dynamics in the Hamiltonian (31) to the lowest Bloch band in
the potential generated solely by the strongly pumped cosine
mode. The field operator is thus approximated by

(x) �
∑

i

w0(x − xi)bi, (33)

where the bosonic operators b
(†)
i destroy (create) a particle

at the ith lattice site and w0(x − xi) =: w0
i (x) denotes the

zeroth-band Wannier function localized there. The expanded
Hamilton operator (31) then reads

H =
∑
i,j

Eij b
†
i bj + h̄U0(a†

cac − a†
s as)

∑
i,j

Jij b
†
i bj

+ h̄U0Na†
s as + h̄U0

2
(a†

cas + aca
†
s )

∑
i,j

J̃ij b
†
i bj

− h̄�c(a†
cac + a†

s as) − ih̄ηc(ac − a†
c), (34)

where we have defined the matrix elements

Eij :=
〈
w0

i ,
p2

2m
w0

j

〉
, (35a)

Jij := 〈
w0

i ,cos2(kx)w0
j

〉
, (35b)

J̃ij := 〈
w0

i ,sin(2kx)w0
j

〉
. (35c)

As the next-nearest-neighbor matrix elements are at least
one order of magnitude smaller than their nearest-neighbor
counterparts, we keep only the latter. Looking closely at
the above expressions, the most interesting point to note is
that J̃ik = 0 ∀ i,k due to symmetry. This can easily be seen
analytically: The product w0(x − xi)w0(x − xj ) is symmetric
about the point (xi + xj )/2 and has compact support due to
the exponential localization of the Wannier functions. The
function sin(2kx), on the other hand, is an odd function
with respect to the extrema of the potential. The integrand
appearing when evaluating the scalar product (35c) is thus
an odd function and therefore the integral over R vanishes.
Hence the Bose-Hubbard-type Hamiltonian reads

H = E0N + EB + [h̄U0(a†
cac − a†

s as)](J0N + JB)

+ h̄U0Na†
s as − h̄�c(a†

cac + a†
s as) − ih̄ηc(ac − a†

c),

(36)

where we have defined the particle number operator N and the
hopping operator B := ∑

i(b
†
i bi+1 + b

†
i+1bi). E0, J0 (E, J )

denote the on-site (nearest-neighbor off-site) matrix elements
(35).

Note the lack of terms accounting for scattering into the
sine mode in this Hamiltonian. The unpumped mode thus
completely decouples from the system dynamics and simply
decays to its vacuum state. Hence there will be no difference to
the standing-wave cavity case after this decay. Mathematically,
this can be seen by explicitly writing the Heisenberg equations
for the sine mode,

ȧs = (i{�c + U0[(J0 − 1)N + JB]} − κ) as, (37a)
˙

a
†
s as = −2κa†

s as. (37b)

In the bad-cavity limit, when the field relaxes almost in-
stantaneously to its steady-state value, both quantities vanish.
To capture more of the physics of the ring resonator, higher
bands need to be included. This will be done in Sec. IV B.

As the single-mode model has been extensively treated in
previous literature, we will not discuss this much further. But is
this result a bug or a feature? Mathematically, the decoupling
of the sine mode originates from the even symmetry of the
lowest-band Wannier functions, which we used as our basis.
Physically, one could argue that tunneling between sites within
a band does not invoke any force or momentum transfer and
thus introduces no coupling or scattering to the empty sine
mode. Hence the model can be at least self-consistent for a
superfluid phase strictly limited to a single band. Of course,
adding on-site interactions already destroys this argument as
these are connected to changes of the local wave functions
which amounts to the appearance of higher-band contributions.
These will couple to the sine mode as seen in the numerical
examples in Sec. II and the appearance of sine photons thus
would herald the breakdown of zeroth-band superfluidity.

B. Multiband model

In order to incorporate excitations of the unpumped mode
we have to allow for tunneling events from one site to a
neighboring site with a simultaneous generation of a photon in
the sine mode. This means that the final-particle wave function
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is shifted with respect to the unperturbed basis: As the Wannier
states corresponding to the cosine potential form an orthogonal
basis set, mathematically this amounts, of course, to the
admixture of higher-band Bloch functions in the dynamics.
One might at this point be tempted to state that the zeroth-
band motion will thus largely decouple from the unpumped
sine mode whenever the excitation energy to the next band
is sufficiently large. However, one has to be more careful
here. Actually, the lowest-band approximation in the cosine
potential does not necessarily coincide with the lowest-band
approximation for the ring cavity. During the time evolution the
potential can get shifted relative to the unperturbed potential
generated by the pump field. Hence, despite possessing
contributions from higher-band wave functions, the particle
can still have an energy corresponding to the lowest band as
its wave function is simply a shifted lowest-band Wannier state.

Mathematically, one can estimate such contributions by
expanding the lowest-band Wannier functions of a shifted
lattice in the Wannier functions (including higher bands) of
the original one, which, as said, form a complete basis set.
We see, that to lowest order only the first antisymmetric
band significantly contributes. This can be easily checked. If
w0(x − xi) is the lowest-band Wannier function localized at the
ith lattice site of the unperturbed lattice, the Taylor expansion
of a slightly shifted Wannier function to lowest order in the
shift δx reads

w0(x − xi − δx) � w0(x − xi) − δxw′
0(x − xi). (38)

The first derivative of the ground-state Wannier function is
antisymmetric and thus the first band gets involved.

Let us therefore develop an improved version of the
previously derived Bose-Hubbard model, which includes the
important additional physics originating from the ring-cavity
geometry. To this end, we reconsider the original Hamiltonian
(3) and assume a sufficiently strong coherent field αc in the
cosine mode so that its quantum properties can be ignored and
only the sine mode needs a description by an operator a. The
Hamiltonian thus reads

H = p2

2m
+ h̄U0(|αc|2 − a†a) cos2(kx) − h̄(�c − U0)a†a

+ h̄U0

2
sin(2kx)(α∗

c a + αca
†). (39)

For very low photon numbers in the sine mode, we can neglect
its contribution proportional to a†a to the potential depth and
get:

V (x) = h̄U0(|αc|2 − a†a) cos2(kx) � h̄U0|αc|2 cos2(kx).

(40)

This Hamiltonian is closely related to an optomechanical
coupling as used in Ref. [17], but here we have a periodic
trapping potential for the particle motion. During the dy-
namics, the classical periodic potential is modified through
the scattering term. A photon in the sine mode essentially
leads to a broadening of the effective potential, which lowers
the ground-state energy and modifies the tunnel coupling to
neighboring sites.

From a physics point of view, the dynamics induced by this
Hamiltonian in several aspects resembles the case of particle

motion in a standing-wave light field across a high-finesse
resonator [31,48], where a self-organization of the particles in
two possible patterns filling every second lattice site can occur.
Position-dependent light scattering modifies the optical poten-
tial so the occupied sites deepen. The difference to our system
is the symmetry of the scattering term, which here is antisym-
metric with respect to the extrema of the classical potential.
So instead of resulting in a state-dependent deepening of the
lattice, the scattered light shifts the position of the lattice sites
with respect to the classical potential. In a Bloch expansion
with respect to the classical potential this shift amounts to con-
tributions of higher bands like any interaction term would do.

To obtain a lattice model we expand the field operator to

(x) =
∑

i

∑
n

bn
i w

n
i (x), (41)

where bn
i destroys a particle in the nth band at the ith well and

wn
i denotes the corresponding Wannier function. Neglecting

any direct particle-particle interaction, we obtain the second-
quantized version of the Hamiltonian (39),

H =
∑
n,m

∑
i,j

Enm
ij bn

i
†
bm

j − h̄(�c − N̂U0)a†a

+ h̄U0

2

∑
n<m

⎛
⎝J̃ nmT̃ nm +

∑
i �=j

J̃ ′nm
ij B̃nm

ij

⎞
⎠ (α∗

c a + αca
†),

(42)

where we have defined the operators

N̂ :=
∑

n

∑
i

bn
i
†
bn

i ≡ Nid, (43a)

T̃ nm :=
∑

i

(
bn

i
†
bm

i + bm
i
†
bn

i

)
, (43b)

B̃nm
ij := bn

i
†
bm

j + bm
j
†
bn

i . (43c)

N̂ is the number operator and proportional to the identity
operator id as the total number of particles is conserved.
T̃ nm describes transitions between two bands within one well,
whereas B̃nm

ij accounts for hopping between two wells together
with a change of the band. The corresponding matrix elements
read

Enm
ij :=

〈
wn

i ,

(
p2

2m
+ h̄U0|αc|2 cos2(kx)

)
wm

j

〉
, (44a)

J̃ nm := 〈
wn

i ,sin(2kx)wm
i

〉
, (44b)

J̃ ′nm
ij := 〈

wn
i ,sin(2kx)wm

j

〉
. (44c)

Note that in-well transitions between bands without photon
exchange are prohibited as Enm

ii = 0 ∀ n �= m.

C. Two-band lattice model

The Hamiltonian (42) is still complex and hard to solve
completely. Hence, we will first try to highlight the basic
physics of particle motion and lattice shifts in an as-simple-as-
necessary model and restrict the particle motion to two bands.
As pointed out earlier, to lowest order the first excited band gets
coupled. It will be the superpositions of odd- and even-parity
eigenstates within one well which scatter a coherent field into
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FIG. 7. (Color online) Schematic view of some processes appear-
ing in the Hamiltonian (45) for two chosen lattice sites. The width
of the arrows corresponds to the amplitude of the process, i.e., the
magnitude of the matrix elements (44).

the sine mode with nonvanishing amplitude 〈a〉. Keeping only
the on-site and nearest-neighbor matrix elements and defining
En := Enn

ii , J̃ := J̃ 01 and J̃ ′ := J̃ ′01
i,i+1 the Hamiltonian reads

H =
∑
n=0,1

i

Enbn
i
†
bn

i +
∑

n,m=0,1
〈i,j〉

Enm
i,j bn

i
†
bm

j

+ h̄U0

2

⎛
⎝J̃ T̃ +

∑
〈i,j〉

J̃ ′B̃ij

⎞
⎠ (α∗

c a + αca
†)

− h̄(�c − N̂U0)a†a. (45)

T̃ := T̃ 01 and B̃ := B̃01
i,i+1 describe on-site (off-site) parity

changes.
Here we make a short remark concerning very deep

potentials. There the hierarchy

|J̃ | � |E1| � |E0| ∼ |J̃ ′| � ∣∣E01
i,i+1

∣∣ (46)

holds. Hence, tunneling happens preferably via excitation to
the first band and subsequent tunneling within this band (see
also Figs. 7 and 8). However, one has to be conscious that a
too-large effective coupling strength invalidates the two-band
model as even higher bands need to be taken into account. See
Fig. 9 for a situation where the two-band model fails, whereas
the three-band version allows for reproducing the results of
the full Monte Carlo simulations (cf. Sec. V).

Most of the new physics involving tunneling with light
scattering and hopping between bands can be already seen in a
truncated two-site version of the model. Labeling the two sites
by indices l and r for left and right, the Heisenberg equation of
motion for the field then explicitly reads (neglecting the input
noise operator)

ȧ = [i(�c − NU0) − κ]a − i
αcU0

2
(J̃ T̃ + J̃ ′B̃) (47)

and its steady-state solution

ass = −i αcU0
2 (J̃ T̃ + J̃ ′B̃)

κ − i(�c − NU0)
. (48a)

For the photon number one obtains

(a†a)ss =
|αc|2U 2

0
4 (J̃ T̃ + J̃ ′B̃)2

κ2 + (�c − NU0)2

� |αc|2
4

U 2
0

�2
c + κ2

(J̃ T̃ + J̃ ′B̃)2, (48b)

where the latter is valid for |U0| � |�c|.
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FIG. 8. (Color online) Single Monte Carlo trajectory of the two-
band Bose-Hubbard model for a very deep potential (V0 = 50ER) and
two wells. [Red crosses (blue dots)] Expectation value of the particle
number in the zeroth (first) band within each well. As zeroth-band
tunneling is neglectable on the simulated time scale, the population
within this band does not change considerably (horizontal lines).
Only the first-band tunneling has a significant effect and subsequently
modifies the zeroth-band distribution within the two lattice sites.
Parameters: U0 = −2ωR, κ = 500ωR, αc = 5, and �c = U0 − κ .

For large resonator damping constants κ , where the particle
dynamics follows the field adiabatically, the localized states
within one band radiate a field with zero amplitude,〈

wn
i

∣∣ass

∣∣wn
i

〉 = 0 ∀ i,n (49)

but nonvanishing photon number. Indeed, for one particle, the
photon number is the same for all four localized basis states,

〈ψ |(J̃ T̃ + J̃ ′B̃)2|ψ〉 = J̃ 2 + J̃ ′2

(50)
∀ |ψ〉 ∈ {∣∣wn

i

〉|i ∈ {l,r}, n ∈ {0,1}}.
As pointed out before, the ground state will always have a
non-negligible contribution of the first band. Therefore it is
convenient to switch to the basis of even and odd localized
states,

|ψ±
l,r〉 := 1√

2

(∣∣w0
l,r

〉 ± ∣∣w1
l,r

〉)
(51)
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three-band Bose–Hubbard model
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MCWFs (reduced ring resonator)
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FIG. 9. (Color online) Average position of the particle computed
with Monte Carlo simulations (ensemble average over 150 trajecto-
ries) of the reduced model (ii) presented in Sec. V and with the two-
and three-band lattice models. The two-band version fails, whereas
the inclusion of the next band reproduces the correct behavior.
Parameters: U0 = −2ωR, αc = √

12.5, �c = U0 − κ , and κ = 10ωR.

which radiate an approximately coherent field |±α〉 with
amplitude

α = −i αcU0
2 J̃

κ − i(�c − NU0)
(52)

into the resonator. Strictly speaking, this is valid only as
long J̃ 2 � J̃ ′2 . However, this does not bring about any
further restriction on the potential depth V0 = h̄|U0||αc|2 since
already for V0 = 5ER (for shallower potentials, the localized
Wannier states cannot be properly defined [2]) the squared
matrix elements already differ by three orders of magnitude,
J̃ ′2/J̃ 2 ∼ 0.002. This difference gets much more pronounced
for deeper and deeper lattices. We can thus safely assume
J̃ 2 + J̃ ′2 � J̃ 2.

The basis decomposition of an arbitrary particle state in one
well reads

√
1 − |ε|2∣∣w0

i

〉 + ε
∣∣w1

i

〉 =
√

1 − |ε|2 + ε√
2

|ψ+
i 〉

+
√

1 − |ε|2 − ε√
2

|ψ−
i 〉. (53)

The vanishing field amplitude for a particle in a parity
eigenstate [|ε| ∈ (0,1)] can thus be explained as a consequence
of destructive interference: The two components of the particle
state radiate a field |α〉 and a field |−α〉, respectively. The
resulting field state described by the reduced density matrix
ρ ∝ |α〉〈α| + |−α〉〈−α| has a vanishing amplitude expec-
tation value but a nonvanishing photon-number expectation
value, cf. the broadened adiabatic potential derived in Sec. III
which can be explained as an average effect of the two shifts.

The jump operator
√

2κa can act as a parity-switch
operator: Suppose the particle being in the lowest band of

〈a†a〉
〈kx〉

ωRt

1.2 × 10−5
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4.0 × 10−6

0

250200150100500

2

1

0

-1
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FIG. 10. (Color online) Sample trajectory of the reduced model
(ii) presented in Sec. V showing the position expectation value 〈kx〉
(left y axis, lower curve) and 〈a†a〉 (right y axis, upper curve). The
two quantum jumps occurring at ωRt ∼ 70 and ωRt ∼ 100 are clearly
visible: The photon number in the mode and the occupied band of the
particle are changed simultaneously as seen from the sudden change
of the oscillation frequency and amplitude between the potential
wells. Here even higher bands are excited. After the fast oscillation
between the wells the particle gets trapped again, but in a higher
excited state, as can be seen from the higher amplitude. Furthermore,
the photon-number variance is much more pronounced. Parameters:
U0 = −2ωR, αc = √

6, �c = U0 − κ , and κ = 500ωR.

the left well prior to the jump,

|ψ〉 ∝ |ψ+
l 〉|α〉 + |ψ−

l 〉|−α〉. (54a)
Directly after the jump, the system state reads

a|ψ〉 ∝ |ψ+
l 〉|α〉 − |ψ−

l 〉|−α〉, (54b)

which corresponds to the antisymmetric particle state (ε =
1 above). Figures 8, 10, and 11 show single Monte Carlo
trajectories depicting this behavior. More generally, quantum
jumps result in a loss of the coherences in the system state
[48]: During the coherent evolution the composed system state
reads

|ψt 〉 = c+
l (t)|ψ+

l 〉|α〉 + c−
l (t)|ψ−

l 〉|−α〉
+ c+

r (t)|ψ+
r 〉|α〉 + c−

r (t)|ψ−
r 〉|−α〉. (55a)

Acting with the jump operator ∝ a on this state causes two
phase shifts destroying the coherences:

a|ψt 〉 ∝ c+
l (t)|ψ+

l 〉|α〉 − c−
l (t)|ψ−

l 〉|−α〉 + c+
r (t)|ψ+

r 〉|α〉
− c−

r (t)|ψ−
r 〉|−α〉. (55b)

For the ensemble average over many quantum trajectories
this effects leads to dephasing and thus to a damping of the
tunneling oscillations.

V. COMPARISON WITH FULL MONTE CARLO
WAVE-FUNCTION SIMULATIONS

So far our treatment relied on a series of analytic ap-
proximations which allowed us to predict a wealth of new
physical phenomena. To get a first check on the validity and
the prediction power of these models we compare them to
“full” numerical simulations of the single-particle dynamics
in a ring resonator. They are carried out in a momentum- and
photon-number basis truncated at sufficiently high numbers to
include all the relevant physics. In addition to a quantitative
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FIG. 11. (Color online) Single Monte Carlo trajectory of the two-
band Bose-Hubbard model for a shallow potential (V0 = 12ER) and
two wells. [Red solid line (blue dots)] Expectation value of the particle
number in the zeroth (first) band within each well. Quantum jumps in
the photon number can indeed trigger parity changes of the particle
as sketched in the text [Eqs. (54)]. The different tunneling time scales
for the two bands can be seen. This trajectory can be regarded as a
Bose-Hubbard equivalent to Fig. 10; the parameters are the same as
described in the caption.

check for the analytic approximations these simulations also
give nice qualitative insights into the microscopic origins
of the observed phenomena. These simulations with at least
three independent quantum degrees of freedom are generally
very expensive in computer memory and time. They were
performed using a Monte Carlo wave-function simulation
algorithm as implemented in the locally developed C++QED
framework [51],1 which is highly optimized for efficient
memory handling and time-evolution speed. For technical
reasons we swapped the role of the the two modes in the
simulations, the sine mode is thus pumped, and therefore the

1The latest—and strongly improved with respect to the pre-
vious one described in Ref. [51]—release of the framework
(version 2) can be downloaded from the project’s homepage
www.uibk.ac.at/th-physik/qo/research/cppqed.html or directly at
www.cppqed.sourceforge.net.

two potential wells (periodic boundary conditions) are located
at kx = ±π/2.

We performed Monte Carlo simulations of three different
systems:

(i) the full ring resonator as described by the Hamilton
operator (3),

(ii) the reduced system with the pumped mode set to a
coherent state described by the Hamiltonian (39) [without the
approximation (40)], and, for comparison,

(iii) the pumped standing-wave resonator.
Additionally, we performed as well a series of Monte Carlo
simulations of

(iv) the Bose-Hubbard model (45) to demonstrate the effects
of quantum jumps on the particle parity. However, for the time
evolution of the density matrix this much lower-dimensional
model was alternatively solved by directly integrating the full
master equation.

In order to reobtain the (approximately) same potential
depth in the full system (i) we set ηc = |αc|

√
κ2 + (�c − U0)2.

In all simulations, the particle was initially in a Gaussian
state (momentum-space simulations) or in the lowest Wannier
state (lattice model), respectively, localized in the right well.
Note that due to the periodic boundary conditions, tunneling
is enhanced by a factor of 2 in all numerical simulations.
For comparison, we have taken this into account in the
Bose-Hubbard model as well and have doubled all hopping
matrix elements.

In Fig. 12 the standing-wave lattice is compared to the
ring resonator. Although the unpumped mode is hardly
populated—〈a†a〉 ∼ 1.4 × 10−5—its impact on the particle
is well pronounced. We see a significantly faster decay
of coherent tunneling due to the presence of the second
mode as source of decoherence. One might also recognize
a slightly faster tunneling time due to the modified effective
potential but this would require a much larger ensemble to
be quantitatively checked. Here the validity condition for the
approximation (40) is very well fulfilled. Note that for the
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FIG. 12. (Color online) Comparison of the standing-wave res-
onator [model (iii)] and the ring resonator [model (i)] for one particle.
Ensemble average over 250 trajectories. Parameters: U0 = −3ωR,
αc = 2, �c = U0 − κ , and κ = 400ωR.

043605-12



MICROSCOPIC DYNAMICS OF ULTRACOLD PARTICLES . . . PHYSICAL REVIEW A 82, 043605 (2010)

Bose–Hubbard model

MCWFs (reduced ring resonator)

MCWFs (standing-wave resonator)

MCWFs (ring resonator)

ωRt

〈k
x
〉/

(π
/2

)

250200150100500

1

0.5

0

-0.5

-1

FIG. 13. (Color online) Average position of the particle computed
with the four models described in Sec. V. For the Bose-Hubbard
model the population imbalance 〈Nr〉 − 〈Nl〉 has been plotted.
Ensemble average over 100 trajectories. Parameters: U0 = −ωR,
αc = √

12, �c = U0 − κ , and κ = 400ωR.

parameters used in the figure the average photon number
in the pumped mode generating the optical potential was
only 4, which, however, still proves enough for the classical
(coherent state) approximation for this mode amplitude to
give qualitatively similar results. As particle motion is based
essentially on tunneling in the low temperature limit, scattering
to the unpumped mode can be viewed as an effective friction
mechanism in the model.

Figure 13 shows the particle hopping between two sites
computed from all four aforementioned models. The reduced
system (ii) is indeed a good approximation for sufficiently
large |αc|. Since the effective coupling is not too large the two-
band Bose-Hubbard model can remarkably well reproduce
the results. However, as the coupling increases the two-band
approximation turns out to be too restrictive. Including higher
bands in such cases becomes absolutely necessary. Such a
situation is depicted in Fig. 9, where taking into account the
second excited band allows for reproducing the predictions of
model (ii).

Looking at the microscopic origin of the dephasing and
decoherence, the crucial effect of quantum jumps on these can
be seen in Figs. 8, 10, and 11. The parity swaps predicted
in Eqs. (54) can be nicely seen and the different tunneling
time scales corresponding to the two bands are clearly visible.
As the jump times have a strong random contribution, the
source of dephasing thus gets very obvious. Actually, a related
mechanism might also occur in free-space optical lattices if
collisions invoke higher bands in the particle dynamics. Note
that transitions between the bands visible in changes of the
tunnel oscillation frequency are also accompanied by jumps in
the photon number, which provides for real-time monitoring
of the band populations.

Finally, we demonstrate that the Bose-Hubbard model can
capture a great deal of the underlying physics if several bands
are included. This is depicted in Fig. 14 which exhibits a
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FIG. 14. (Color online) Population evolution from the Bose-
Hubbard-like lattice model for a fixed potential depth V0 = 12ER. The
different time scales for the two bands are clearly visible. The particle
was initially in the lowest band and located in the left well. The black
dash-dotted line shows the tunneling Rabi oscillation for the lowest
band without any coupling to the mode, i.e., H = E0

lrb
0
l
†
b0

r + H.c., for
comparison. (Left y axis) Populations; (right y axis) photon number.
As the parameters are similar to the ones used in Fig. 6, these
plots give a microscopic band interpretation of the particle motion
presented there. Parameters: U0 = −2ωR, αc = √

6, �c = U0 − κ ,
and κ = (500,100,10)ωR from top to bottom.

significant excitation of the first excited band in steady state.
This is consistent with the full simulations above, where a
similar heating to higher bands can be observed, cf. Fig. 12.

VI. CONCLUSIONS

We have developed several approximative analytical mod-
els to describe the dynamics of a quantum particle in an optical
lattice which is generated by counterpropagating fields in
a high-Q ring resonator. A standard single-band description
in terms of Bloch or Wannier functions calculated from the
unperturbed optical potential predicts frictionless tunneling
motion of the particles and long-range coherence of the
corresponding wave function. However, this approximation
misses most of the essential physics. Already a perturbative
inclusion of the first excited band reveals particle hopping
between bands and sites accompanied by photon scattering
into empty field modes as a key mechanism to provide
for a realistic description of the dynamics. Even for very
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small photon scattering rates it leads to dephasing of tunnel
oscillations and decoherence of the wave function. This will
strongly diminish coherent transport together with heating of
particle motion. In the perturbative approach it essentially
leads to a modified effective potential shape and a phase-decay
term. Note that this term, although being much smaller in
a free-space-lattice setup, will finally also pose limits on
obtainable coherence lengths and acceleration sensitivity in
large free-space optical lattices. Microscopically, dephasing
can be traced back to the strongly band (energy) dependent
tunneling times, so even very small contributions of different
bands lead to significant time shifts of tunnel oscillations.
The corresponding approximative models which we developed
will give a basis for future many-body generalizations of the
model involving short- and long-range interactions between
different particles. The interactions mediated by the scattered
photons play a very similar role as phonons in real solid-state
systems and thus can be a useful handle to shape and study
long-range interactions in cold-atom optical lattices. As the
photons scattered by different particles into the same mode
even at long distances will interfere, they can lead to nonlocal
momentum-space pairing of particle motion. The interaction

will also help to establish long-range order, which will be
particularly the case for the transverse-pump case, where no
a priori order is prescribed by the field modes and the atoms
can self-arrange in a supersolid with diagonal and off-diagonal
order.

In addition to modifying the dynamics and steady state
of the particles, the scattering modes also provide for a
basis for a real-time monitoring system of the particles to
study the transition between different quantum phases or
quantum models of transport in lattices with destruction of the
system. This would require including direct local interactions
in addition, which should be possible at least in the few-band
limit of the model. As we centrally only need polarizable point
particles, corresponding effects could as well be observed with
molecules or even nanoparticles which are optically trapable.

ACKNOWLEDGMENTS

This work has been supported by the Austrian Science Fund
FWF through projects P20391 and F4013. We thank Tobias
Grießer, Matthias Sonnleitner, and Hashem Zoubi for helpful
discussions.

[1] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller,
Phys. Rev. Lett. 81, 3108 (1998).

[2] D. Jaksch and P. Zoller, Ann. Phys. 315, 52 (2005).
[3] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885

(2008).
[4] M. Lewenstein, L. Santos, M. A. Baranov, and H. Fehrmann,

Phys. Rev. Lett. 92, 050401 (2004).
[5] J. K. Asboth, H. Ritsch, and P. Domokos, Phys. Rev. Lett. 98,

203008 (2007).
[6] P. Domokos and H. Ritsch, J. Opt. Soc. Am. B 20, 1098 (2003).
[7] P. Horak and H. Ritsch, Phys. Rev. A 63, 023603 (2001).
[8] T. Bourdel, T. Donner, S. Ritter, A. Öttl, M. Köhl, and
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