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Diffraction at a time grating in above-threshold ionization: The influence of the Coulomb potential
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We analyze the photoelectron emission spectrum in atomic above-threshold ionization by a linearly polarized
short-laser pulse. Direct electrons can be characterized by both intracycle and intercycle interferences. The former
results from the coherent superposition of two different electron trajectories released in the same optical cycle,
whereas the latter is the consequence of the superposition of multiple trajectories released in different cycles. In the
present article, a semiclassical analytical expression for the complete (both intracycle and intercycle) interference
pattern is derived. We show that the recently proposed semiclassical description in terms of a diffraction process
at a time grating remains qualitatively unchanged in the presence of the long-range Coulomb potential. The latter
causes only a phase shift of the intracycle interference pattern. We verify the predictions of the semiclassical
model by comparison with full three-dimensional (3D) time-dependent Schrödinger equation (TDSE) solutions.
One key finding is that the subcycle interference structures originating from trajectories launched within a time
interval of less than 1 femtosecond should be experimentally observable also in low-resolution spectra for longer
multicycle pulses.
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I. INTRODUCTION

Above-threshold ionization and high-order harmonic gen-
eration (HHG) are highly nonlinear quantum-mechanical
phenomena induced by intense laser pulses. The wavelength
λ dependence of the HHG yield has recently been studied
extensively [1–4]. Superimposed on a smooth power-law
dependence, Schiessl et al. [1,4] have found surprisingly strong
and rapid oscillations on a fine λ scale, which are due to
quantum interference of many returning orbits and related to
the channel closing [5,6]. Indeed, the period of the oscillation
is unity in terms of the channel-closing number R

R = Ip + Up

ω
, (1)

where Ip, Up, and ω are the ionization potential, the pondero-
motive energy of the electron in the laser field, and the carrier
laser frequency, respectively. This observation naturally invites
the question: Does high-intensity ionization yield also oscillate
as a function of the laser wavelength or the channel-closing
number R? According to the three-step model, photoelectrons
can be classified into direct and rescattered electrons [7].
Electrons are emitted by tunneling through the potential barrier
formed by the combination of the atomic potential and the
external strong field. Tunneling occurs within each optical
cycle predominantly around the maxima of the absolute value
of the electric field. After detachment from the atom, direct
electrons can escape without being strongly affected by the
residual core potential. The classical cutoff energy for this
process is 2Up. After being accelerated back by the laser field,
a small portion of electrons are rescattered by the parent ion and
can achieve a kinetic energy E of up to 10Up. Similarly to HHG
yield, Milošević et al. [8] found periodic enhancements in the
intensity-dependent emission of rescattered electrons due to
constructive interference of a large number of long quantum
orbits. Martiny and Madsen [9] have observed interferences

for ionization by circularly polarized short pulses, explained
as the contribution of many frequencies of the power spectrum.

Classical trajectories that correspond to direct ionization
(E < 2Up) are seemingly unrelated to HHG since they do
not return close to the parent ion and, even if driven back,
suffer only a distant collision with the core. Nevertheless,
they are crucial in the formation of interference patterns in
photoelectron spectra. A temporal double-slit interference pat-
tern has recently been studied in near-single cycle pulses both
experimentally [10,11] and theoretically [12]. A time-energy
analysis of above-threshold ionization has been recently pre-
sented [13]. Near threshold oscillations in angular distribution
were explained as interferences of electron trajectories [14]
and recently measured [15]. Diffraction fringes have been
experimentally observed in photoionization of He atoms [11]
and photodetachment in F− ions by femtosecond pulses for
fixed frequency [16] and theoretically analyzed [17]. The
interference pattern in multicycle photoelectron spectra can be
identified as a diffraction pattern at a time grating composed of
intracycle and intercycle interferences [17,18]. While the latter
gives rise to the well-known above-threshold ionization (ATI)
peaks, the former leads to a modulation of the ATI spectrum
offering information on the subcycle ionization dynamics. This
analysis was based on a one-dimensional (1D) semiclassical
model closely following the “simple man’s model” (SMM).
Similar patterns were found in spectra of laser-assisted Auger
decay whose gross structure of sidebands were explained
as the interference between electrons emitted during one
period [19].

In the present article we show that the analysis in terms of
a time grating remains valid in the presence of long-range
Coulomb forces. We gauge the semiclassical model by a
comparison with the numerical results of the time-dependent
distorted wave Coulomb-Volkov approximation (CVA)
[20–24] and solutions of the full time-dependent Schrödinger
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equation (TDSE). Moreover, we present a systematic study of
the dependence of intracycle and intercycle interferences on
the length of the pulse. One key finding is that the observation
of subcycle ionization dynamics should become accessible
for longer multicycle pulses and, moreover, in low-resolution
spectra provided the photoelectrons are observed along the
axis of linear polarization. The dependence of the total
ionization yield on R (or equivalently, the wavelength of the
driving field λ) will be analyzed, employing two-dimensional
interferograms as a function of E and R.

The article is organized as follows. In Sec. II we summarize
the quantum-mechanical methods, the strong-field approxima-
tion (SFA), CVA, and the (exact) numerical solution of the
full TDSE which serve as benchmarks for the semiclassical
description. In Sec. III we expand on the previously presented
semiclassical analysis [18] and show that long-range Coulomb
effects leave the separation of intracycle and intercycle
interferences and thus the interpretation of the interference
pattern in terms of a diffraction at a time grating intact. In
Sec. IV, we compare the photoelectron energy spectrum as a
function of the laser wavelength calculated by these methods
with the prediction of the semiclassical model and discuss
similarities and differences. We show that for particular pulse
shapes, intercycle interference can be suppressed completely
preserving a pure intracycle interference pattern. We also in-
vestigate the wavelength dependence of the energy-integrated
yield and find regular oscillations closely resembling those
previously observed for HHG [1–4].

II. BRIEF REVIEW OF QUANTUM METHODS

In this section, we summarize approximate as well as exact
numerical methods used to solve the Schrödinger equation
of one-electron atoms subject to a strong laser pulse. These
results will serve to probe the semiclassical description of
interferences to be discussed in Sec. III. We consider an atom
in the single active electron approximation interacting with a
laser field �F (t), linearly polarized along the z direction. The
Hamiltonian of the system in the length gauge is

H = �p 2

2
+ V (r) + z F (t), (2)

where V (r) is the atomic potential, �p is the momentum, and �r
the position of the electron.

As a consequence of the interaction, the electron initially
bound in the state |φi〉 is emitted with momentum �k and energy
E = k2/2 into the final unperturbed state |φf 〉. The evolution
of the electronic state |ψ(t)〉 is governed by the TDSE for
the Hamiltonian of Eq. (2). The photoelectron momentum
distributions can be calculated as

dP

d�k = |Tif |2, (3)

where Tif is the T -matrix element corresponding to the
transition φi → φf . The energy spectrum can be written as

dP

dE
= 2π

∫ 1

−1
d(cos θ )

√
2E |Tif |2, (4)

where θ is the angle subtended by �k and the direction of
polarization.

A. Time-dependent distorted wave theory

We employ the time-dependent distorted wave theory in
two variants: the CVA and the SFA. Within the time-dependent
distorted wave theory [25], the transition amplitude in the post
form is expressed as

Tif = −i

∫ +∞

−∞
dt 〈χ−

f (t)|z F (t) |φi(t)〉, (5)

where χ−
f (t) is the final distorted-wave function and the initial

state φi(t) is an eigenstate of the atomic Hamiltonian without
perturbation. If we choose the Hamiltonian of a free electron
in the time-dependent electric field as the exit-channel dis-
torted Hamiltonian [i.e., i ∂

∂t
|χ−

f (t)〉 = (p2

2 + z F (t))|χ−
f (t)〉]

the solutions are the Volkov states [26]

χ
(V )−
�k (�r,t) = exp [i(�k + �A)�r]

(2π )3/2 exp [iS(t)] , (6)

where S denotes the Volkov action

S(t ′,t) = −
∫ t

t ′
dt ′′

[
[�k + �A(t ′′)]2

2
+ Ip

]
. (7)

In Eq. (6), S(t) must be understood as the action of Eq. (7)
for the special case of t ′ → −∞. In Eqs. (6) and (7), �A(t) =
− ∫ t

−∞ dt ′ �F (t ′) is the vector potential of the laser field divided
by the speed of light. Equation (5) together with Eq. (6) leads
to the SFA transition matrix. Accordingly, the influence of the
atomic core potential on the continuum state of the receding
electron is neglected and therefore the momentum distribution
is a constant of motion after the conclusion of the laser pulse.
It is well known that the SFA fails to describe ionization for
moderately weak fields as well as the slow electron yield even
for strong fields [27].

An improved approximation is achieved by combining
the atomic eigenstate of the continuum φ−

�k with the final-
channel wave function of Eq. (6). For a hydrogenic atom (i.e.,
V (r) = −ZT /r with ZT the nucleus charge) this results in the
Coulomb-Volkov final state [28]

χ
(CV)−
�k (�r,t) = χ

(V )−
�k (�r,t) DC(ZT ,�k,�r), (8)

where DC(ZT ,�k,�r) = N−
T (k) 1F1(−iZT /k,1, − ik r − i�k�r).

The Coulomb normalization factor N−
T (k) =

exp(πZT /2k)	(1 + iZT /k) coincides with the value of
the Coulomb wave function at the origin, and 1F1 denotes
the confluent hypergeometric function. In the CVA, the
simultaneous interactions of the released electron with the
residual ionic core and the external field are taken into account
nonperturbatively, yet approximately. Inserting Eq. (8) into
Eq. (5) leads to the CVA, which can be evaluated in closed
form [20,21]. From Eq. (8), the SFA can be derived as the
limit of weak Coulomb potential, that is, χ

(CV)−
�k → χ

(V )−
�k of

Eq. (6) as ZT → 0.

B. Full solution of the three-dimensional TDSE

The numerical solution of the TDSE is considered to be
exact and will be used as an ultimate benchmark for assessing
the reliability of the semiclassical model as well as the
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time-dependent distorted-wave (SFA and CVA). We solve the
atomic TDSE

i
∂

∂t
|ψ(�r,t)〉 = H |ψ(�r,t)〉, (9)

where H is the Hamiltonian of an atom subject to an external
electric field given by Eq. (2). The TDSE is integrated
on a finite grid by means of the pseudospectral method
[27,29]. The r coordinate is discretized using a finite-element
discrete-variable method [30,31] with a nonuniform mesh
point distribution allowing for an accurate description of the
Coulomb singularity. Both the unbound as well as the bound
parts of the wave function |ψ(t)〉 are accurately represented.
For the present simulations, we are able to keep the entire
wave function on the numerical grid such that no absorbing
boundary conditions have to be invoked.

III. SEMICLASSICAL MODEL

In this section we present the semiclassical model for
separating intracycle from intercycle interferences and extend
this analysis to the long-range Coulomb interaction. We also
investigate the dependence on the momentum of the emitted
electron and the Keldysh parameter.

A. Intracycle and intercycle interferences

While a small fraction of photoelectrons undergoes rescat-
tering by the remaining ion, we consider here direct photo-
electrons (with energies E � 2Up) which dominate the total
ionization yield. We closely follow the SMM [7,22–24] to deal
with interference signatures within the SFA. A starting point
is the saddle-point approximation of the SFA, which leads to
a transition amplitude to the continuum state of the form [22]

Tif (�k) = −
M∑
i=1

G
[
t (i)
r ,�k]

eiS[t (i)
r ]. (10)

Here M is the number of classical trajectories reaching a given
final momentum �k and G[t (i)

r ,�k] is the ionization amplitude

G
[
t (i)
r ,�k] =

[
2πiF

[
t (i)
r

]∣∣�k + �A[
t

(i)
r

]∣∣
]1/2

d∗(�k + �A[
t (i)
r

])
, (11)

where d∗(�v) is the dipole element of the bound-continuum
transition. In Eq. (10), S is given by the Volkov action [see
Eq. (7)] [26]. Note that in line with the SMM the action does
not contain contributions from the long-range Coulomb forces
the ejected electron is subject to. We will return to this point
in the following. Dropping the second argument in S(t ′,t)
for notational simplicity with the understanding that t is the
time at which the wave packet is projected onto observables
(eventually t → ∞), the release time t (i)

r of trajectory i is
determined by the saddle-point equation

∂S(t ′)
∂t ′

∣∣∣∣
t ′=t

(i)
r

=
[�k + �A[

t (i)
r

]]2

2
+ Ip = 0. (12)

Release times t (i)
r are complex since Ip > 0. In the following,

we approximate them by real values by setting Ip = 0,
arriving at

�k + �A[
t (i)
r

] = 0. (13)

Classical trajectories originating at different release times
t (i)
r (i = 1,2, . . .) can give rise to semiclassical interferences

provided they satisfy the condition given by Eq. (13) for
reaching the same final momentum �k. While the interference
condition involves the vector potential �A, the trajectory is
governed by the electrical field �F . The precise relation between
�F and �A, in particular the constant of integration, is therefore of

importance for few-cycle and multicycle pulses. We consider
a laser field

F (t) = f (t) sin (ωt + φCE) , (14)

with f (t) the envelope function and φCE the carrier-envelope
phase. The envelope function of the pulse should vanish as
t → ±∞. The vector potential is accordingly given by

A(t) = −
∫ t

−∞
dt ′F (t ′) = f (t)

ω
cos (ωt + φCE)

− 1

ω

∫ t

−∞
dt ′f ′(t ′) cos (ωt ′ + φCE). (15)

For a multicycle pulse we can assume a slowly varying
envelope function on the time scale of the optical cycle [i.e.
|f ′(t)| 	 ω |f (t)|]. Consequently,

A(t) 
 f (t)

ω
cos (ωt + φCE) . (16)

As an example of a few-cycle pulse, let us consider exactly
one sinusoidal oscillation with φCE = 0 within a rectangular-
shaped envelope

f (t) = F0 θ (π/ω − t) θ (π/ω + t) . (17)

The vector potential becomes now

A(t) = f (t)

ω
[cos(ωt) − 1] . (18)

Unlike in the multicycle case with a slowly varying envelope
function [Eq. (16)], the vector potential is in the single-
cycle case [Eq. (18)] negative-definite, implying, within the
semiclassical limit [Eq. (13)], unipolar electron emission in
a preferred direction [12]. The latter is a consequence of the
pronounced carrier-envelope -phase dependence and inversion
symmetry breaking of near-single cycle pulses.

We now introduce an envelope function that, unlike
Eq. (17), reproduces the intracycle interferences characteristic
for multicycle cycles irrespective of the number of cycles the
envelope covers. We use an N -cycle flat-top pulse with m- and
m′-cycle linear ramp-on and ramp-off, respectively,

f (t) = F0

⎧⎪⎨
⎪⎩

(
ωt

2πm
+ 1

)
if −2mπ

ω
� t < 0

1 if 0 � t < 2Nπ
ω

2(N+m′)π−ωt

2πm′ if 2Nπ
ω

� t < 2(N+m′)π
ω

.

(19)

The important point to note is that for N an integer, φCE = 0,
and m and m′ integer or half-integer numbers, the vector
potential in the flat-top region is given by Eq. (16). Note
that good approximations to pulses similar to Eq. (19) can
be experimentally produced by Fourier shaping [32].
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With the vector potential of the form [Eq. (16)] with
φCE = 0, the semiclassical ionization times within the SMM
[Eq. (13)] fulfills

cos
(
ω t (i)

r

) = −κ, (20)

where

κ = ωk

F0
, (21)

denotes the dimensionless scaled momentum. As we consider
in the remainder of this section a 1D problem, k is a scalar
denoting the momentum along the direction of the laser
polarization axis. For a given value of κ , the field strength
for ionization is independent of the particular trajectory
considered, |F (t (i)

r )| = F0

√
1 − κ2. Assuming now that the

ground-state depletion is negligible, the ionization rate 	(k) =
|G[t (i)

r ,k]|2 is identical for all subsequent ionization bursts (or
trajectories) and is only a function of the time-independent
final momentum k. Consequently, the momentum distribution
[Eq. (3)] can be written within the SMM as

dP

dk

SM

= 	(k)

∣∣∣∣∣
M∑
i=1

eiSSM[t (i)
r ]

∣∣∣∣∣
2

, (22)

where the second factor on the right-hand side of Eq. (22)
describes the interference of M classical trajectories with final
momentum k, where t (i)

r is a function of k through Eq. (20).
From Eq. (7), the semiclassical action along one electron

trajectory with release time t (i)
r is, up to a constant,

SSM
[
t (i)
r

] = 2Up

[(
1 + cos

(
2ωt (i)

r

)
2

)
t (i)
r − 3

4ω
sin

(
2ωt (i)

r

)]

+ Ipt (i)
r , (23)

where the ponderomotive energy is given by Up = F 2
0 /4ω2.

As there are two interfering trajectories per cycle, M = 2N ,
with N being the number of cycles involved, the sum over
interfering trajectories [Eq. (22)] can now be decomposed into
those associated with two release times within the same cycle
and those associated with release times in different cycles [18]

2N∑
i=1

eiSSM[t (i)
r ] =

N∑
j=1

2∑
α=1

eiSSM[t (j,α)
r ]

= 2
N∑

j=1

eiS̄SM
j cos

(
�SSM

j

2

)
, (24)

where S̄SM
j = [SSM[t (j,1)

r ] + SSM[t (j,2)
r ]]/2 is the average action

of the two trajectories released in cycle j, and �SSM
j =

SSM[t (j,1)
r ] − SSM[t (j,2)

r ] is the accumulated action between the
two release times t

(j,1)
r and t

(j,2)
r within the same j th cycle.

The underlying time structure is schematically illustrated in
Fig. 1. There are two solutions of Eq. (20) per optical cycle:
the early release time t

(j,1)
r , within the first half of the j th cycle

(marked by circles in Fig. 1), and the late release time t
(j,2)
r ,

within the second half of the j th cycle (marked by triangles in

E
le

ct
ric

 fi
el

d 
F

(t
)

3210
Time (optical cycle)

V
ector potential A

(t)

 Electric field  Vector potential

- k

j = 1 j = 2 j = 3

Unit cell

t(1,1)r
Intracycle

interference

t(1,2)r

FIG. 1. (Color online) Electric field F (t) (left axis) and vector
potential A(t) (right axis) of a flat-top pulse [as defined in Eq. (19)
with N = 3, m = m′ = 1/2]. The electron emission times for a given
final momentum k are marked by circles [t (j,1)

r ] and triangles [t (j,2)
r ].

Each pair of circles and triangles determines the structure factor F (k)
and leads to intracycle interference while the periodic train of such
pairs gives rise to intercycle interference. Each optical cycle can be
viewed as a “unit cell” of the time lattice.

Fig. 1). Within the SMM, the average action depends linearly
on the cycle number j

S̄SM
j = S0 + j S̃, (25)

where S0 is a constant which does not enter when taking the
absolute value of Eq. (24) is taken, and S̃ = (2π/ω)(E + Up +
Ip). In turn, the difference of the action �SSM

j is a constant
independent of the cycle number j , which can be expressed
(dropping the subindex j ) as

�SSM = 2Up

ω
[(1 + 2κ2 + 2γ 2) arccos κ − 3κ

√
1 − κ2],

(26)

where γ = √
2Ip ω/F0 is the Keldysh parameter.

After some algebra, Eq. (22) can be rewritten as

dP

dk
= 4 	(k) cos2

(
�SSM

2

)
︸ ︷︷ ︸

F (k)

[
sin(NS̃/2)

sin(S̃/2)

]2

︸ ︷︷ ︸
B(k)

. (27)

Equation (27) indicates that the interference pattern can be
factorized in two contributions: (i) the interference stemming
from a pair of trajectories within the same cycle (intracycle
interference), governed by F (k) and (ii) the interference stem-
ming from trajectories released at different cycles (intercycle
interference) resulting in the well-known ATI peaks given by
B(k) (see Ref. [33]). The intracycle interference arises from
the superposition of pairs of classical trajectories separated
by a time slit �t = t

(j,1)
r − t

(j,2)
r of the order of less than half

a period of the laser pulse (i.e., �t < π/ω) giving access to
emission time resolution of <∼1 fs (for near infrared pulses),

while the difference between t
(j,α)
r and t

(j+1,α)
r is 2π/ω (i.e.,

the optical period of the laser). Equation (27) is structurally
equivalent to the intensity for crystal diffraction: The factor
F (k) represents the form (or structure) factor accounting for
interference modulations due to the internal structure within
the unit cell while the factor B(k) gives rise to Bragg peaks

043426-4



DIFFRACTION AT A TIME GRATING IN ABOVE- . . . PHYSICAL REVIEW A 82, 043426 (2010)

0.0

0.5

1.0

0.0

0.5

1.0

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.5

1.0

F
(k

)
(a) intracycle interference

2U
p
κ2

m

intercycle interference(b)

B
(k

)

E (a.u.)

F
(k

)
B

(k
)
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FIG. 2. (Color online) (a) Buildup of the interference pattern
following the semiclassical SMM: intracycle interference pattern
given by the structure pattern F (k) for a multicycle pulse [Eq. (16)].
The thin line shows the pattern for a single-cycle pulse [Eq. (17)].
(b) Intercycle interference given by the function B(k) with N = 2.
(c) Total interference pattern F (k)B(k) [see Eq. (27)] with N = 2.
The laser parameters are F0 = 0.05, ω = 0.05, and Ip = 0.5. Vertical
grid lines correspond to multiphoton energies.

due to the periodicity of the crystals. Alternatively, B(k) in
Eq. (27) may be viewed as a diffraction grating in the time
domain consisting of N slits where F (k) is the diffraction
factor for each slit.

We will analyze in the following how the interplay between
B(k) and F (k) controls the spectrum of direct ATI electrons.
The intracycle structure factor F (k) [shown in Fig. 2(a)]
displays oscillations with maxima unrelated to multiphoton
peaks of spacing h̄ω produced by the factor B(k). The
condition for intracycle interference peaks is �SSM = 2mπ.

As �SSM is a finite, monotonically decreasing function of κ

and �SSM = πR for k = 0, therefore there is a well defined
number of intracycle peaks in the spectral region of direct
emission (E < 2Up). This number is equal to nintra = R/2 =
(Up + Ip)/2ω. For the case of intercycle interference the
number of ATI peaks in the same region is ninter = 2Up/ω.

Thus, the ratio of the number of intracycle peaks relative to
those for intercycle peaks is “universal” as it depends only on
the Keldysh parameter

nintra

ninter
= 1

4
+ γ 2

2
. (28)

Therefore, nintra is lower than ninter provided that γ <
√

3/2, in
the tunneling regime and transition region to the multiphoton
regimes. For ionization by long wavelengths (γ 	 1), the
photoelectron spectrum will show, on average, four ATI peaks
per intracycle peak which emphasizes the modulation of ATI
peaks by the intracycle pattern. By contrast, for γ >

√
3/2,

nintra can exceed ninter (i.e., the multiphoton peaks now
modulates the intracycle interference pattern). It should be
noted, however, that in this regime the SMM may break down.

For an arbitrary value of N � 2, Eq. (27) predicts con-
secutive multiphoton peaks at En = nh̄ω − (Ip + Up) with
integer n, consistent with the absorption of n photons.
If N � 3, then N − 2 secondary fringes produced by the
interference of N slits in a diffraction grating appear. In
multicycle photoelectron spectra with N � 2, both intracycle
and intercycle interferences are simultaneously present. For
the simplest case of N = 2, the factor B(k) reduces to the
two-slit Young interference expression

B(k) = 4 cos2[π/ω(E + Up + Ip)], (29)

shown in Fig. 2(b). When N → ∞, the factor B(k) becomes
a sequence of delta functions situated at En. The separation
of consecutive peaks of the intracycle factor F (k) depends
on energy in a nontrivial way. In Fig. 2(c) we show the
interference pattern [Eq. (27)] for N = 2. To focus on the
interference process, only the factor F (k)B(k) normalized to
unity is displayed, disregarding the variation of the ionization
rate 	(k). The multiphoton peaks given by B(k) [Fig. 2(b)] are
modulated by the intracycle interference factor F (k). Intracy-
cle interference can lead to slight shifts of the multiphoton
peaks as observed in Fig. 2(c) relative to Fig. 2(b) for the
peaks at E = 0.25 (slightly shifted to the left) and E = 0.3
(slightly shifted to the right), and even to the suppression
of multiphoton peaks (near E = 0.15 and E = 0.4). The
separation of consecutive peaks of the intracycle envelope
factor F (k) is higher at intermediate energies than near the
classical boundaries E = 0 and E = 2Up = 0.5. This leads to
another effect near threshold: the splitting of the multiphoton
peaks, as observed in Fig. 2(c) for the peak at En = 0 (with
n = 15).

B. Frequency dependence

We now proceed by studying the dependence of the
photoelectron spectrum on the carrier frequency of the laser
field. It is convenient to present the energy and frequency
dependence of the spectrum in terms of the channel-closing
number R defined in Eq. (1) and the continuous scaled energy
n∗ defined as

n∗ = E

h̄ω
+ R, (30)

instead of ω and E, respectively. R corresponds to the
minimum number of absorbed photons required for ionization
and the real number n∗ coincides with the ATI order at integer
values (n∗ = n). It has been recently shown that the yield
of HHG and high-order ATI (the latter in the rescattering
region) oscillates with driver intensity and wavelength with
a period of unity in terms of R [1,6,8]. In Fig. 3 we show
the interference pattern contained in F (k)B(k) as a function
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FIG. 3. (Color online) Semiclassical total ionization probability
within the SMM as a function of the channel-closing parameter R and
the scaled energy n∗ (see text) calculated for (a) N = 1, (b) N = 2,
and (c) N = 3. In (d), the results of (a) (green stripes) with those
of (c) are overlaid (blue-red islands). F0 = 0.0675 (intensity equal
to 1.6 × 1014 W/cm2) and Ip = 0.5. The range in R corresponds to
wavelengths 1000–1060 nm or frequencies 0.0456–0.0430 a.u.. The
white arrow in (c) points to one secondary fringe.

of n∗ and R in terms of a two-dimensional interferogram. For
N = 1, we observe that the intracycle interference F (k) results
in a family of oblique stripes which broaden as n∗ increases
[Fig. 3(a)]. As there is only one cycle involved, intercycle
interference is absent [B(k) = 1]. For N = 2 [Fig. 3(b)],
two types of interference emerge: intracycle interference as
oblique stripes and intercycle interference as horizontal stripes
situated about integer values of n∗. The former, described
by F (k) of Eq. (27), is due to the interference of the
two pairs of trajectories [t (1,1),t (1,2)] and [t (2,1),t (2,2)] each
within the same optical cycle. The latter, described by factor
B(k) in Eq. (27), stems from the interference of classical
trajectories of electrons detached at different optical cycles
with a delay of 2π/ω. The intercycle horizontal stripes
centered at energy En = (n − R)ω with integer n correspond
to the well-known ATI-peaks. The horizontal ATI stripes are
now superimposed on the intracycle interference pattern of
Fig. 2(a), leading to a modulation of the ATI horizontal
iso-energy stripes with the oblique stripe pattern [Eq. (27)].
In a similar two-dimensional (2D) interferogram for N = 3
[Fig. 3(c)], the intercycle horizontal stripes are narrower than
those observed for two cycles in Fig. 3(b) since the pulse is
longer. In addition, one weak secondary fringe can be also
observed between two consecutive ATI fringes. By contrast,
the width of the intracycle oblique stripes are independent
of the number of laser cycles since the time slit within
one cycle remains unaltered irrespective of the number of
cycles considered. This fact is highlighted in Fig. 3(d), where
the oblique fringes due to intracycle interference [Fig. 3(a)]
are overlaid on the horizontal ATI stripes [Fig. 3(c)]. We
observe that the spots are located exactly on the intracycle
oblique stripes, demonstrating that the intracycle interference

is as important as the intercycle interference for the overall
shape of the energy distribution.

It is interesting to contrast the intracycle interference
pattern resulting from a multicycle inversion symmetry-of the
kz distribution-preserving pulse [Eq. (19)] with the double-slit
interference resulting from a single-cycle pulse with a vector
potential of the form [Eq. (18)] described in Ref. [12]. This
gives rise to a very different interference pattern, also shown
in Fig. 2(a). In general, a variety of interference patterns can
be produced by few-cycle pulses depending on the envelope
and carrier-envelope phase.

C. Spacing of intracycle peaks

We analyze now the structure factor for intracycle in-
terference F (k) in more detail. To determine the separa-
tion between consecutive intracycle peaks, the variation of
the action [Eq. (26)] can be expressed as �S(E + �E) 

�S(E) + d�S(E)

dE
�E, where d�S(E)

dE
plays the role of an energy-

dependent (or chirped) frequency. The energy-dependent pe-
riod �(E) of the interference oscillation, namely the separation
of two consecutive peaks, can be expressed as a continuous
function of the energy

�(E) = 2π∣∣ d�S(E)
dE

∣∣ . (31)

After some algebraic manipulations, �(E) can be rewritten as
a function of the dimensionless scaled momentum κ as

�(κ) = ωπκ
√

1 − κ2

1 − κ2 + γ 2/2 − κ
√

1 − κ2 arccos κ
. (32)

Equation (32) shows that the period of intracycle interference
normalized to the photon energy �(κ)/ω, as a function of κ,

depends on the laser parameters only through γ . In Fig. 4(a)
we show �(κ)/ω for different values of γ in the multiphoton,
transition, and tunneling regimes. In both the tunneling
and transition regimes (i.e., γ <∼ 1) the period of intracycle
interference pattern is of the same order of magnitude as the
photon energy h̄ω over a wide range of the scaled momenta
κ . In particular, in the tunneling limit (γ 	 1), both periods
coincide near κ 
 0.22, (E 
 0.097Up). By contrast, in the
deep multiphoton regime (γ � 1) the period of intracycle
interference is several orders of magnitude smaller than the
multiphoton peak separation (i.e., �(κ) 	 ω) which would
preclude the experimental observation of intracycle peaks.
However, the model is questionable in this regime.

One interesting observation is that the intracycle period
is not a monotonic function of κ (or E) but it possesses a
maximum. The maximum of �(κ) appears at

κm =
√

1 + γ 2

2
− γ

2

√
2 + γ 2. (33)

In the tunneling limit (γ → 0), κm = 1, or equivalently,
Em = 2Up, which corresponds to the classical cutoff for direct
electrons. In the multiphoton limit (γ → ∞) κm = 1/

√
2,

which corresponds to Em = Up, just half the classical cutoff
energy 2Up. In general, κm lies between these two limiting
values [Fig. 4(b)]. To illustrate the applicably of Eq. (33) we
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FIG. 4. (Color online) (a) Semiclassical prediction [Eq. (32)]
for the separation between consecutive intracycle interference peaks
(divided by the laser frequency) as a function of the scaled momentum
κ , for γ = 0, 0.1, 1, and 10; the horizontal dashed line corresponds
to the scaled period of the multiphoton peaks. (b) Maximum κm as
a function of the Keldysh parameter γ [see Eq. (33)]. The tunneling
and multiphoton limits are marked with dashed lines.

have indicated the energy position corresponding to κm in
Fig. 2(a) by a vertical arrow [Fig. 4(b)].

D. Influence of the Coulomb field

The time grating picture emerging from the semiclassical
approximation within the SMM neglects the influence of the
Coulomb field on the ionized electron. Before subjecting the
present model to a detailed quantitative test against full and
approximate quantum calculations, it is instructive to inquire
within a semiclassical approximation to which extent long-
range Coulomb interactions in the exit channel are expected
to modify the interference picture. As a point of reference, we
note that for HHG the Coulomb distortion gives rise to a shift
of the spectrum relative to integer values of R (see [4]). Our
starting point is the inclusion of the Coulomb potential into
the semiclassical action [Eq. (7)],

S(t ′,t) = −
∫ t

t ′
dt ′′

[
[�k + �A(t ′′)]2

2
+ V (r(t ′′,t ′)) + Ip

]
,

(34)

where r(t ′′,t ′) is the trajectory of the electron released at t ′.
Note that the Coulomb interaction is of the same order as Ip.
Therefore, the real emission times t (i)

r determined from the
extrema of the action [Eq. (13)] remain, to the same order of
approximation, unchanged. However, the action determining

the interference pattern will be modified. The correction to the
action of Eq. (26) is

Sc(tr ) = −
∫ ∞

tr

V (r(t ′,tr )) dt ′, (35)

where the trajectory r(t ′,tr ) is calculated within the SMM
ignoring the Coulomb potential. Note that for an infinite
pulse, the correction Sc(tr ) to the SMM action within one
cycle is independent of the cycle number j the trajectory
was born in. Consequently, the presence of the Coulomb
potential neither destroys the factorization into intercycle and
intracycle interferences [Eq. (27)] nor changes the intercycle
interference pattern (position of the ATI peaks). The result
for a finite number of cycles rapidly converge toward the
infinite case since most trajectories rapidly leave the region
near the nucleus. Even trajectories passing z = 0 several
times converge rapidly with the number of cycles if one
includes the spreading of the initial wave packet into the
consideration.

The presence of the Coulomb field will, however, change
the intracycle phase as of the form factor F (k). A displacement
of the whole intracycle interference pattern of the photoelec-
tron spectrum weakly dependent on the electron energy is
obtained. We have used different soft potentials (for example
the one in [4]) to mimic three-dimensional (3D) calculations
employing the eikonal approximation. All of them agree
qualitatively with quantum calculations (see below).

IV. TESTING THE SEMICLASSICAL MODEL

To test the predictions of the 1D semiclassical models, we
perform 3D quantum calculations employing the SFA, CVA,
and TDSE methods for identical laser field parameters.

A. Multicycle pulses

We have calculated the 2D interferogram of ionization
probabilities within the SFA and CVA for N = 3 and m =
m′ = 1/2, corresponding to the pulse in Fig. 1. To explore the
interferences, which appear along the laser polarization axis
the SFA [Eqs. (5) and (6)] and CVA [Eqs. (5) and (8)] ionization
probability of electrons ejected within a cone of 10◦ around
the ±z direction are shown (Fig. 5). As in the semiclassical
model [Fig. 2(c)], the horizontal intercycle interference stripes
at fixed values of ATI order n are modulated by the oblique
stripes stemming from the intracycle interference. This shows
that the semiclassical model in Sec. II captures the essence of
the interferences in the photoionization process. Comparing
the SFA [Fig. 5(a)] with the CVA [Fig. 5(b)] interferogram,
we observe a shift of the positions of the intracycle stripes.
This shift is due to the presence of the Coulomb potential of
the core, approximately accounted for in CVA but completely
neglected in SFA (as in the SMM). This is consistent with
our previous investigation using screened Coulomb potentials
[18]. In addition, the positions of intercycle (ATI) interference
horizontal stripes are not affected by the interaction of the
remaining core with the receding electron and stay near
integer values of n∗. The comparison between the SFA and
the CVA allows for a direct probe of the effect of the Coulomb
phase shift on the interference pattern in qualitative agreement
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FIG. 5. (Color online) 2D interferogram for the ionization prob-
ability within a cone of 10◦ in the forward and backward direction
as a function of channel-closing parameter R and scaled energy n∗

(see text), for a four-cycle pulse with F0 = 0.0675, N = 3 and with
m = m′ = 1/2, within the (a) SFA and (b) CVA.

with semiclassical correction of Eq. (35). By varying ZT

in the final-state Coulomb distortion factor [Eq. (8)], the
Coulomb phase can be varied between zero and its full
value without affecting the initial-state binding energy or wave
function. In Fig. 6, the photoelectron spectrum for the same
parameters as in Fig. 5, but fix frequency ω = 0.0456 (R =
23), undergoes a monotonic shift of the intracycle envelope
F (k) as the strength of the Coulomb potential parametrized by
the nuclear charge increases from ZT = 0 (SFA) to ZT = 1
(CVA) clearly illustrating the effect of the Coulomb tail on
the form factor F (k). Note that no significant changes of
the multiphoton positions described by B(k) are observed.
A qualitatively similar result can be found using the 1D
semiclassical model corrected for the approximate Coulomb
phase presented in Sec. III D. The horizontal arrow in Fig. 6
indicates the shift in energy from the Coulomb correction to the
SMM [Eq. (8)].

It is now of interest to compare the 1D semiclassical model
and 3D approximate quantum description (CVA) with the
exact solution of the TDSE (Fig. 7). The close similarity of
the exact TDSE interferograms with the semiclassical results
(Fig. 3), and the SFA and CVA (Fig. 5), underscores that the
models catch the main characteristics of the interferences in
the ionization processes by short laser pulses. In particular, the
position and shape of the oblique stripes agree almost perfectly
with the CVA. In Fig. 7(b), we show the TDSE interferogram
when integrating over all angles. Since the doubly differential
momentum distribution for high energies is localized close
to the kz axis [18,34,35], the full spectra decrease much
more rapidly with energy than the spectra in the 10◦ cone.
Still some remainders of the interferences are visible in the
angle-integrated spectra.
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FIG. 6. (Color online) Photoelectron spectra for different values
of the nuclear charge ZT = 0,0.25,0.5,0.75, and 1 within the CVA,
from bottom to top calculated for the four-cycle pulse described in
Fig. 5 (solid line) and the one-and-half cycle of Fig. 8 (dashed line).
The carrier frequency is ω = 0.0456 (R = 23). The horizontal arrow
indicates the Coulomb shift estimated within the SMM.

While the flat-top pulse shape [Eq. (19)] is optimally suited
to illustrate the interplay between intracycle and intercycle
interferences, qualitatively similar patterns have been found
for a sine-squared envelope. This indicates that the intracycle
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FIG. 7. (Color online) 2D TDSE interferogram for electron
emission of hydrogen for the same field as in Fig. 5. (a) Into a cone
of 10◦ around the polarization axis and (b) into all angles.
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FIG. 8. (Color online) 2D interferogram for emission within a
cone of 10◦ around the polarization axis as a function of channel-
closing parameter R and scaled energy n∗ calculated for a 1.5-cycle
pulse with F0 = 0.0675, m = 0, and m′ = 1/2. (a) SPA, (b) SFA,
(c) CVA, and (d) TDSE (see text).

modulations of the photoelectron spectra persist also for other
pulse shapes, though the details might change.

B. Isolating intracycle interference

For the multicycle pulses considered so far, intracycle
interference appears as a modulation envelope of discrete ATI
peaks. To clearly illustrate intracycle interferences separately
from intercycle ones we use almost single cycle pulses such
that the vector potential fulfills Eq. (16) in the main region
of the pulse. We consider a single-cycle (N = 1) pulse with
a m′ = 1/2 ramp off. The present results are without ramp
on (m = 0), however, using m = 1/2 does not significantly
alter the results. The yield integrated within a cone of 10◦
in the forward direction displays an intracycle interference
pattern for SFA, CVA, and TDSE [Figs. 8(a), 8(b), and 8(c),
respectively], similar to the prediction of the semiclassical
model of Fig. 3(a). The position of the intracycle interference
bands in Fig. 8(b) calculated within the SFA are close to the
semiclassical SMM prediction [Fig. 3(a)]. The origin of the
small deviations lies in that the complex saddle-point solutions
for complex trajectories [Eq. (12)] have been approximated

FIG. 9. (Color online) Energy distribution within a cone of 10◦

around the polarization axis for the same laser parameters as in Fig. 8
for ω = 0.0456 (R = 23). The data are from the SFA (dashed line),
the CVA (thin solid line), and TDSE (thick solid line).

by the real solutions (classical trajectories) of Eq. (13) in the
SMM. Using instead complex solutions of the stationary phase
approximation (SPA) [Fig. 8(a)] gives an excellent agreement
with the SFA [Fig. 8(b)]. A direct comparison of Figs. 8
with 5 confirms the invariance of the intracycle interference
pattern with respect to the number of cycles involved. As
mentioned previously, the shift between SFA results in Fig.
8(b) and CVA in Fig. 8(c) unveils the effect of the Coulomb
potential in the dynamics of exiting electrons.

A more detailed quantitative comparison is presented in
Fig. 9 in terms of a vertical cut through the distributions of
Fig. 8 at R = 23 (ω = 0.0456). The CVA photoelectron
spectrum resembles quite accurately the TDSE energy dis-
tribution. The shift in the position between the SFA and
CVA intracycle interference highlights the pattern shift of the
intracycle interference by the Coulomb potential of the core.
The Coulomb tail shifts the interference maxima toward lower
energies, consistent with the results of Fig. 6.

In the following we compute the spacing of two consecutive
intracycle peaks, �E, of the photoelectron spectrum for
R = 23 as a function of the energy position of the peaks
(Fig. 10). The agreement among the SFA, the CVA, and

FIG. 10. (Color online) Energy difference between consecutive
intracycle peaks as a function of the energy position of the correspond-
ing peaks calculated with SFA (open squares), CVA (full squares),
and TDSE (circles). The full line is the semiclassical prediction of
Eq. (32). Same laser parameters as in Fig. 9.
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DIEGO G. ARBÓ et al. PHYSICAL REVIEW A 82, 043426 (2010)

FIG. 11. (Color online) (a) TDSE total ionization probability Pion

as a function of the channel-closing parameter R (wavelengths in the
range 1000 to 1100 nm) calculated within the TDSE. The parameters
of the laser field are F0 = 0.0675 a.u. and the total number of cycles
is N = 3 with m = m′ = 1/2 cycle for the ramp on and off. (b) Same
as for (a) but for emission in a cone of 10◦ around the polarization
axis.

the TDSE is very good. We also include the semiclassical
expression �(E) of Eqs. (31) and (32), which almost perfectly
reproduces the quantum results. Even the predicted maximum
at Em = (4Up)κ2

m/2 = 0.75 [see Eq. (33)] is reproduced to
some extent by the TDSE calculation. We also checked �E

within the TDSE for ω = 0.051 (not shown) and found equally
good results.

C. Energy-integrated yield

Finally, we consider the total ionization yield integrated
over the photoelectron energy (i.e., along vertical lines of
the interferograms) as a function of the channel-closing
number. The total ionization probability calculated within
the TDSE exhibits oscillations with a peak separation of
unity in channel-closing number R [see Fig. 11(a)]. Integer
values of R can be traced to the intersection of the horizontal
multiphoton absorption lines with the diagonal marking the
threshold for photoemission in Fig. 7(b). Depending on how
rapidly the intensity along each vertical line decreases and
on the details of the intracycle interferences, the maxima in
the total yield are shifted to values slightly below the integer
values of R as seen in Fig. 11(a). The amplitude of oscillations
of the ionization probability is about 4% of the average. We
have confirmed that the periodicity �R = 1 holds accurately
over the wavelength range between 800 and 2000 nm
(figure not shown). These oscillations closely resemble those
previously observed for the wavelength dependence of HHG
[20,22,24].

Focusing now on the ionization probability into a cone
around the polarization axis [see Fig. 7(a)], a wide range
of n∗ significantly contributes, as opposed to the threshold
region for the total yield, resulting in a more complicated
modulation pattern due to intracycle interferences. We show
the yield for a 10◦ cone in Fig. 11(b) as a function of R.
Now the number of maxima and their distances are no longer
close to �R = 1. The number and positions of the maxima

at small angles are strongly varying with the angle (figure
not shown). With increasing angle, the position of the maxima
shift and the number of recognizable maxima decrease. Finally,
integrating over the full angle, the rule �R = 1 is recovered.
The reason for this angle dependence is that for energy-
integrated yield within a cone of small angles around the polar-
ization axis, remnants of intracycle interferences are visible,
while in the total yield only intercycle interferences can be
observed.

V. CONCLUSION

In this article we have presented a study of interference
effects observed in the direct atomic ionization spectrum
resulting from high-intensity multicycle laser pulses. We have
identified the interplay between the intracycle and intercycle
interferences of electron trajectories in photoelectron spectra
by multicycle laser pulses. Intercycle interference corresponds
to the well-known ATI peaks of the photoelectron spectrum
arising from the superposition of wave packets released during
different optical cycles, whereas intracycle interference comes
from the coherent superposition of electron wave packets
released within the same optical cycle. 2D interferograms as
a function of the channel-closing number R and the scaled
energy n∗ are calculated within the SFA, the CVA, and the
TDSE. The intercycle interference pattern is displayed as
horizontal stripes located at integer values of ATI order n

modulated by the intracycle interference pattern observed as
oblique stripes. The intracycle interference modulation can
be most clearly seen for emission in the direction of the
laser-polarization axis and is independent of the total number
of optical cycles involved in the laser pulse. We present a
simple semiclassical model based on the SMM that explains
successfully the calculated patterns. An analytical expression
for the complete interference pattern and the separation of
intracycle peaks is presented showing an excellent agreement
with the numerical calculations. The intracycle modulations
are dependent on the long-range atomic Coulomb potential.
This might open the possibility of imaging the core potential
in the experimentally easy to obtain direct electron yield.
Since intracycle interferences result from pairs of emission
points closely spaced in time, the spacing between adjacent
interference maxima in the spectrum for energies above a
small fraction of the ponderomotive energy is wider than the
spacings of the ATI peaks. Therefore, intracycle interferences
should be recognizable even in low-resolution spectra. Care-
fully tailoring the field, the intracycle interferences may be
experimentally observable also for almost-single cycle pulses.
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W. Becker, and G. G. Paulus, Phys. Rev. Lett. 95, 040401 (2005).

[11] R. Gopal et al., Phys. Rev. Lett. 103, 053001 (2009).
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Nucl. Instrum. Methods B 267, 334 (2009).

[22] M. Lewenstein, K. C. Kulander, K. J. Schafer, and P. H.
Bucksbaum, Phys. Rev. A 51, 1495 (1995); M. Lewenstein,
Ph. Balcou, M. Yu. Ivanov, A. L’Huillier, and P. B. Corkum,
ibid. 49, 2117 (1994).

[23] C. C. Chirila and R. M. Potvliege, Phys. Rev. A 71, 021402(R)
(2005).

[24] M. Ivanov, P. B. Corkum, T. Zuo, and A. Bandrauk, Phys. Rev.
Lett. 74, 2933 (1995).

[25] D. P. Dewangan and J. Eichler, Phys. Rep. 247, 59 (1997).
[26] D. M. Volkov, Z. Phys. 94, 250 (1935).
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