
PHYSICAL REVIEW A 82, 043423 (2010)

Compact toroidal ion-trap design and optimization
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We present the design of a type of compact toroidal, or “halo,” ion trap. Such traps may be useful for
mass spectrometry, studying small Coulomb cluster rings, quantum-information applications, or other quantum
simulations where a ring topology is of interest. We present results from a Monte Carlo optimization of the trap
design parameters using finite-element analysis simulations that minimize higher-order anharmonic terms in the
trapping pseudopotential, while maintaining complete control over ion placement at the pseudopotential node
in three dimensions using static bias fields. These simulations are based on a practical electrode design using
readily available parts, yet can be easily scaled to any size trap with similar electrode spacings. We also derive
the conditions for a crystal structure transition for two ions in the compact halo trap, the first nontrivial transition
for Coulomb crystals in this geometry.
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I. INTRODUCTION

Recent interest in novel ion-trap geometries stems from
both the need for smaller, more compact radio frequency (rf)
Paul ion traps [1–5] and traps that have novel common modes
of motion, in particular, for quantum-information applications
[6–8]. We present a compact “halo” ion-trap geometry based
on toroidal ion traps [9–11] that might satisfy both of these
needs. This geometry has the advantage of being much smaller
(on the order of a few hundred micrometers in diameter) than
previous toroidal traps. Additionally, this geometry is very
open both optically and electronically: ions trapped around
the circular rf node interact via the Coulomb force across
the circle with very little shielding, similar to ions in a
Penning-type trap, giving rise to strong ion-ion interactions
across the trap [12]. A halo geometry is also interesting
for quantum-information applications as it combines the
advantages of a Penning trap with a stable radial trap [13].
To date, Coulomb crystals have been studied in a number of
different rf trap geometries including a linear trap [14–16],
a spherical trap [17], ions confined to a two-dimensional
plane [18], ions in a large toroid trap with no ion interaction
across the circle [19–21], and ions in a Penning trap [22]. Our
compact halo trap geometry is complementary to many of these
previously studied systems. This geometry may also be suited
to simulating small chemical rings [23], circular clusters of
electrons on the surface of liquid helium [24], and novel Ising
models [25].

We begin by defining the key parameters and characteristics
of the compact halo ion-trap geometry. Our setup is based
on readily available electrode parts, making this configuration
straightforward and inexpensive to implement. We model both
the rf and static potentials in the trap using finite element anal-
ysis; we present the results from a Monte Carlo optimization
of the adjustable physical trap parameters yielding a trapping
rf potential that is hyperbolic near the center of the trap. In
order to provide complete control of the ions, we also optimize
offset static potentials that provide control over the trap aspect
ratio. In the final section we derive the conditions for a crystal
structure transition for two ions in this geometry. We show
that, unlike a linear trap, there is a nontrivial transition for
only two ions.

II. HALO TRAP GEOMETRY

A traditional rf quadrupole mass spectrometer or ion trap
is created from four long cylindrical rods placed at the corners
of a square as in Fig. 1(a). Alternating rf potentials, ±V0,
are applied to the electrodes forming a two-dimensional (2D)
quadrupole potential in the center of the square with a node
that runs the length of the rods. A toroidal rf trap is formed
by wrapping the ends of the linear trap around on themselves,
forming four concentric loops stacked two on top of the others
as in Fig. 1(b) [9,11]. We propose one further modification that
shrinks the toroidal trap and simplifies trap fabrication. Since
the inner rings are equipotential surfaces both on the top and
the bottom, we shrink these rings down to solid, cylindrical
electrodes, shown schematically in Fig. 1(c). The outer two
electrodes are also modified: we use conductive tubes to create
these potentials, again concentric with the central electrodes.
We envision an ion trap with an rf node diameter of less than
1 mm.

In order to control the relative trap aspect ratio in the
s-z plane defined in Fig. 2, key to studying crystal structure
changes [14–16], we utilize both rf and static trapping fields.
Figure 2 shows a cross section of the halo geometry: rotating
the s-z plane about the axis located at the left of the
figure yields the three-dimensional (3D) trap configuration
illustrated in Fig. 3. The electrode geometry described above
forms a quadrupole potential like that illustrated in Fig. 2(a)
for potentials ±V0 applied to the center electrode and the
outer tube. The effective rf potential, or pseudopotential, is
illustrated in Fig. 2(b), the center of which is located along
the z = 0 center line of the geometry. To lowest order, the
pseudopotential is symmetric in the s-z plane; we discuss
higher-order asymmetries below. A static potential like that
illustrated in Fig. 2(c), which is rotated by 45◦ from the rf
potentials, is needed to control the relative trap strengths in
the s and z directions. We add a middle tube control electrode
between the central cylinder and outer tube electrode that we
can bias with static potentials to create this field. This middle
electrode is rf grounded with a static potential −U0 applied to
both the top and bottom electrodes. Both the inner and outer
electrodes are also biased with static potentials, +U1 and +U2,
respectively. The combination of the rf pseudopotential and
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FIG. 1. (Color online) (a) A standard four-rod rf linear ion trap is
transformed into a toroid trap by wrapping the electrodes around onto
themselves, forming the four rings of a toroid trap. (b) An rf toroid
trap consists of four ring electrodes; rf potentials are applied to the top
inner ring and the bottom outer ring. This configuration is transformed
into a compact halo ion trap by contracting the two inner rings down
to cylindrical electrodes. The outer electrodes are extended up and
down for convenience in fabrication and assembly. (c) The resulting
form is our halo trap design. Radio frequency potentials are applied
to the top inner electrode and the bottom outer electrode, creating a
circular rf node.

this static potential will enable us to vary the trap aspect ratio,
illustrated in Fig. 2(d).

There are a large number of free parameters available
in the design and optimization of this halo trap geometry;
we optimize a set of these parameters in order to minimize
the higher-order, nonquadratic elements in the rf and static
potentials. We begin by fixing the inner and outer diameters
of the cylinder and tubes that make the ion-trap electrodes.
We choose stock parts (from Small Parts, Inc.) for these
electrodes. The inner cylinder is a stainless steel wire with an
outer diameter of 510 µm (part GWX-0200). The middle tube
electrode is a 19-gauge stainless steel hypodermic round tube
with an inner diameter (ID) of 830 µm and an outer diameter
(OD) of 1100 µm (part HTX-19T). The outer tube electrode
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FIG. 2. (Color online) (a) The desired instantaneous rf potential
is a quadrupole in the s-z plane due to the voltages ±V0 applied to
the rf electrodes. Note that the middle control electrodes are held
at rf ground. (b) The ideal pseudopotential is thus symmetric in the
s-z plane. (c) In order to break the symmetry, static potentials U are
applied to both the rf and control electrodes, forming a quadrupole
rotated by 45◦ from the rf potential. (d) The combination of the static
and pseudopotentials gives an asymmetric trap, indicating complete
control over both the s and z trapping potentials.

RF

Ground

Control

FIG. 3. (Color online) Our halo trap design consists of three
concentric cylindrical conductors. The innermost conductors are
angled needle tips, the other two are cylindrical metal tubes. The
conductors are separated by insulators set back from the trap center
(not shown). The inner and outer conductors form the rf trap; the
middle conductor allows for static voltage control.
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FIG. 4. (Color online) There are four key dimensionless pa-
rameters that define the geometry of the halo trap electrodes: the
needle angle θn, the trap aspect ratio Ah ≡ (2zn + 2zt )/(2Rt ), the
trap keystone Kh ≡ (2zt )/(2zn), and the control electrode offset
Vh ≡ (zc − zt )/zn. The other dimensions are fixed and are properties
of the conductors and insulators used in the model.

is a 16-gauge stainless steel hypodermic round tube with an
ID of 1350 µm and an OD of 1650 µm (part HTX-16T).
The electrodes are separated by concentric insulating tubes,
matched to the various inner and outer diameters. We located
UHV-compatible stock parts made of polyimide that serve as
the insulators (parts SWPT-028 and TWPT-045). Although we
chose specific parts for our design and optimization, all of our
calculations serve for any size trap that has the same ratio of
radii for the cylinder:(inner tube ID):(inner tube OD):(outer
tube ID):(outer tube OD) ratio of 1:1.63:2.16:2.65:3.24.

Having fixed the radii of the three electrodes, the number of
adjustable free parameters available to optimize the potentials
is now reduced to the spacing between the upper and lower sets
of electrodes and the needle tip angle θn (shown in Fig. 4). We
denote the spacings as zn, zc, and zt for the inner cylindrical
“needle,” the middle “control” electrode, and outer “tube”
electrode, respectively, as described in Fig. 4. The tip angle
will be fabricated by machining the inner wire prior to trap
assembly. The other dimensions described in the figure are the
inner cylinder radius Rn, the radii of the two tubes Rc and
Rt depicted as the distance from the center axis of rotation
to the center of the electrode, and the tube wall thicknesses
tc and tt for the control and outer tube electrodes. These
five dimensions are fixed by the electrode geometry described
above.

We define three dimensionless parameters from these
physical parameters and vary them to optimize the potentials.
First, the trap aspect ratio Ah is defined as the ratio of
the average z separation of the needle and tube to the tube
radius: Ah ≡ (2zn + 2zt )/(2Rt ). This roughly corresponds to
the overall aspect ratio of the trap, or the distance between
the top and bottom electrode structures. The second parameter
is the “keystone” Kh defined as the ratio of the outer tube

separation over the needle separation: Kh ≡ 2zt/2zn. This
parameter describes how much farther apart the outer tubes
are compared to the inner cylinder. The final parameter
is defined as Vh ≡ (zc − zt )/zn and describes the control
electrode separation as compared to the tube separation in
units of the needle separation. These parameters define several
possible configurations simply: if all three electrodes are
separated by the same amount equal to the tube radius
Rt , the parameter set would be Ah = 2,Kh = 1,Vh = 0. A
parameter set of Ah = 1,Kh = 1,Vh = 1 corresponds to sep-
arations of zn = Rt/2, zc = Rt , and zt = Rt/2. The geometry
illustrated in Fig. 3 corresponds to a parameter set of ap-
proximately Ah = 0.7, Kh = 1.7, Vh = 2, and a needle angle
of 17◦.

III. RF AND STATIC POTENTIAL MODEL

Although motion of ions in an rf Paul trap can be described
in a variety of ways, the typical approach is to model the
trapping potentials as an ideal quadrupole field [26]. The
oscillating trapping potential �(r,z,t) for a toroidal trap in
cylindrical coordinates r and z can be written as a spatially
varying potential V (r,z) which oscillates at the trap frequency
�T : �(r,z,t) = V (r,z) cos �T t . The spatial component of
the potential is typically described as a quadrupole field,
V (r,z) = V0/r2

N (z2 − r2) where V0 is the potential applied
symmetrically to hyperbolic electrodes a distance rN from
the trap center. A toroidal trap like this halo trap shifts the
trap center radially a distance R from the z axis as shown
in Fig. 4. Although the purely quadratic field described by
shifting the quadrupole field V (r,z) = V0/r2

N [z2 − (r − R)2]
is not possible, we are interested in a trapping potential
where the quadratic term is dominant [10]. Thus, we fit
the actual halo trap potential to the model hyperbolic po-
tential V (r,z) = V0/�

2
rf(z

2 − s2), where s = r − R, and �rf

is a single-fit parameter. However, since the rf fields are
rotated by 45◦ from the s-z axes, as seen in Fig. 2(a), we
rotate the coordinate system of the hyperbolic potential in
order to compare it directly with the halo trap field. The
quadratic potential model describing the field in Fig. 2(a) is,
thus,

Vrf(s,z) = −2V0

�2
rf

sz. (1)

The static control potential shown in Fig. 2(c) can also be
modeled as a hyperbolic potential. Although we apply different
control potentials to the needle and tubes, we fit the actual static
potential with a single effective (unit) potential Ueff and the fit
parameter �static. The corresponding static potential model is
then

Ustatic(s,z) = Ueff

�2
static

(s2 − z2). (2)

We calculate the actual rf and static potentials, VCH(r,z)
and UCH(r,z), for this compact halo (CH) geometry for a
given parameter set using finite element analysis. We use
single-parameter fits (with V0 = 1 V and Ueff = 1 V) to find
the normalization distances �rf and �static for the rf and static
fields. We then define a χ2 metric for the two-dimensional
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FIG. 5. (Color online) The pseudopotential ψ for the optimized
compact halo trap has a trap depth constrained by the saddle point
along the z = 0 symmetry line. The pseudopotential is shown in
electron volts for a 24Mg+ ion with an applied potential of V0 = 300 V,
and a trap frequency of �T = 2π × 80 MHz.

scalar fields to determine the goodness of the fit. We integrate
the square of the difference between the real and hyperbolic
potentials over a circle area A covering the center of the
trapping region,

χ2
rf =

∫ ∫
A

[Vrf(s,z) − VCH(s,z)]2dsdz, (3)

χ2
static =

∫ ∫
A

[Ustatic(s,z) − UCH(s,z)]2dsdz. (4)

We minimized both of these metrics simultaneously through
an iterative Monte Carlo approach described below.

We also investigate the depth of the rf trap, a particular
concern for small and novel trap geometries [4,5]. The depth
is found by calculating the pseudopotential ψ(r,z) from the
calculated rf trap potentials [27]:

ψ(r,z) = q2

4m�2
T

|∇VCH(r,z)|2, (5)

where q and m are the ion charge and mass. There is a saddle
point in the compact halo pseudopotential located along the r

axis approximately between the outer control electrode. The
trap depth in eV is shown in Fig. 5 for an applied voltage
of V0 = 300 V, 24Mg+ ions, and a trap frequency of �T =
2π × 80 MHz.

IV. HALO TRAP OPTIMIZATION

We optimize the rf and static potentials using the following
Monte Carlo procedure:

(1) Optimize the rf potential.
(a) Choose initial values for the adjustable geometric

parameters Ah, Kh, Vh, and θn.
(b) Calculate the rf potential using finite element

analysis.
(c) Fit the rf potential to the model and find �rf .
(d) Calculate the χ2

rf goodness of fit.
(e) Adjust all of the parameter values and then repeat

steps (b) through (d) until χ2
rf is minimized.
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FIG. 6. (Color online) The optimized rf instantaneous quadrupole
potential VCH (with ±1 V applied to the needle and outer ring
electrodes) across the trapping region. The ideal quadrupole fit to the
potential has a normalization distance of �rf ≈ 413 µm. The bottom
left inset shows the potential near the center of the trap with contour
lines separated by 10 mV. The bottom right inset shows the difference
between Vopt and the ideal quadrupole potential Videal with contours
spaced at 0.5 mV. The central flat region is approximately 100-µm
long by 100-µm wide, much larger than typical ion excursions from
the rf node in an ion trap.

(2) Optimize the static potential.
(a) Locate the trap center R along the r axis.
(b) Calculate the static potential using finite element

analysis using the optimized geometric parameters.
(c) Adjust the static potentials U0, U1, and U2 until the

static potential saddle point lies at R along the z = 0 axis.
(d) Fit the static potential to the model and find �static.
(e) Calculate the χ2

static goodness of fit.
(3) Iterate the entire process until both χ2

rf and χ2
static are

minimized.
Since the saddle points for the rf and static potentials do not

necessarily have the same spatial location, unlike traditional
four-rod traps, we simultaneously optimize both the rf and
static potentials under the constraint that the saddle points
overlap along the r axis. The optimized rf and static fields
are shown in Figs. 6 and 7. The insets in each figure show a
closeup of the potentials near the trap center and the residuals
Vrf (s,z) − VCH(s,z) and Ustatic(s,z) − UCH(s,z) for the rf and
static potentials, respectively. The trap center is located at
R ≈ 430 µm; the normalization coefficients are �rf ≈ 413 µm
and �static ≈ 328 µm. The optimized parameters are listed in
Table I.

TABLE I. The optimized values for both the geometric parameters
and the static potentials.

Parameter Value Parameter Value

Ah 0.676 V0 1 V
Kh 1.68 U0 −42.97 V
Vh 2.06 U1 1.09 V
θh 16.7◦ U2 1.03 V
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FIG. 7. (Color online) The optimized static quadrupole potential
UCH across the trapping region. The ideal quadrupole fit to the
potential has a normalization distance of �static ≈ 328 µm. The bottom
left inset shows the potential near the center of the trap with contour
lines separated by 2 mV. The bottom right inset shows the difference
between UCH and the ideal quadrupole potential Ustatic with contours
spaced at 0.5 mV. The central flat region is approximately 100-µm
long by 100-µm wide, much larger than typical ion excursions from
the rf node in an ion trap.

Both the rf and static potentials have large zones near
the trap center that approximate very well (to greater
than 95%) the harmonic potential models. Although it
may be possible to further optimize the potentials by
using custom-fabricated electrode structures, the potentials
generated by stock electrode parts should be of suffi-
cient quality for quantum information and Coulomb crystal
experiments.

V. CRYSTAL STRUCTURE TRANSITION

In this final section we derive the first nontrival ion crystal
structure transition for two ions in the compact halo trap.
Whereas the first nontrivial transition for ion crystals in a
linear trap occurs with three ions in an anisotropic trap [14],
there is a second-order transition for two ions in the halo
trap between the crystal configuration where both ions lie in
the z = 0 plane (Fig. 8) and the regime where both ions are
located at stable equilibrium positions equidistant from the
z = 0 plane as shown in the figure. In deriving the condition for
the transition, we follow the derivation of Schweigert et al. [19]
with the key difference that we consider a harmonic trap in
both the r and z dimensions, allowing the ions to move in
three-dimensional space.

We consider a three-dimensional system of identically
charged particles of mass m and charge q confined to
our halo ring by a ring-shaped external potential Vr =
(1/2)mω2

r (r − R)2 (with trap radius R as above) and a
second, independent, harmonic potential in the z direction
Vz = (1/2)mω2

zz
2. The interaction Hamiltonian, including

Coulomb repulsion, of this classical system of N particles is,

FIG. 8. Two ions in the halo trap begin on opposite sides of the
ring. There is a second-order structural transition where the ions shift
off of the ring in opposite directions.

thus,

H =
N∑

i<j=1

q2

4πε0

(
1

|�ri − �rj |
)

+
N∑

i=1

1

2
mω2

r (|�ri × ẑ| − R)2

+
N∑

i=1

1

2
mω2

z (�ri · ẑ)2, (6)

for each particle located at �ri . Following the convention in [19],
we rescale the length and energy units in order to work with
dimensionless parameters. The length scale is defined as the
ratio of the Coulomb and radial trap coupling constants,

r
 ≡
(

q2

4πε0

2

mω2
r

)1/3

. (7)

The length scales for a number of different common ion-trap
species are listed in Table II. All of these are similar in scale to
the model compact halo trap radius. We also define an energy
scale based on the radial potential and this length scale, E
 ≡
(1/2)mω2

r r
2

 and scale the overall energy by this parameter.

Finally, we define the trap aspect ratio as the ratio of the z and
r trap frequencies, similar to a linear trap,

α ≡ ω2
z

ω2
r

. (8)

In the simplest configuration, the ions all lie in the z = 0
plane and distribute themselves equally around a circle [12]
with their center of mass located at the center of the ring
xc.m. = yc.m. = zc.m. = 0. Since no external forces act on the
ions in this trap, the center of mass of the system will not move.
We use this to simplify the ion locations for the N = 2 case,

TABLE II. Various scaled radii for common ion-trap configura-
tions. The final entry is for 300-nm diameter polystyrene spheres,
charged to 1.6 × 10−16 C.

Ion ωr/2π r


24Mg+ 2 kHz 419 µm
40Ca+ 1.5 kHz 428 µm
171Yb+ 0.8 kHz 401 µm
300 nm PS 100 Hz 429 µm
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making the assumption that the ions start on opposite ends of
the x axis, the positions of the two ions will be related by the
following three constraints:

x1 = −x2,

y1 = y2 = 0, (9)

z1 = −z2.

These assumptions reduce Eq. (6) to

H = 1

2
√

x2 + z2
+ 2αz2 + 2(|x| − r0)2, (10)

where we have scaled the distances, x = x1/r
, z = z1/z
, and
energy H → H/E
 as noted previously. The trap center is also
scaled by the same parameter, r0 = R/r
. This unitless radius
now describes the ratio of the physical trap R to the strength of
the Coloumb interaction. We will assume that the trap is small
enough that the ions interact strongly across the diameter of
the trap circle.

The equilibrium positions of the two ions are found from
the first spatial derivatives of the interaction Hamiltonian in
the x and z directions,

∂H

∂x
= 0,

(11)
∂H

∂z
= 0.

The first set of stable equilibrium positions are at

x = r0

3
+ 161/3r2

0

3
(
27 + 16r3

0 − 3
√

81 + 96r3
0

)1/3

+
(
27 + 16r3

0 − 3
√

81 + 96r3
0

)1/3

4321/3
,

z = 0. (12)

This solution is independent of the trap aspect ratio α and is
valid for

r0 >
|α − 1|
2α1/3

and α > 1. (13)

As the ring becomes small, or the trap aspect ratio decreases,
corresponding to a weakening of the z potential, the ions
reach a point where they shift off of the z = 0 plane into
the second crystal configuration described by the equilibrium
positions,

x = r0

|α − 1| ,
(14)

z = 1

2

√
(α − 1)2 − 4r2

0 α2/3

(α − 1)2α2/3
.

The x and z positions as a function of r0 and α are shown
in Figs. 9(a) and 9(b). This is a second-order transition since
the derivative of the mean radial position of the ion cloud is
discontinuous. The boundary between the two configurations
is also shown in Fig. 9(c).

We have shown that there is a nontrivial transition for two
ions in the compact halo trap. Future work includes solving for
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FIG. 9. (Color online) (a) The scaled z position as a function of
α and r0. The transition occurs along the line described by Eq. (13).
(b) The scaled x position also shows the transition. (c) The transition
in α and r0 space.

the transition for larger numbers of ions, in particular, for odd
numbers of ions, which have a different behavior for small
numbers of ions [19]. We have also presented an optimized
electrode configuration for creating the compact halo trap
using readily available electrode parts. This type of trap is
an alternative topology to more common point and linear ion
traps and may be useful as a small trap geometry for some
quantum-information applications.

043423-6



COMPACT TOROIDAL ION-TRAP DESIGN AND OPTIMIZATION PHYSICAL REVIEW A 82, 043423 (2010)

[1] J. M. Amini, H. Uys, J. H. Wesenberg, S. Seidelin, J. Britton,
J. J. Bollinger, S. Leibfried, C. Ospelkaus, A. P. VanDevender,
and D. J. Wineland, New J. Phys. 12, 033031 (2010).

[2] K. Ravi, S. Lee, A. Sharma, T. Ray, G. Werth, and S. A.
Rangwala, Phys. Rev. A 81, 031401 (2010).

[3] D. R. Crick, S. Donnellan, S. Ananthamurthy, R. C. Thompson,
and D. M. Segal, Rev. Sci. Instrum. 81, 013111 (2010).

[4] L. Deslauriers, S. Olmschenk, D. Stick, W. K. Hensinger,
J. Sterk, and C. Monroe, Phys. Rev. Lett. 97, 103007
(2006).

[5] R. Maiwald, D. Leibfried, J. Britton, J. C. Bergquist, G. Leuchs,
and D. J. Wineland, Nat. Phys. 5, 551 (2009).

[6] G.-D. Lin, S.-L. Zhu, R. Islam, K. Kim, M.-S. Chang,
S. Korenblit, C. Monroe, and L.-M. Duan, Europhys. Lett. 86,
60004 (2009).

[7] K. Kim, M.-S. Chang, R. Islam, S. Korenblit, L.-M. Duan, and
C. Monroe, Phys. Rev. Lett. 103, 120502 (2009).

[8] H. Wunderlich, C. Wunderlich, K. Singer, and F. Schmidt-Kaler,
Phys. Rev. A 79, 052324 (2009).

[9] T. Schätz, U. Schramm, M. Bussmann, and D. Habs, Appl. Phys.
B 76, 183 (2003).

[10] S. A. Lammert et al., J. Am. Soc. Mass Spectrom. 17, 916 (2006).
[11] D. E. Austin et al., Anal. Chem. 79, 2927 (2007).
[12] L. W. Lupinski and M. J. Madsen, J. Math. Phys. 50, 112902

(2009).

[13] D. R. Crick, H. Ohadi, I. Bhatti, R. C. Thompson, and D. M.
Segal, Opt. Express 16, 2351 (2008).

[14] R. Rafac, J. P. Schiffer, J. S. Hangst, D. H. E. Dubin, and D. J.
Wales, Proc. Natl. Acad. Sci. USA 88, 483 (1991).

[15] D. H. E. Dubin, Phys. Rev. Lett. 71, 2753 (1993).
[16] J. P. Schiffer, Phys. Rev. Lett. 70, 818 (1993).
[17] S. W. S. Apolinario, B. Partoens, and F. M. Peeters, New J. Phys.

9, 283 (2007).
[18] R. W. Hasse and J. P. Schiffer, Ann. Phys. 203, 419 (1990).
[19] I. V. Schweigert, V. A. Schweigert, and F. M. Peeters, Phys. Rev.

B 54, 10827 (1996).
[20] V. A. Schweigert and F. M. Peeters, Phys. Rev. B 51, 7700

(1995).
[21] A. Rahman and J. P. Schiffer, Phys. Rev. Lett. 57, 1133 (1986).
[22] S. L. Gilbert, J. J. Bollinger, and D. J. Wineland, Phys. Rev. Lett.

60, 2022 (1988).
[23] E. B. Wilson, Phys. Rev. 45, 706 (1934).
[24] P. Leiderer, W. Ebner, and V. B. Shikin, Surf. Sci. 113, 405

(1987).
[25] A. Friedenauer, H. Schmitz, J. T. Glueckert, D. Porras, and

T. Schaetz, Nat. Phys. 4, 757 (2008).
[26] D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E.

King, and D. M. Meekhof, J. Res. Natl. Stand. Technol. 103,
259 (1998).

[27] H. G. Dehmelt, Adv. At. Mol. Phys. 3, 53 (1967).

043423-7

http://dx.doi.org/10.1088/1367-2630/12/3/033031
http://dx.doi.org/10.1103/PhysRevA.81.031401
http://dx.doi.org/10.1063/1.3276699
http://dx.doi.org/10.1103/PhysRevLett.97.103007
http://dx.doi.org/10.1103/PhysRevLett.97.103007
http://dx.doi.org/10.1038/nphys1311
http://dx.doi.org/10.1209/0295-5075/86/60004
http://dx.doi.org/10.1209/0295-5075/86/60004
http://dx.doi.org/10.1103/PhysRevLett.103.120502
http://dx.doi.org/10.1103/PhysRevA.79.052324
http://dx.doi.org/10.1007/s00340-003-1110-1
http://dx.doi.org/10.1007/s00340-003-1110-1
http://dx.doi.org/10.1016/j.jasms.2006.02.009
http://dx.doi.org/10.1021/ac062155g
http://dx.doi.org/10.1063/1.3253997
http://dx.doi.org/10.1063/1.3253997
http://dx.doi.org/10.1364/OE.16.002351
http://dx.doi.org/10.1073/pnas.88.2.483
http://dx.doi.org/10.1103/PhysRevLett.71.2753
http://dx.doi.org/10.1103/PhysRevLett.70.818
http://dx.doi.org/10.1088/1367-2630/9/8/283
http://dx.doi.org/10.1088/1367-2630/9/8/283
http://dx.doi.org/10.1016/0003-4916(90)90177-P
http://dx.doi.org/10.1103/PhysRevB.54.10827
http://dx.doi.org/10.1103/PhysRevB.54.10827
http://dx.doi.org/10.1103/PhysRevB.51.7700
http://dx.doi.org/10.1103/PhysRevB.51.7700
http://dx.doi.org/10.1103/PhysRevLett.57.1133
http://dx.doi.org/10.1103/PhysRevLett.60.2022
http://dx.doi.org/10.1103/PhysRevLett.60.2022
http://dx.doi.org/10.1103/PhysRev.45.706
http://dx.doi.org/10.1016/0039-6028(82)90623-9
http://dx.doi.org/10.1016/0039-6028(82)90623-9
http://dx.doi.org/10.1038/nphys1032
http://dx.doi.org/10.1016/S0065-2199(08)60170-0

