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Model solution for volume reflection of relativistic particles in a bent crystal
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For volume reflection process in a bent crystal, exact analytic expressions for positively- and negatively-charged
particle trajectories are obtained within a model of parabolic continuous potential in each interplanar interval,
with the neglect of incoherent multiple scattering. In the limit of the crystal bending radius greatly exceeding
the critical value, asymptotic formulas are obtained for the particle mean deflection angle in units of Lindhard’s
critical angle, and for the final beam profile. Volume reflection of negatively charged particles is shown to contain
effects of rainbow scattering and orbiting, whereas with positively charged particles none of these effects arise
within the given model. The model predictions are compared with experimental results and numerical simulations.
Estimates of the volume reflection mean angle and the final beam profile robustness under multiple scattering are

performed.
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I. INTRODUCTION

The volume reflection is an effect of deflection of high-
energy charged particles upon their over-barrier (nonchan-
neled) passage through a planarly oriented bent crystal. The
effect arises when the crystal bending radius R greatly exceeds
the critical value R,.. That condition is the same as the
Tsyganov’s one for the possibility of channeling in a bent
crystal [1], but the particle motion regime in the crystal yet
depends on the particle entry angle relative to the active
atomic planes. When this angle is much larger than the critical
value 6., then, moving in the continuous potential of bent
planes, conserving the particle full transverse (radial) energy,
the particles are rarely captured into channels (via incoherent
scattering on atomic electrons and nuclei), and are mostly
deflected elastically through the volume reflection mechanism.
Curiously, the latter deflection proceeds to the side opposite
to that of the crystal bending; the value of the deflection
angle is of the order of critical angle 6.. Furthermore, the
particle beam after deflection remains fairly well collimated,
i.e., its angular dispersion keeps much smaller than the
mean deflection angle. That phenomenon was discovered
in numerical simulations two decades ago [2] and recently
verified experimentally [3,4]. Nowadays it is considered to
be an option for beam collimation and partial extraction at
ultrarelativistic charged-particle accelerators [5-7].

To a good accuracy, the particle dynamics in the volume
reflection problem is classical [8] and reduces to classical
particle motion in a cylindrically symmetrical continuous
potential of bent atomic planes. Therewith, granted the angular
momentum conservation relative to the active crystallographic
plane bending axis, the final deflection angle is expressible
in the standard way as an integral over the radial coordinate
from an inverse square root function involving the potential
[see Eq. (55b) below]. That representation served as a starting
point for a number of numerical studies [2,9].

Although the computational problem as described above
seems to be sufficiently simple, it is aggravated by the presence
of several parameters: the ratio R/R,, initial and final particle
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variables (impact parameter and the angles of incidence and
deflection). The dependencies on all those parameters involve
singularities, which in general are better dealt with by analytic
techniques than by numerical ones. Besides that, as long as
for practice mostly interesting is the case R > R., it would be
instructive to evaluate the asymptotic behavior of all relevant
observables in the formal limit R/R. — oo, including next-
to-leading-order corrections in the small parameter R./R. But
since volume reflection depends on the particle dynamics in
not one but the whole sequence of interplanar intervals, for
feasibility of its global analytic description one rather needs a
simplified model.

A valuable opportunity for realistic model building is that
the interplanar potential in a silicon crystal, at least in the ori-
entation (110), is fairly close to parabolic shape over the entire
interplanar interval (see, e.g., [10]). A parabolic (harmonic)
potential, i.e., a linear oscillator, permits a simple solution for
the particle trajectory within a single interplanar interval. The
next problem is to connect solutions on the boundaries of the
adjacent intervals. It may appear nontrivial, but it is feasible to
do that transitively, i.e., simultaneously for an arbitrary number
of the adjacent intervals. Thereby we obtain a completely solv-
able model capturing basic features of the volume reflection,
except the effects of incoherent multiple scattering. Moreover,
we are able to derive not only the deflection angle, but also
an expression for the whole trajectory, which further on may
be used for description of inelastic processes, such as volume
capture or electromagnetic radiation.

In the present work, we will deliver a solution for the
suggested model problem. The plan of the article is as follows.
In Sec. II we describe the procedure for connection of solutions
between adjacent interplanar intervals, demonstrating that the
problem reduces to elementary trigonometry. The particle
trajectory is expressed as an explicit function of interplanar
interval order number (not in terms of a recursive procedure),
for an arbitrary ratio R/R.. In Sec. III, from the obtained
solution for the trajectory, we derive the particle final deflection
angle, in form of a sum of inverse trigonometric (for positively
charged particles) or hyperbolic (for negatively charged
particles) functions. In Sec. IV we scrutinize the limit R > R,,
important for practical applications of volume reflection, first
for positively, then for negatively charged particles. In the
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generic expression for the final deflection angle, we find a
possibility to replace the sums involved by integrals (via
the Euler-Maclaurin formula), and do the latter ones in a
closed form. As a result, we arrive at sufficiently simple
asymptotic formulas for the deflection angle dependence
on all the variables. The impact parameters are thereupon
analytically averaged over, and the experimentally observable
scattering differential cross section is obtained for positive and
negative particles. In Sec. V we examine the opposite limit,
R < R,. In Sec. VI we provide estimates of optimal crystal
and initial beam parameters for beam complete deflection
or for experimental investigation of the final beam profile
features. A summary is given in Sec. VIL

II. PARTICLE TRAJECTORY IN A BENT CRYSTAL

A. Initial conditions

The usual geometry of experiments on volume reflec-
tion implies a low-divergence charged-particle beam impact
normally to a thin,! weakly bent single-crystal plate. The
practically unavoidable slight curvature of the crystal boundary
is of minor consequence, since the main contribution to the
particle reflection angle comes from the vicinity of some point
in the depth of the crystal. For definiteness and to establish an
easy connection with the particle impact parameter in the initial
(perfectly parallel’) beam, let us consider a particle incident
along the z axis on a crystal whose front face is a perfect plane,
located at z = 0. As for the crystal rear face, for our purposes
in this paper we may leave it unspecified, as if the crystal was
infinitely thick but transparent. Then, let 6y (0 < 6y < 1) be
the angle of inclination of the crystalline planes to the z axis at
the crystal front face (see Fig. 1), and let the x axis, perpendic-
ular to Oz, point in the direction of the crystal bend. Moving
at small angles to the crystal planes, the particle interacts most
strongly (coherently) with the averaged, so-called continuous
interplanar potential [8], which induces a force with adominant
x component (yet slowly dependent on z).> Along the
y coordinate there is a translational invariance, ensuring
conservation of the particle momentum y-component.

In single crystals of not too heavy chemical elements,
in particular for silicon (diamond-type lattice), oriented by
its (110) plane close to the direction of the beam, the
continuous potential in each interplanar interval may closely
be approximated by a quadratic function, with an accuracy
of <20%.* That entails a linear equation of motion for the

I'The crystal has to be thin to avoid accumulation of incoherent
multiple scattering effects, but still it may be thick enough for
the volume reflection to occur within the crystal volume and be
independent of the boundaries. We shall quantify the corresponding
conditions later on (Sec. VI).

2We can turn to the issue of the initial beam divergence after we
derive the scattering differential cross section.

3At the crystal boundary, z component of the force is not small
compared to its x component, but the edge effects must certainly be
negligible for a deeply penetrating particle. The boundary condition
will be determined more precisely below.

“The condition thereof is that Thomas-Fermi radius of lattice-
forming atoms be commensurable with the interatomic distance half
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FIG. 1. Coordinates describing the bent crystal geometry (circle
segments are the bent atomic planes) and the particle entrance to the
crystal (thick arrow). Not to scale. For details see text.

classical® ultrarelativistic® particle:

X = Ed X X0) »

(c=1,

1t~z small angle motion), 2)

where x is the midpoint of the interplanar interval, d the
interplanar distance, E the particle energy, and Fy,,x the force
acting on the particle at the edge of the interplanar interval x —
X0 = —‘%. For positively charged particles, F.x iS positive,
whereas for negatively charged particles it is negative. Note
that the force and the particle energy enter Eq. (1) only through
the ratio
E
| Finax |

known as the Tsyganov critical radius [1]. The natural time
unit in channeling-related phenomena is

Ed R.d
T = = “)
2| Finax| 2

(27 7 has the meaning of a positively charged particle channel-
ing period, although herein we deal with over-barrier motion,
not with channeling).

Next, the crystal bending has the only consequence that x
in Eq. (1) acquires a dependence on the longitudinal coordinate

R, 3)

width. In silicon, that is the case we have. As for crystals of heavier
elements such as tungsten, there the atomic radius is appreciably
smaller, and the parabolic approximation for the interplanar continu-
ous potential is poor.

51t is standard [8] that, for a high-energy particle interacting with
an oriented crystal, the particle wavelength shortness on the atomic
scale makes the particle dynamics essentially classical, but yet
nonperturbative, given the small angle of particle motion relative
to a crystallographic direction and thus coherent action of atomic
forces over long distances. Still, quantum effects may be viable in a
special case when the particle transverse energy is very close to the
height of an atomic potential barrier (the author is indebted to A.V.
Shchagin for pointing this out in private conversation), but in any
case, the classical calculation has to pave the way.

®Equation (1) in itself may apply to a nonultrarelativistic motion,
too, provided E includes the particle rest energy (whereby, in the
nonrelativistic limit £ — m). But physically, to not complicate
the analysis, we confine ourselves in the present paper to the
(experimentally most important) ultra-relativistic case.
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z, which for ultrarelativistic motion under small angles to Oz
may be equated to the current time ¢:

Xxo = xo(z = t) (the crystal bend function). (®)]

In application to volume reflection, we are interested in a
uniform bending of the crystal, at which xy(#) describes a
circular arc of a small opening angle. That small arc may
equally well be approximated by a parabola, and hence x(?)
is determined by the equation
2
xo(t) = —6pt + 2t—R (uniformly bent crystal), (6)

where R is the atomic plane bending radius [without the loss
of generality, one may let x((0) = 0; see Fig. 1].

Inserting (6) into (1), and implementing (4), we obtain the
particle equation of motion in the first interplanar interval:

. 1 12 pos. charged particles
x::l:;(—x—@ot+—> { .

2R neg. charged particles
(N
Initial conditions for x(¢) stand as
x(0) =10, (8)
x(0) =0, ©)
where b, restricted to the interval
“dep<d (10)
2 2

is the impact parameter measured from the interval midpoint.’
The equations of motion further simplify in terms of the
“subtracted radius” variable

2

t

r(t) = —x(t) — Ot + 3R’ (11)

becoming
'r'=3:F2r (in—ilgrgf), (12)

T 2 2
where
)

§= 'k (13)

Thus, +§ is the spatial shift of the oscillator equilibrium posi-
tion due to the crystal bend, i.e., due to the centrifugal force,

"Equation (9), holding exactly inside as well as outside of the
crystal, deserves a comment. It implies the absence of refraction
on the crystal boundary, although there is a b dependent jump in
the potential energy (assuming that the particle enters the crystal
about normally to its boundary and to the corresponding potential
wall). The jump in the potential must also entail the opposite change
in the particle kinetic energy, but it is very small compared to the
beam energy (and its uncertainty even), anyway. Examination of our
final results also proves that possible b dependence of the particle
intra-crystal total energy can be safely neglected within the adopted
accuracy. Note that b dependence of the initial (potential) energy will
lead to extra sensitivity of the final deflection angle to the impact
parameter (see Fig. 4 below), though it will have no effect on the
appropriately averaged differential cross section.
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which in the present small-angle approximation, presuming
condition r < R within the weakly bent crystal, is treated as
virtually independent of the subtracted radius r (cf. [2]). For
r(t), the initial conditions (8) and (9) translate to

r(0) = —b, (14)
7(0) = —bp. (15)
Generic solution of Eq. (12) reads:
sin t
ro(t) = 8 — Ao {sinh} (;—Hﬂo) . (16)

(Here and henceforth upper signs and figures refer to positively
charged particles, and lower ones to negatively charged
particles.) Matching initial conditions (14) and (15) allows
one to determine the constants A and ¢p:

Ap = /1262 + (b £ )2, (17)

arcsin| b £ 46
$o = {arsinh} Ay (18)

[The sign of Ay must be chosen positive so that 77(0) at 6y > 0,
according to (15), is negative.]

Further on, solution (16) is to be connected with solutions
in the subsequent interplanar intervals. Importantly, since the
connection is to be carried out at definite r, the condition of
the connection will not depend on the current phase of the
harmonic motion, such as ¢ in Eq. (16), as we are going to
show.

B. Connection of solutions through interval borders

Moving along trajectory (16), the particle will cross the

next interplanar interval border r = —% at an instant
. d
n arcsin] 5 £ 6
—={.h}2 ~ %o, (19)
T arsin Ao
which is inferred from (16) by letting r = —%’ and solving for

t. At this instant, the equation of the particle motion turns to
_S8Fd+r) (. 3d d
r:—‘L_2 m—?grg—i . (20)

That is again the same harmonic oscillator, only with an altered

equilibrium position, so the general solution of (20) may be

written
sin t
ri() =48 —d — A {sinh} (; + o+ A‘ﬂl) . 2D

Values of new constants A;, Ag, are now to be determined

from the continuity of r(¢) and 7(¢) at the interval border point

r=— %. That can be done without formally solving the system
of two equations. First, compare two integrals of motion

A =1%r (48 —d — 1), (22)
Al = 1% £ (£8 — ro)? (23)

(related to transverse energy, see Eq. (57) below) in their
common point, whererg = r; = —%, Fo = 71. Subtracting (23)
from (22), one gets A% = A% —24d,1ie.,

Ay = /A2 —28d. 24)
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FIG. 2. Solid curve shows the phase-space (the subtracted
radius r vs the radial velocity 7) trajectory for positively charged
particles, under condition § < %. Dashed vertical lines signify the
positions of the bent atomic planes (definite 7). Thick dots indicate
centers of the trajectory circular segments. Vertex angle Ag; (and
similarly all other Ag,) may be interpreted as a geometric sum of
vertex angles in a pair of right triangles having a common cathetus,
and with the second catheti equal § 4 45,4 — 5, and the hypotenuses

A, Ay

Thereupon, the phase shift Ag; is sought from the condition
ri(t) = —‘21. One finds:

arcsin] 4 £ _ Jarcsin e
arsinh| A, arsinh| A,

(for a geometric interpretation of this relation for positive
particles, see Fig. 2). As we had expected, neither A; nor
Ag, depends on ¢g.

At each subsequent border, the connection of the solutions
is carried out in exactly the same way. Writing in the nth
interval

sin | [1 =
rn(t) = :I:S—nd—A,, {Slnh} (;“1‘@04‘ Z A(pm> 5

m=1

Ay = — { (25)

d
———nd<r, <= —nd,
2 2

the generic amplitude is found as

t, <t <ty (26)

Ay = A2 —28d = \[AZ — 2nsd

= [Jt20% £ (b £ 87 — 2084, @7)
and the generic phase shift is deduced to be
arcsin] % +6 _ Jarcsin ¥
arsinh| A,_, arsinh| 4,

where the amplitudes in the denominators must be treated as
already known, by (27). The instants of border passage can
also be evaluated:

In Z arcsin] 4 £ N E arcsin] £ F 8
- arsinh . ‘ arsinh| 4,
_ {arcsm} bxs

arsinh| A,

One caution is that amplitudes A, should not be regarded
as a measure of the particle spatial wiggling in each interval.

Ag, = — { . (28)

(Fa—1 = ). (29)
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FIG. 3. Same as Fig. 2, but for negatively charged particles,
assuming condition § < % (see Sec. III B).

As Figs. 2 and 3 indicate, the trajectory swinging enhances
as the particle penetrates deeper into the crystal, whereas
amplitudes A,, to the contrary, decrease. There is no con-
tradiction here because for most of the intervals traversed, the
intrachannel oscillation period 27t is much greater than the
time of particle passage across the interval, thus the particle
is far from making a full oscillation in each interval, anyway.
In fact, the lower the amplitude A, compared to the interval
length (along the particle motion direction), the stronger the
warp of the trajectory on this interval that may occur (see
Figs. 2 and 3).

III. PARTICLE REFLECTION

A. Reflection conditions for positive particles

It is clear that the decrease of amplitudes (27) cannot
continue indefinitely, because eventually arguments of the
arcsines in (28) shall exceed unity [that happens sooner than
the radicand in (27) becomes negative]. This merely signals
that the particle cannot reach the next interplanar interval.
The particle will continue its harmonic motion until it hits the
previous interval, then proceed moving outward in the radial
variable in the same but reverse way, and on the exit from the
crystal it will emerge as a deflected beam.

Let us evaluate the order number n{) of the reflection
interval. If, for some n, the inequality 5 + 8 < A, is met,
then it also entails % — 8 < A, so the arguments of all the
arcsines in (29) are less than unity. So, n{) is the largest
integer yet allowing for % — & < A . Through (27), that
condition determines the reflection interval order number:

2 d 2
L Lzzeo +(b+8)7?—(£-9) J 0
max 25d ’

where the lower-corner brackets |...| designate the integer
part of a number (|a| < a). If 76y > d, the variation of
Nmax(b) is much smaller than its mean value, estimated as

292 592

T 28d T 240 D

n max
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(this estimate is valid for negative particles as well; see Eq. (51)
below). It is instructive to notice that

d
—-5<
2

d
An(n-;x)x < 5 +34.

Toward the volume reflection problem, we are interested
in finding the total reflection angle 6.4, half of which, by
symmetry reasons, amounts to the deflection angle of the
trajectory in the reflection point ¢ = #.q in which

F(ten) = 0. (32)
Le.,

1 t
e = (tren) = 6o + siﬂ (33)

[more exactly, see Eq. (52) below].® To evaluate the right-hand
side of (33), one only needs to know the value of #..q. The latter
is found from solving equation 7(t,q) = 0

Trefl _ tnfﬁ@.)x + z

T

d_s
+ arcsin 2
A

nl n

n;tL
— + E arcsm

b
— arcsin

(34)

The largest contribution to the emerging sum comes from the
terms n ~ n(“ (where denominators A, are smallest), so it
may be more convenient here to revert the summation order.
Introducing a useful parameter

202 + (b4 8 — (4 —5)
UH’) — { 0 55d (2 ) , (35)
£

with braces {. . .}; to indicate the fractional part (0 < v < 1),

one recasts (34) as

Trefl s . b+§
= — — arcsin

T2 Ji

(+
nma)x

d
+ Z (arcsin 5+8
J(E+9)

8)” + 200 + n)sd

—8)° + 200 4 n)sd

4-5
5 . (36a)
J(E =8 1200 +-mpd

+ arcsin

8Strictly speaking, the trajectory will not be exactly symmetric with
respect to t,.q because the distances from 7,.q to the crystal boundaries
are in general different. However, contributions to 6,4 from crystal
regions away from g are supposed to decrease sufficiently rapidly,
and one expects existence of a “thick-crystal limit” of 6,.q, relevant
in actual practice; see Sec. IV. In this paper, we content ourselves
with only the “volume” contribution (33) to 6,4 and do not study
any boundary effects. As we shall see later (Sec. IV and Appendix),
however, the omission of boundary effects requires certain care.
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Equivalently, using the identity arcsin F = arccot, /7, one
can write

trefl T . b+§
— = 5 —arcsin -
t (4 —8)" + 200 + ni)sd

+ Z <arccot (U +mid

n=0 2 + 8
/2(vH) Sd
+ arccot(vd——;n)). (36b)
4_

The physical meaning of parameter v+ is clear from Fig. 2.
It represents the kinetic transverse energy at the last atomic
plane before the reflection, in units of the centrifugal potential
difference between the neighboring atomic planes.

B. Negative particles

In contrast to the trigonometric arcsine, the hyperbolic
arcsine function exists at any value of its argument. Therefore,
expression (26) for negatively charged particle trajectories
holds until the radicand in the motion amplitude A, given
by (27) becomes negative. The first interval at which that
happens will be called the “inflection” one. Its order number

is inferred to be
7202 — (b — §)?
Minfl = \‘OTJ + 1. (37)

In the inflection interval, the amplitude A, , calculated by the
formula (27) would be imaginary. That implies that the r(¢)
dependence now is to be described by a hyperbolic cosine
rather than a sine. Matching the amplitude and the phase of
the hyperbolic cosine with solution (26) for the preceding
n = nipp — 1 gives

Rin—1
Tng (8) = —8 — ninad + | Ay, | cosh < + @0 + Z Apm
m=1
d d
&—94 S+
— arsinh -2 — arcosh-2 , (38)
A”linﬂ_l |Aﬂmﬁ |
valid at
d d
5 - ninﬂd g i < E - ninﬂdv
with
|Aninﬂ| = \/—1203 + (b — 8)2 + 2ninﬂ8d
= /28d(1 —v), (39)
and
292 —(b—=26 2
R et GtV B (40)
28d f
Since % + 8 > +/246d, the argument of arcosh in (38) is
always > 1.

Next, the question arises, at which condition can the
trajectory (38) actually reach the next interval, i.e., ry,,(t)

042902-5
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can descend to value nij,pd — %. Since, by Eq. (40), r,,,,(¢) >
—8 — ninad + |A,, . |, that would require

Ninfl
d
é— 5 > |Apql- “n

Substituting here (39), and solving with respect to the ratio %,

one may present (41) in the form
8 R, =)
7 > fO), (42)

with

FOO) = % —VO 4+ /2= vO)A —vO).  43)

Function f(v(™)) decreases monotonously (almost linearly)
from £(0) = 3 +v2~ 2910 f(1) = 1.

In the simplest case illustrated in Fig. 3, when condition (42)
is violated (e.g., if % < % < f), (37) must be the last interval
reached by the particle, its order number being

_ 7268 — (b — 8)* .0 _
”ind)x = Ninfl = \‘OTJ +1 <lf 7 < fol ))) .

(44)
Expressing t,.q from equation 7(¢..5) = O then gives
d
t 5+ b—3§
1 _ arcosh2 — arsinh
T | Vlinﬁ| AO
Nina—1 Nip—1 4
+ Z arsinh 2 + Z arsinh 2 45)

Reversal of the summation order here leads to the expression

d
frel = arcoshz——}_(s — arsinhg
T V28d(1 —v) Ap

Ring—1 d _ S

+ Z arsinh——2————
pr V28d(v) +n)
N —2 %+8

+ arsinh—————. (46)
; V28d(v) + n)

Therethrough, using Eq. (33), results the deflection angle.
Otherwise, i.e., if (42) holds (e.g., if % >3 > f), in all

the subsequent intervals after (37) the trajectory must also be

expressed through hyperbolic cosines:

N —1

rat) = =8 —nd + |An|cosh< +oo+ Y. Apy

m=1
d d
. 7 5+ )
— arsinh — arcosh
Nine—1 |Anin[] |
n d n—1
7 5+9
— arcosh 2 + arcosh 1 ,
m=njya+1 | ml M=MNinf | m|

(47)

with amplitudes A,, still given by Eq. (27). Expression (47) is
valid at

—nd <r, <= —nd,

d d
B > n 2 Ninfl.
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Sequence (47) may continue as long as the arguments of all
arcosh exceed unity, i.e., as long as

d

§+8> [Anl,s (48)

which is equivalent to —% + 8 > |A,—1|. Inserting here (27),
one ultimately infers the value of the reflection interval order
number:

202 (1 s\2 d 2
ni;l)x _ \\T 90 b—-6)+ (2 +8) J (lf é - f(l)())> .
28d d

(49)

The above expression is similar to Eq. (30) for positively
charged particles. As one might expect, in the high-energy limit
8 > d,b, values n{) and n{) coincide and do not depend on
the particle energy.

Expressing t.q from 7(t.q) = 0 and Eq. (47) in this case

gives

fren b Ning—1 d_ g
Te! . . 2

— = —arsinh arsinh

. me D arsinh2

or, reverting the summation order

Trefl . b—34
— = —arsinh
T V28d(nigg — 14+ v0)
ni“ﬂfl i _ 6
+ Z arsinh——2—
e V28d(v) + n)
Nip—2 d
linfl E + 8

+ arsinh—=———,
; V28d(v) + n)
ik —nin+1

d
+ E arcosh 2

o V28d(n — vD)

”max —Ninfl

Z arcoch————=——
,/28d(n — (= ))

Actually, Eq. (50) can be used not only under condition (42),
but also at any ratio %, provided that in capacity of n{;), one
uses the expression

o _ rzeg bR+ (-8 (- f(v(_)))J .

(50)

max 28d
D

(with ®(v) the Heavyside unit-step function), unifying (44)
and (49).° The universally valid formula (51) may be

Evidently, expression (51) at % > f reduces to (49), whereas at
% < f it turns to (44), with the last sum of (50) vanishing and the
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convenient when t..q is evaluated with the aid of a computer
for widely varying values of particle energy or crystal bending
radius.

As for the physical meaning of v(~) — at % < f,i.e., when
the inflection interval is also that of reflection, Fig. 3 illustrates
that the meaning of v(™ is similar to that of V™", It is the
(appropriately rescaled) kinetic transverse energy upon the
particle entrance to the reflection interplanar interval, only
the interval boundary now is not the atomic plane but the
last potential maximum passed. If % > f, then v™) does not
characterize the reflection interval, and vice versa, the kinetic
energy in the reflection interval is not closely related with v,

The obtained expressions (26)—(29) for the trajectory and
(36) and (50) for its reflection point open prospects for
evaluation of all the observables relevant to the particle
passage. In the present paper, we will be interested only in
the final angle of elastic reflection.

C. Thick-crystal limit (isolation of volume effects)

Formulas (36) and (50), in principle, contain dependencies
on both volume and boundary effects. In most practical cases,
the deflecting crystal may be regarded as thick, whence bound-
ary effects are expected to become negligible. An increase of
the crystal thickness, or more precisely, of the distance between
the crystal boundary and the volume reflection point, may be
thought of as an increase of the particle incidence angle 8, (see
Fig. 1). Then, it suffices to consider the limit

<_00 + Streﬂ(90)> - (52)

Ot X Oyr, =2 lim S
T

0o /0c— 00

With function (36), or (50), such a limit must always be finite.
Indeed, at large n,,x the sum over n grows as the corresponding
integral, whose asymptotic behavior straightforwardly evalu-
ates as

d d_
fret ~ / dn 2 9 + 2 9
T V20D +m)dd 20D +n)dd
~ znmaXd >~ 902
) 8

This leading asymptotic behavior cancels exactly the first term
in (52), while calculation of the finite remainder requires a
more accurate evaluation of the sum, which will be our task in
the next section (in application to limit R > R,).

In general, it must be noted that function 6, (t,58,d,b),
being a dimensionless function of four dimensional variables,
may depend only on their three dimensionless ratios, say, d/t,
8/d, and b/d. At that, the last ratio is always ~1. The first

ratio amounts to
d 2d
- =, /= =20, (53)
T R,

next-to-last sum reducing to a single term, equal to the first term of
Eq. (46).
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FIG. 4. The volume reflection angle 6, ;. as a function of impact
parameter b, for R/R. = 1/3,2,10,40. Top panel: for positively
charged particles. Bottom panel: for negatively charged particles.
Beyond the shown unit interval of b/d the whole picture repeats
periodically.

S~

where 6, is the Lindhard critical angle [8]; so, it is always
small, once we are in a high-energy regime. As for the ratio
2§ R,
d R
it may be either large or small depending on the particle energy
and the crystal bending radius. The regime of particle passage
through the crystal is determined solely by ratio (54).

To gain a general impression of the functional dependencies
involved, and to test our generic formulas (36) and (50), let
us view the dependence 6, (b) for different values of R/R..
Figure 4 shows this dependence for positive and for negative
particles. They are in fair agreement with Figs. 6 and 8 of [11].
But we will pay more attention to interpretation of the features
observed in the figures:

(1) The origin of the recurrent structure in variable b with
a tapering period is, obviously, due to 6y, dependence on
b through v® alone [see Egs. (35) and (40)], insofar as

v® ) involving an operation of fractional part, is a periodic
(b+8)
25d °

NZ% = 2%‘_ > 1 periods. Physically, it owes to the fact

that variation of the particle initial potential energy, after the
entrance to the crystal, at R > R, is greater than the energy

) (54)

function of which in the interval —% <b< % makes
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shift between the neighboring potential barriers. Also, since
v® is an even function of b & §, the particle deflection angle
is a symmetric function of b with respect to point b = —§
for positively charged particles, and with respect to » = § for
negative particles.

(2) Another feature of 6, (b) dependencies is that, for
negatively charged particles, the reflection angle blows up
(formally) to +oo at certain values of impact parameters.
Physically, that corresponds to close matching of the particle
transverse energy to the height of a (locally parabolic) effective
potential barrier—the situation known as orbiting (see [12]).!°
The asymptotics of the divergences is logarithmic [12], as
follows from the general integral expression of the deflection
angle in a central potential V (r):!!

o0 dr/(R +r)?

O iom ™M —m  (55a)
Ex»m ruin V[ E — V(r)]2 MR tr)
/ e
R>>rb R Fimin 90 M
dr
IAE \;:IF ld O — 4.
L max 5
|” rs1dd]e|<d nmxL + (r — rsaddie)
(55¢)
45 ln#_;... (AE, x v = +0),
4 s+ (AEL v — 1 — —0),

(55d)
Here
M~ (R—b)E - V®I(1-6;/2)

is the particle angular momentum relative to the crystal bend
axis,

Ver(r) = V() — E% (56)

is the effective potential including the centrifugal energy, r,ddie
is the position of the maximum of the effective potential barrier
whose height in the case of orbiting happens to be close to the
particle energy, and AE is the departure of the transverse
energy

E | (60,b) =

E Fiax
59§+ Veir(—b) = d"‘ [A360,b) + 8] (57)

from the top of the closest effective potential barrier. The factor
% in the AE, < 0O alternative of Eq. (55d) arises because
the integration in (55c¢) is then restricted to the one-sided

0The verbal description of this effect for negative particle case is
contained in [2] (end of Sec. 3), and a graphical illustration thereof
appears in [9] (Fig. 5, trajectory 2). But the relation with the general
concept of orbiting (spiral scattering), as formulated in [12], was only
noticed in [13]. We refrain from discussion of possible experimental
significance of orbiting here.

""Equation (55a) agrees with our definition of the # angle, usual in
volume reflection studies, and differs in sign from the conventional
in mechanics definition of deflection angle in a centrally symmetric
field.
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Veff
AE. >0

AE. <0

Aol
7

FIG. 5. The relation between the particle transverse energy and
the effective potential energy Vg (including the centrifugal potential)
under the conditions of negatively charged particle orbiting in a
bent crystal. The leading logarithmic contribution to integral (55b)
comes from the vicinity of point rg,qqe, the coordinate of the effective
potential maximum to which the particle transverse energy happens
to be close. In the case AE, > 0, the particle sweeps the two-sided
neighborhood of rg,4q., Whereas at AE| < 0, it sweeps the one-sided
neighborhood only.

T'saddle

neighborhood of rg,q441e, Where the radicand stays positive (see
Fig. 5).

(3) It must be noticed that for negative particles, function
0y :.(b) has stationary points (smooth minima), which must
correspond to caustics, i.e., to rainbow scattering [12].

(4) For positive particles, in contrast, the potential in
its maximum is not differentiable, excluding both orbiting
and rainbow scattering phenomena for this case. With some
smearing of the potential around the atomic planes, these
effects will, of course, reappear. But on the other hand, they
may be reduced by intense incoherent multiple scattering in
this region.

A proper question is whether it is possible to derive, at least,
the particle final deflection angle (related to ’T“) from the more
conventional integral representation approach [2,9]. In that
approach, momentum and transverse energy conservation laws
are incorporated automatically, so there is no need to connect
trajectories on the interval borders. Indeed, specializing in (56)

and (55b)
n)z, nz—L%—F%J (58)

(at r > 0 n is nonnegative; n(r = —b) =
basic integral

V(}") = Fmaxd (2 +

0), and using the

/d/Z nd dr
~ap-nd | [1263 4 B2 4+ 25(b + r) — (r + nd)?

d
)
= arcsin 2
rzé’g + (b +8)* —2ndd
d
5+9
+ arcsin 2 59

\/ﬂeg 4 (b+08) —2n8d

for positively charged particles, and a similar one for neg-
ative particles, we reproduce the inverse trigonometric and
hyperbolic functions encountered in (34), (46), and (50). But
the integral representation approach would not directly give
us explicit trajectories r(¢) [rather, #(r), to be solved for r],
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and the geometric interpretation (Figs. 2 and 3) would not be
immediate.

On the other hand, from the integral representation for the
final angle, we might derive the result in the form of a sum of
analytic functions also for a more complicated parametrization
of the interplanar potential, e.g., adding a term proportional
to #*. Then instead of arcsines, one would encounter elliptic
functions. But it is the simplicity of the functions under the
sum that permits us, in the important limit R > R., when
the number of terms in the sum grows large, to replace the
sums by integrals and to do the latter ones in closed form.
In this sense, analytic investigation only begins at the present
stage.

IV. VOLUME REFLECTION REGIME (MODERATELY
HIGH ENERGIES, R > R.)

As we had mentioned in the Introduction, and as Fig. 4
does confirm, under the condition R > R, i.e., 26 < d,
the particle deflection angle depends weakly on the impact
parameter. So, it is interesting, in the first place, to determine
the numerical value of the limiting ratio limg g — oo 90—
Second, it is desirable to determine the final beam shape and
quantify its angular width as a function of R/R,. That will be
our aim in this section. The treatment is somewhat different
for the cases of positively and negatively charged particles,
because of the difference between the functional form of initial
Egs. (36) and (50).

A. Positive particles

For positively charged particles, in the considered limiting
case § < d, say, quantity (£ + 8)> +2(v") +n)d entering
the denominators in (36a) varies relatively little as n changes
from n ton + 1. Thus, there must be a possibility to replace the
summation in (36) by integration. The proper mathematical
tool for that is the Euler-Maclaurin formula (see, e.g., [14])
which reads

N | N | of
;ﬂn) = §f<0>+/0 dnf(n)+ 5 f(N) + 0 <%> .
(60)

Employing this formula for approximation of each of the sums
in (36b) [the latter being somewhat more convenient than
Eq. (36a)], one gets'?

+)
! 28d(v ) + n)
Z arccot—————

n=0 4 +34
1 \/28dv(+ /"‘Jﬂ’x”‘*’l V25dn
= —arccot—— dn arccot
2 e 4+
\/ 26d(nigx + v — 1) ol P\ el
t -5 1
+ arcco d s + < d) (61)

2In this subsection, the sign alternative in % =+ § corresponds to
dealing with the first or with the second of the sums in (36b).

PHYSICAL REVIEW A 82, 042902 (2010)

where we had estimated, for all n,

t,/zad(uw +n)| _ \/3
—arccot———— -.

dn 4+ ~Vd

The two end-point contributions in (61) are small as O(5/d)
relative to the integral, but still they need to be kept if we wish
to describe not only the mean deflection, but also the scattered
beam shape.

Taking the indefinite integral in Eq. (61) by parts,

1
/dn arccots/an = —[(1 + an)arccot/an + «/an],
a

one brings (61) to the form

+)
! 26d(v® + n)
Z arccot—————

d
n=0 Eia

d 2

£+46 28d
~ u 1+ —z(nﬁg;l( + v — 1)
s<d  28d (czi + 5)

\/ 28d(nhy + v — 1)
4+

\/25d(nf$§ + v — 1)
+ - —(1
445

X arccot

28dv™)
(4+0)°

V28dvH 1
. y +
=Y

V28dv®

~28dv)
[_l s ccot——

—ar
d
2 4+

D O\/3 62

In the limit nggl)x — 00, with the use of asymptotic expansion

X arccot

\/ 28d(nix 4+ v+ —

+ = arccot d
+4

arccot,/n = 5 — /N + O(n*/?), expression (62) reduces to
nH
- V28d(vH +n)
Z arccot-——————
n=0 2 +3
d+25 (4 +5)°
— Amax — — Ao
nitao>1 /26d 28d
28d 7 N28dvD\  V28dvH)
I\ 1+ )\ 5~ 2 Z
(E + 5) 5%E8 5E6
1m
+55+0 (63)
/ (+
max
Here, one notices that the terms —~ zfi‘;H + 231‘;” in the

brackets in (63) cancel. Further on, msertmg (63) to (36b) and
this to (52), we witness the anticipated cancellation of the large
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[ {-pa 70/2 02 ‘013\‘1 | {

FIG. 6. (Color online) Solid curve shows the positively charged
particle deflection angle 6, ;. vs impact parameter b, for R/R,. = 25.
Dashed curve is approximation (64). The central segments of the
curves are strongly 6, dependent.

terms —6y + —V%‘Sdn,(:;)x = 0, and ultimately arrive at a result

S| 2d
Oy, (D) ~ =200+ 2—| = + —1/niix
() o + T|:2+m n
d 2
7 ((5+9) FIVCEN
2 26d 4

T 4R R2?
=_=T _ ey D Ke
=50 [1 = =P+ 0 (Rwﬂ’

(64)

remembering that v (b) is given by Eq. (35).

Comparison of approximation (64) with the exact result
(36) is shown in Fig. 6. (Actually, the given approximation
appears to be numerically accurate starting from R/R, ~ 5).
From the figure [or Eq. (64)], one concludes that in the first
approximation, all the particles are deflected to the same angle
A —750.. There is also some dispersal of the scattering angles,
depending on the particle impact parameter, of the full width
equal to

27R, 278
=

AOy;. =0, (positively charged particles),

(65)

The observable quantity, however, is not the indicatrix 6, . (b)
but the scattering differential cross section (final particle flux
averaged over the impact parameters b) as a function of the
scattering angle 6, .. Therefore, it is desirable to reconstruct
the latter dependence issuing from the first. Fortunately, that
does not pose any principal problem, granted the linearity of
the dependence 6, (V).

1. Differential cross section

Turning to the evaluation of the differential cross section,
one encounters a certain complication: the b-dependent quan-
tity v in (64) also contains a dependence on 6. The fact
of residual 8, dependence was previously noticed in [11]. To
some degree, it conflicts with our initial assumption about the
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boundary condition vanishing influence in the limit of large
0y /6.. We cannot revoke it at the present stage, since in Eq. (52)
we had already incorporated the facilitating assumption of the
trajectory symmetry with respect to point #.q. Obviously, the
sensitivity to the boundary conditions in general destroys such
asymmetry. Moreover, 6.4 might as well contain a dependence
on the particle exit angle relative to the atomic planes,
which we did not even take trouble to specify. Fortunately,
the impediment is not fatal and curable within the present
framework. In principle, the sensitivity of the differential cross
section to 6 is attenuated with the increase of R/ R, but more
importantly, we will prove that upon averaging over a tiny
interval of 6 this dependence is eliminated completely.

To begin with, the differential cross section involves only a
derivative of function 6, ; (b):

dr 1

dby, ; |dOy.r./dblyp_y, @,.)

R 1

~ 2716.R, 2 |dv ) [dblp—yy, (6,

m

(66)

where b,,,(0) is the set of all the roots of equation 6, (b) = 6
belonging to the interval —% <b< %. Now, at R/R. > 1
the number of roots b,, to equation 6,, =6 is large, and
so, in general, they are densely distributed over the finite
definition interval —% <b< % It appears that the root
distribution density is just proportional to the derivative in the
denominator of (66) (the formal demonstration is relegated
to the Appendix). Therefore, the sum appearing in (66) is
approximately equal to just the b variation interval length, i.e.,

d. Still, the relation expected thereby,
di N Rd
dby, — 27O.R.’

does not yet hold uniformly in b, and hence in 6, ;. For
instance, in the neighborhood of point b = —§ we have in
the denominator of (66) 3v™/3b — 0 (see Fig. 6), so there
the differential cross section blows up above the plateau (67)
(see Appendix). But the latter peak position on the 6, , axis
depends sharply on the value of 6, and hence is essentially
“random” and needing to be averaged over.

In this connection, notice that the dependence of v on
6o is quadratic, so a situation is possible in which the incident
particle beam divergence is smaller than the angular spread
acquired in the crystal:

(67)

Ay K Aby,, (68)

2092
but at the same time, the indeterminance of % ~nlH) is
greater than unity:

A (’295> = Z% g s, (69)
28d 8d
Together, Eqs. (68) and (69) may be viewed as a double
inequality:
25 6,

2wé .
—— K Afy € — (6p-averaging). (70)
T 6 T

Here, the sufficient gap exists provided

0.
O > —. (71)
4

042902-10



MODEL SOLUTION FOR VOLUME REFLECTION OF ...

0. di
— 0
d db,,
7777777777777 R
2 7R,
Gl‘./‘.
T o _4RL. 6,
S0 0

FIG. 7. Asymptotic (at R > R.) behavior of the 6y-averaged
differential cross section for positively charged particle scattering
[Eq. (72)]. The area under the rectangular curve is unity, representing
the total probability. In higher orders in R./R the distribution edges
must smear out (see discussion in the text).

This is basically the same condition that we had as-
sumed at writing Eq. (52); thus for derivation of a 6p-
averaged differential cross section, we can safely rely on
Eq. (64).

Ultimately, we can make a specific statement that under
conditions (70), upon 6y-averaging, the differential cross
section equals to constant value (67) over an interval
where roots b,, exist. This interval is rather obvious from
Eq. (64)—its ends correspond to ends of v*) variation
interval: v =0 corresponds to 6, = —Z(1 — %), and
v =1 corresponds to 6y, = —% [see also Appendix,
Eq. (A12)]. So, the 6y-averaged differential cross section
(the final beam profile) is described by a simple rectangular
function

dx Rd T
~ e ev.r. + _ec
dby. [~ 270cR. 2

T 4R,
X ® (—Gv_r. — =0, <1 - )) , (72)
2 R

2. Comparison with experiment

see Fig. 7.

When comparing our model result for the final beam profile
with experiments, an important issue is the significance of
incoherent multiple scattering with the targets of ~1 mm used
to date. Deferring the numerical estimates till Sec. VI, note
that the deflection angle mean value must be least affected by
multiple scattering; so, it may offer a clean experimental test.
From (64), we obviously infer

T 2R, b4 d 2R,
<9V.r.> = __90 1- =—-7= 1- . (73)
2 R 2\ 2R, R

The property of (73) is the linearity of the dependence on
the crystal curvature R~'; the linear kind of the depen-
dence was indeed noticed in CERN experiments with E =
400 GeV [15].

To make a quantitative comparison with the experiment,
one needs to specify the potential strength in our model. In
reality, the Si(110) interplanar potential is characterized by two
parameters: Fi.x &~ 6 GeV/cm (usually used for evaluation of
R, for channeling conditions) and the well depth Vy = 22.7eV
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€0y (urad)

: : : /R (m™!
0.0 0.1 0.2 0.3 /R (qu™)

FIG. 8. Mean volume reflection angle dependence on the crystal
curvature, at £ = 400 GeV, for silicon crystal in orientation (111).
Points: experimental data from [15]. Line: prediction of Eq. (73),
with parameters evaluated as explained in the text.

(usually used for evaluation of the critical angle 6, for volume
reflection). The relation Vy = %qud implied by a quadratic
potential model only holds with accuracy ~ 25%:

22.7eV = Vg # §Fnaxd = 28.8¢V,
d = 1.92 A for Si(110).

If we evaluate R, in (73) as R, = E/Fpax = 0.67m, it will
produce too large |(6y.)|. But evaluating both R, and 6, as
R, = % ~ 0.85m, 0. = \/2Vo/E ~ 1lurad, and substitut-
ing into Eq. (73), we get a satisfactory agreement with the
experiment (see Fig. 8).

As for the obtained rectangular profile shape, it is more
sensitive to multiple scattering, and has not yet been cleanly
accessed in experiments (the optimal experimental conditions
will be specified in Sec. VI). But we can compare our
profile with the available numerical simulation results using a
realistic, thermally smeared potential, and neglecting multiple
scattering, too: Ref. [9], Fig. 6. In that case, the positive particle
profile shows indeed a signature of flattening (“‘shoulder”) but
near its edges the distribution behaves differently, exhibiting a
subtle divergence (rainbow) at the outer edge, and decreasing
continuously on the inward side. So, for positively charged
particles our simplified model of parabolic interplanar poten-
tial describes the final beam profile only qualitatively, though
it is able to predict the distribution width and mean value.

Next, turning to the negative particle reflection problem,
we shall see that in this case our analytic approach is able to
appropriately describe the final beam profile edge detail even.

B. Negative particles

In the case of negative particles, the starting point is Eq. (46)
[relevant under (strong) condition (42)], and again, it has to be
examined with the object of trading the sum for an integral.
First, we must mind that at n ~ 1 the hyperbolic arcsine
arguments vary significantly; but at the same time, they are
large, while the hyperbolic arcsine of a large argument is close
to the logarithm of a large argument, i.e., arsinhv 2~ In 2v,
and thus varies relatively little. On the other hand, in the
domain of large n the arguments of the arcsines vary little.
Therefore, over the entire summation interval, both sums
involved may be approximated by integrals. Yet, the first terms
in the sums are singular functions of v and therefore are
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better taken into account separately. Thereafter, application of
the Euler-Maclaurin formula to the first of the sums in Eq. (46)
gives

ning—1 d_ s

Z arsilh——2——
0 V28d(v) +n)
| d—26 N 1 | d—268
n———+-In——
N28dv) 2 ,/28d(v(*)+1)

v i —1 Z_5
+ dn arsmh—
/u<l+l A28d/n

1 d_s
+ arsm (74)
\/28d(v( )+ g — 1)

The next-to-leading order (derivative-related) correction term
[14] to (74) amounts to

n=nipg—1

- 45 1
12 dn asin /28d (v + n) - 24(1 + vy’

(75)

We will omit it because of the smallness of the numerical
coefficient - 54 although, in principle, asymptotically it is also
relevant [the same is true for all the higher derivatives, whose
contributions enter with yet smaller coefficients (involving
inverse factorial and Bernoulli numbers)].

Next, calculating the indefinite integral in Eq. (74) by parts,

/dn arsinh% =n arsinh% +ava?+n, (76)

we bring (74) to the form

N —1

arsinlh——=—————

Z V28d «/ v 4+
d
5—9

V26d(v + nigg — 1)

d d 2

()

2~ f2 7 (=) P |
+ \/ 25d +v + Ninfl

~ (V') + njpyg — Darsinh

A28d
)
— (1 + v D)arsinh
26d(1 + 1))

d d 2
Al Rk R

A/28d 25d
4 d—28 +11 d—28

n

28dve) 2 28d(1 4+ v))

1 4-3

+ arsm ()

V28d(v) + g — 1)

Now, in the thick-crystal limit ni,g — oo, Eq. (77) simplifies

to
Nin—1

arsinlh——————
Z V28d «/ v +n

d=2 oy d=2
— i —— — V) In ———r
st Y M 25d V28d(1 +vO)
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2
(59 \/1+ 28d
2\ (§-9)

——5 (1 +v0)
d—26 1 d—126
e Bl PO e S
V28dve) 2 /28d(1 4+ vD)

N d—28 <1+ <)>1 d—28
= g——— — (= +v n
" Jwad \2

V28d(1 + )
(g

d—
__1 Yy 4n ——
28d (+viD+ na/zgd(

Similarly, the second term in (46) reduces to

+ In

(78)

i —2

2+8

Z a.rSln
V28d(v) 4+ n)
d+25 (1
2 (2 P B
Ve ( " ) " /2sd( 00

258d 2
d+ 26

d 2
($+98)° 1
2 =)
- — (1 In ——. 79
5d 2( +v7) +1n TENE (79)
Inserting (78) and (79) into Eqs. (46) and thereupon to (52),
after a simple rearrangement, one is left with the final result:

6 0] 1 2R 11 ! +1 !
vr X 0|l = —=| 5N ———— +In—=
' R \2 el —vO) p()

_ v<—>+l n—F~
2 (14+ve

+(1=v)n £>i|
) R.) T
(80)

where the definition for v(7(b) is Eq. (40). Note that
logarithmic asymptotics of this expression at v — 0 and
at v — 1 agrees with the general law (55d).

The exact (52) versus approximate (80) expressions for the
indicatrix 6, . (v()(b)) are compared in Fig. 9.

d+ 28

1. Differential cross section

To deduce the observable differential cross section from
the available indicatrix, we have again to issue from Eq. (66).

0,../0c

FIG. 9. (Color online) Comparison of the exact formulas (52)
and (46) for the negatively charged particle indicatrix (black solid
curve) with the approximation (80) (blue dashed curve) and approxi-
mation (90) (red dotted curve), for R/R. = 25. The central segments
of the curves are strongly 6, dependent.
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To some extent, the same procedure as for positively charged
particles applies here, leading to the representation

1
; o™ /ab|

where b,,(v(7) is the solution of Eq. (40), and Z?: | accounts

for the existence of two roots to equation 6, = 6, (V7))
with the function (80). Again, upon averaging over 6, under
condition (70) (cf. Appendix), one obtains

2
1/ dx
d <d9”_ >90 =2

j=1

; (1)
b=by (v O0r)

=)
dvj
dby ..

; (82)

i.e., averaging over b (and a tiny interval of 6j) reduces to
averaging over v~ (transverse energy). Note that when v~
becomes a uniformly distributed random quantity in a unit
variation interval, for each given b, and thus for a certain
6., one can always unambiguously tell whether v~ = v{™’
or v = {7, 50 the probability normalization is conserved
under conditions of summation over the branches.

A technical distinction of the case with negative particles
is that Eq. (80) cannot be resolved with respect to v~ in an
explicit and exact form. Of course, it can be easily solved
numerically; the differential cross section so evaluated is
shown in Fig. 10, by a solid curve. On the other hand, it is
also useful to pursue an analytic but approximate approach,
based on different approximations in different regions of v(=),
which will require some additional effort.

2. Asymptotic evaluation of the final beam profile

In Eq. (80) at typical v~ the leading term is the last one,
where V(™) is multiplied by a large logarithm. Besides that,
in the domain of v~ close to 1 the first logarithm in (80)
turns large, too, and a minimum of function 6, ;. O emerges,

6. di
—(—q,
d do,,
- rainbow
6 \ region
\
4 [ .
typical angle
__Tegion .
2 S orbiting
L region
Oy
0 . L L
_ R, 16, R L 2R R _ 0.
171+71n((71n 0 ) 1+ < lnRL 0.6

FIG. 10. The 6y-averaged differential cross section of negatively
charged particle scattering, at R/R, = 25 (solid curve). The axes
scales are chosen so that the area under the curve is unity, as the
total probability. The left-hand dashed curve is evaluated by the
explicit approximate formula (87); the right-hand dashed curve-by
the explicit approximate formula (94). It is observed that these two
approximations actually overlap.
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corresponding to the onset of rainbow scattering. As for the
second logarithm in (80), which raises at V™) — 0, it does not
lead to formation of a minimum in the 6, , (V™) dependence;
on the contrary, it makes the dependence steeper, and in the
area of its significance the differential cross section is small
(exponentially). So, for the description of the differential cross
section, it basically suffices to consider only two regions: the
region where the last term of (80) dominates, and the region
where the last term and 3 In ;== in (80) are competing. On
the 6, . axis, the mentioned regions are adjacent, and conjointly
they should give almost the full picture of the variation of the
differential cross section. For completeness, one may consider
also a third, asymptotic region of the “tail” of the differential
cross section (orbiting region), where the first and second
logarithms of (80) dominate.

a. Rainbow region. The value of v(=) corresponding to the
rainbow angle is to be determined from the condition

90, 1.
8 l)(_) V(_)=V[()_)

=0, (83)

which in application to expression (80) gives

% Lo ma4v) =m S s1 (84
m—ﬂﬁ-n( + vy )—nR—>>- (84)

0 0 ¢

The approximate solution of Eq. (84) is

R : o 85
o g T )

In the vicinity of the found point v((f)

function 6, (V™)) up to a quadratic term:

Oyr. R 1 16 . /4R
+1 ~ —-In{ —In
0. 2R, 2 e’ 2R,

+ (v(_) — v(()_))2 In® ——

we may expand

_ SR
+0 ((v<> — {7 In? 7) . (86)

Now, expressing the pair of roots v;_)(ém) from the quadratic
equation (86), one derives by formula (81) the behavior of
the Op-averaged differential cross section in the vicinity of the
rainbow angle:

0. < da > N JRI2R, &)
d \do,.. - AR O, R, 16 1. SFRY
6o lnﬁ ?4—1—7111(6—;1[1?)

The domain of applicability of this approximation is deter-
mined from Eq. (86) by demanding the third-order term to be
small compared with the second-order one:

bor VR (1990 RY ¢ (rainb ion)
— —n{ —=m-—- raimnbow region).
6, R. & 2R, g

(88)

Function (87) is shown by the left-hand dashed curve in Fig. 10.
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b. Typical angle region. On the other hand, if v is not
too close to 1, i.e., under condition

Oy R 16 e/*R
( 9'6' + 1) R_c —1In (; In e2RC ) 2 1 (typical angles)

(89)

opposite to (88), all the terms in (80) except the second loga-
rithm (singular at v — 0) may reasonably be approximated
by their Taylor expansions up to linear terms, say, about the
unit interval midpoint po) = 113

mid — 2°
Oyr. =01 ——= 1n‘/_____ 1 _
R V(_)Rc 6 362/3RC

(90)

Then, for determination of the inverse function v= (6, ;) one
obtains the following simplified equation:

Oy.r. +1 R N 11 | V3R
—~Inh———-v
0. 2R. 6 VR,

Here, the right-hand side is a monotonic function of v, s0,1in
contrast to the exact equation (80), the simplified equation (91)
has only one root (the second, lost root gives a negligible
contribution to the differential cross section). The solution to
Eq. (91) is expressed through the Lambert (also known as
product log) function W(s) defined as a solution to equation
Ins =InW 4+ W, and incorporated in many computational
software packages:

2R
o N 1 W <\/§R In 325R, 16121;U(9;£f<+1)) . (92)

1n

32PR, on

v

e
2R
In PR, R,

(Mind that 6, /6. is negative and close to —1.) From the
definition of W, its asymptotic behavior in different regions
derives as

s— 0@, (<1,
VO=1m = >, ©3)
In<
and its derivative
1

YOS wer

Therefore, over the typical angle region, the 6y-averaged
differential cross section is cast as

b | dr\ _, dv™
d \dby, [y °

doy.
the argument of W being the same as in Eq. (92).
The full width of the differential cross section, as can be
inferred from Eq. (94), and is obvious already from Eq. (80),
amounts to

2R, R
In —
R R,

R

~ 2R
2R.In YT

(14 1/W)’ 4

Aby ;. ~ 0,

(negatively charged particles), (95)

3More elegant expressions, at the same time accommodating for
a correct asymptotics in the orbiting region, result when the Taylor
expansion is carried out about the point v = 0; but unfortunately,
that approximation would be definitely less accurate at typical 6, .
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which at R/R, > " &~ 23 is larger than width (65) for
positively charged particles.

The behavior of function (94) in region (89) is shown
in Fig. 10 by the right-hand dashed curve. It describes the
actual distribution quite accurately. In the orbiting region
asymptotics, however, Eq. (94) errs by a factor of ¢%/°//3 ~
1.3 [see Eq. (97) below], so the applicability of (94) is restricted
by the bound

R (0”' + 1> < lnﬂ (typical angles)
2R \ 6, ~ g, P AREES)
in addition to (89).

One may anticipate formation of a shoulder in the distribu-
tion (94) at sufficiently large R/R., since then the argument
of W can be large and 1 + 1/ W — 1, making the differential
cross section 6y ;. independent. However, W (s) reaches 5 (>1)
only at s ~ 700, so a shoulder in (dA/d6,, )¢, may develop
only at R/R. = 100.

c. Orbiting region. Finally, asymptotically large 6, , are
generated in the regions v~ — 0 and v~ — 1, where there
are logarithmically rising terms in the relation (80). Examine
first the region v — 0. In this limit, one may let v =0
everywhere in (80) except in In ﬁ, and the reduced equation

2R, R
Oyr >~—0.{1——In—
R eR.v)

is easily solved:

) ~ %e_%(ng'ﬂ). 96)

Differentiating that expression with respect to 6, .., the asymp-
totics of the differential cross section results as

0. [ dx R? i (%e41) i i
7 ~ SoR2¢ e\ b (orbiting region), (97)
v.r. [ g, c

holding if

R(%e 1) sm®
n —
2R. \ 6, R.
As for the contribution from region v~ — 1, which can
be treated in a completely analogous manner, it equals
B8R ke,
e*R,

and is definitely negligible compared to (97); so, Eq. (97) is
the complete asymptotic result.

(orbiting region).

3. Comparison with experiment

The only measurement of negatively charged particle vol-
ume reflection is [4]. It gave, for Si (110) orientation, R/R, ~
70, the volume reflection angle mean value |(0, ;)| = 0.660,.
This is significantly smaller than our expectation (and other
simulations, as quoted in [16]) [(6,,.)| ~ 6, (yet minus ~8%
correction for finite R./R, which is insignificant anyway). Of
course, if we treat | Fi.x| as an adjustable parameter of the
model, we might achieve agreement with the experiment, but
a physical recipe for this is not clear.

As for numerical calculation results for the final beam
profile, there is a lack of them for negatively charged particles
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at R > R. and free of multiple scattering (and with the
boundary conditions congruent with typical experimental
ones).'* We hope to see such results in near future.

V. HIGH-ENERGY PASSAGE LIMIT
(PERTURBATIVE DEFLECTION)

In conclusion, we will briefly comment on the behavior of
the function 6, (b) in the opposite, high-energy limit

d R 1 98

%R < 1. (98)
There, the deflection becomes perturbative (and better viewed
in Cartesian coordinates, without the reference to a centrifugal
force notion), and for positive and negative particles it must
be equal in magnitude but opposite in sign. That is confirmed
by Figs. 4 and 11.

The specific expression for the dependence 6, . (b) in this

limit was obtained in [17] [Egs. (16) and (19)], in the Cartesian
coordinate framework:

1
Ors 00.5) > b O0.) = - [
EJ
v2Rd 1 (1 R b
==+ =0+~ (99b)
R, 22 2 d);
(again, the braces with subscript ‘f” indicate taking the
fractional part). It involves the Hurwitz (generalized Riemann)
¢ function at a negative value of its first argument, which may
be defined, e.g., as a contour integral [14]
INCE)) /(0+) s@—lpvs
i oo

fen="g ) Toe

o]

dzF(b,z) (99a)

= +4

ds (100)

along a Hankel path.> Function (99b) is shown in Fig. 11
by the dotted line. Note the identity ;(—%,O) =i [=

(- %)], whereby function (99b) is everywhere continuous, but

its derivative breaks at point g = % — {g—flg}f.

The second argument of the ¢ function in (99b) allows for
a physical interpretation [17]:

R
breﬂ =b+ 393

is the particle impact parameter at a depth where the particle
straight trajectory becomes tangential to the bent atomic planes
(actually, t.q). Should one pass to b instead of b, the
dependence on 6, disappears completely:

ev.r. (90717) = Uyr. (breﬂ) .

(101)

(102)

14Paper [9] does not exhibit negative particle results for R > R.. In
the pioneering work [2] the boundary conditions are different from
ours and from typical experimental arrangements: the authors conduct
their simulations for particles entering the crystal face parallel to the
bent atomic planes (a “half” volume reflection). That should produce
a different final beam shape (with no rainbow singularity and more
particles in the “orbiting” tail), but nonetheless, Fig. 4(b) of [2] is
visually rather similar to our Fig. 10.

1SConventionally, the Hankel path is defined to begin in the complex
s plane at —oo (arg s = —m), encircle the origin in the positive
direction, and return to —oo (arg s = +).
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0,,.Rc/\ 2Rd

057

-0.5¢
48(-1/2)+

FIG. 11. Comparison of impact parameter dependencies of the
reflection angle for positively charged (solid curve) and negatively
charged (dashed curve) particles, at R/R. = 1/20. Dotted curve:
approximation (99b), for positive particles. The functions displayed
may be continuously periodically extended beyond the interval
(—1.1). The position of the fracture at 2 = 1 — {%‘%}f corresponds
to tangency of the particle near-straight trajectory to one of the bent
atomic planes.

This contrasts with the case R > R, investigated in the
previous section, where the 6, dependence yet remained in
a specific, casually located rainbow peak.

Here we will not contemplate demonstrating from expres-
sions (36) and (50) that the limit of 6, is indeed (99b),
only note that to this end, one must implement significant
cancellations between the pair of terms under the sum sign.
One also notices that the second argument of the ¢ function
in (99b) is just the limit of v*):

1 R b
lim v = {- —02 + —} ) (103)
.

8/d—o00 2 2d 0 d

For negative particles, the route to (99b) is a bit more intricate.
In Fig. 11, we numerically compare approximation (99b) with
the exact result; the agreement is quite convincing.

The comparison with the perturbative scattering pattern
may also give insight into the origin of the volume reflec-
tion phenomenon. The average of function (99) over the
impact parameter b turns out to be strictly zero (see [17]);
hence, in the high-energy limit, signatures of the volume
reflection completely disappear. This is traced to the fact that

i{ziz dbF(b,z) =0 at any given z (regardless of the crystal
bend). In contrast, at R 2 R, the trajectory may not be viewed
as merely straight,'® and the particle distribution is nonuniform
over the crystal volume. In fact, “shadowed regions” not filled
by the particles may appear at the inner side of bent potential

ridges, in which the force acts in the positive direction. The

161n the literature, sometimes, one encounters an interpretation of
the volume reflection phenomenon simply in terms of a straight
trajectory tangential to the bent crystalline planes in some point. Such
an interpretation, although sufficient for an approximately symmetric
installation of crystals with a large bending angle (~26, >> 6.), may
be misleading for understanding of the underlying particle dynamics.
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deficit of a positively directed force on the beam then leads to
the negative sign of the particle beam mean deflection angle.

VI. EXPERIMENTAL OBJECTIVES AND PARAMETER
OPTIMIZATION

The alleged application of volume reflection is for high-
energy particle beam extraction from accelerator beamlines,
when that is not manageable within the lab space by means
of magnets (whose fields are always much weaker than
intra-crystalline electric fields). There, the beam parameters
(energy and angular divergence) are definite, while the crystal
parameters have to be optimized in order to attain a suitable
deflection quality.

A. Control of beam divergence accompanying the deflection

The mean deflection angle

2Vy 100 GeV
|9V.r.| ~ 9(‘7 9[‘ = 7 ~ leurad T (104)

for a silicon crystal of orientation (109) depends only on the
particle energy. The next parameter to care about is the angular
spread acquired by the beam at the exit from the crystal.
Neglecting the incoherent multiple scattering (to be estimated
below), the spread A6y, given by Egs. (65) and (95), for
a given beam energy and crystal material depends only on
the crystal bending radius. To derive a criterion for the beam
complete deflection, one may demand that the bulk of the
dispersed beam (its both “edges”) be deflected to the same
side. That implies
R > 4R,

(for positively charged particles),  (105)

and

R
R > 2R, In Z (for negatively charged particles).  (106)

c

Relation (105) involving the factor 4 was first found by
Maisheev [9] based on numerical simulation studies for
protons. Our paper, thereby, offers a formal justification for that
empirical relation, although within a framework of a simplified
model. The emerging ratio

max |6y ; | 4%,[_ (for pos. charged particles),

A6y ;. (for neg. charged particles),

(107)

__R
2R.In Ri

quantifies the steering quality. But for the deflection to be neat,
one should have a substantial q:

q =3 (neat deflection), (108)
entailing for the crystal curvature radius
R Z 10-15R,. (109)

In demonstrational experiments [3], the latter requirement was
marginally satisfied.
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B. Sufficient crystal thickness

The crystal thickness L is to be kept as low as possible in
order to minimize the multiple scattering. However, a lower
bound for L results from the requirement that the volume
reflection has space to develop, i.e., the “thick-crystal limit”
holds, in the sense of Sec. III C. To this end, the crystal bending
half angle ﬁ needs be larger than the critical angle 6., which

is L independent. Thus,
L > 2R6, Rd E R 3.6 E (110)
e = — — X . m, ——
RV 2o ar.”V MV Gev

(thick crystal, volume reflection saturation).

If we regard here % = q as fixed, in general L grows with the

energy. At E ~ 10>-10° GeV (RHIC, Tevatron) the minimal
thickness amounts only to (0.036-0.1 mm)q. Note that crystals
as thin as 30 um are manufacturable (as described in [18]).
For E ~ 10TeV (LHC) and q ~ 3, the minimal L reaches the
value of 1 mm.

C. Reduction of multiple scattering

To quantify the impact of incoherent, multiple scattering,
we have to evaluate the characteristic ratio'”

o 136MeV f
0, 93.6 mm ZVO
100 GeV L
z0.47,/—e— [Si(110)].
E mm

If the latter square root does not exceed unity (in experiments
[3] it is & 1), the multiple scattering does not spoil coherent
beam deflection. We conclude that for E 2 100 GeV crystal
lengths up to 2 mm are multiple-scattering safe, i.e., 6™/
0. < 1.

Besides aggregate deflection, it would be interesting to
experimentally investigate the intrinsic volume-reflected beam
shape, and in particular to check the shape dependence on the
particle charge sign (cf. Figs. 7 and 10). The main problem
here is that at g > 1 the final beam half divergence %AGV,L
is 2q times smaller than the mean deflection angle, and so is
sooner overtaken by the multiple scattering, making the profile
Gaussian and independent of the particle charge sign. To avoid
that, one needs the condition

(111)

e;nult Qmult
~2021— « 1, 112
V) (112

with 9}}‘““ /A0, ;. to be inferred from Eq. (111). Hence, for the
present purpose we should not strive for large q, granted that
the final beam profile is not very sensitivetoqatq > 1.So,q =~
1.2 seems to be large enough. Equally well, in order to raise
the angular resolution we should use moderate energies. Say,
E = 50GeV is ultrarelativistic enough. To reduce multiple

For the (rms, plane) multiple-scattering angle upon the particle
over-barrier passage we crudely apply a formula for the scattering
angle in an amorphous target made of the same material (silicon):

gmult — Bﬁf% 57e=— (as quoted in [19]).
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scattering, we can take a thin crystal with L = 30 um, which
marginally satisfies (110). This gives 6. ~ 3 x 107> rad,

mult
Ab, ;. ~ 2.5 % 1073 rad, and 19&; ~ (.3 (small enough). But
one has to control the initial particle impact angles with an
accuracy a few times better than A6, . This may be difficult
to achieve via the initial beam collimation alone, so one may

need to apply event selection techniques (cf. [4]).

VII. SUMMARY

Based on the model of a purely parabolic continuous
potential in a bent crystal, we have gained a lot of information
about the volume reflection phenomenon, for positively and
negatively charged particles. First, we have obtained an explicit
expression (26) for particle trajectories. From the solution
for the trajectory, in particular, we have derived the particle
final deflection angle as a function of the particle impact
parameter and energy, in the form of sums (36) and (50). The
asymptotic behavior of those sums at R > R, was explored,
and asymptotic values for the volume reflection angle were
found. They equal: —%6. for positive particles, and —0,
for negative particles. This agrees within ~20% with the
existing results of numerical simulation using more realistic
continuous potentials [2,9] and with experiment for positive
particles [3] (though there is an indication of worse agreement
for negative particles [4]); 20% is about the same accuracy
as for approximating the continuous potential by a parabola.
Yet we have evaluated the next-to-leading-order correction in
parameter R./R, which depends on the impact parameter, and
after averaging over impact parameters, we determined the
asymptotic shape of the final beam. This in particular yields
the mean volume reflection angle dependence on R./R, which
appears to be linear, in general agreement with experiment [15]
(see Fig. 8).

In the course of our investigation of the final beam shape, we
discovered various singularities in its profile, which actually
depend on the particle charge sign. First of all, we had to
deal with the problem that the final beam profile, in principle,
may contain a visible admixture of boundary-dependent effects
(“randomly” located peaks). However, we have proved the
statement that boundary effects get completely erased in the
differential cross section averaged over a tiny interval of
incident angles 6, [condition (70)], or, analogously, due to a
bit of multiple scattering before the volume reflection region.
Therewith, the averaging over impact parameters becomes
equivalent to averaging over parameters V™ (i.e., transverse
energy), and we were able to analytically deduce the final beam
profile for positive and for negative particles. For negatively
charged particles, it is asymmetric, exhibiting a spike on its
outer edge, corresponding to the rainbow scattering, and an
exponential tail on the inner side, corresponding to orbiting
(Fig. 10). For positive particles, the final beam tends to a
rectangular shape (Fig. 7). But in actual practice, with the
account of continuous potential smearing in the vicinity of
the atomic planes, a weak rainbow spike and orbiting tail
are expected for positive particles, as well, though being
deteriorated by incoherent multiple scattering.

Toward practical applications and further experimental
investigations, we have made a few numerical estimates.
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They indicate that for usage of a bent crystal as a coherent
beam deflector, one needs a relation between the main
parameters:

L E R (20 urad\?
< < —,
1 mm 100 GeV m

(0 is the rms angular deviation in the initial beam). The better
those inequalities are met, the higher is the deflection quality. If
in future one becomes interested in investigating the final beam
intrinsic shape, generated by the continuous potential alone,
those inequalities must be satisfied strongly, but minding the
existence of technical lower limits for L and oy. This suggests
an optimal of energy about 50 GeV (see end of Sec. VIC);
experiments are to be carried out simultaneously with particles
of both charge signs (e*, n¥).

There are many respects in which the model solution
described herein can be improved. First, it is straightforward
to add to the simple parabolic potential a second parabolic
segment, either to round off the potential in vicinities of
atomic planes, or to describe the potential of a Si crystal in
(111) planar orientation, which is of practical importance, too.
As a next step, at least a perturbative account of incoherent
scattering processes is desirable. But at the same time, even
in the present form, the theory (trajectories derived in Sec. II)
seems suitable, e.g., for studies of electromagnetic radiation
emitted by a volume-reflected particle.

0o

APPENDIX: FORMAL PROCEDURE OF 6,-AVERAGING

In Sec. IVA we had obtained, for positively charged
particles, the scattering differential cross section in
the form

di R 1
= > . (AD)
dev.r. 27T9CRC |dv(+)/db|b:bm(v(+)(9v_r,),90)

m

Our objective now is to straightforwardly compute the sum
involved here for the specific function v(b,6;) given by
Eq. (35), first for an arbitrary 6y, and then average it over 6y,
in order to justify our assertion that the combined averaging
over b and 6y [within the tiny interval (70)] is equivalent to
averaging over v,

To begin with, let us find the roots b, explicitly.
Equation (35) is equivalent to

2
7208 + (b + 8> — (§ —9)
25d

with m an integer, solution of which is straightforward:

=0 4m, (A2)

d 2
bW .6y = =8 + \/28d(v(+> +m)+ <§ - a) — 1203,
(A3)

Here the sequence of m begins with a smallest integer m at
which the radicand in (A3) is yet positive, viz.,

63— (3 -9)°
— 2 _ 1.
"o L 28d Y J +

The upper limit of m in Eq. (A3) equals to the largest integer
at which yet b < % [for a branch with the “+” sign in front of

(A4)
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the root in Eq. (A3)], and b > —% (for a branch with the “—"
sign). That yields, correspondingly, values

1262
Mimax1 = LW; - wJ : (AS5)
Mmax2 = Mmax 1 + 1. (A6)

The number of terms in the sums from limit (A4) to limit (A5)
or (A6) is large:

Mmax12 — Mo = — + 0(1) = + o) > 1.

86 4R,

. . + . .
Next, values of derivative d;b in points b, are eas-

ily evaluated, noticing that the fractional part operator in
v*) is inconsequential for derivatives.'® Differentiating (A2)
gives

dv® by + 8
= . (A7)
b |,_, 8d
The observed identity
1 ab
= ’ ’ (A8)

|dv(D) /dbly—y,  |Om

suggests that upon substitution to (A1) one may expect

Mmax 1 Mmax2 1 Mmax 1 8b
[ — A -
(Z * Z) (v /dblyy, om

m=m m=m m=mq
a2
~ 2/ db=d, (A9
0

as we anticipated in Sec. IV A, but to accommodate the
dependence on 6y, we need to carry out the calculation more
precisely.

Through (A3) and (Al), the differential cross section
assumes the form

d)"(ev,r, 700) R Mmax | Mmax 2
dBy. N 2160.R, (mX:(:) + n;

3 8d
\/Z(Sd(v(*) +m)+ (4 —8)° — 120

_d |R Rf’f‘ 1
216\ Re = \/m + EGD6,,),00)

(A10)

with

= (4=o)
OO0y = 1- 0B 70w
£GP 0,0),00) { gt vl

[b(v P (6y.),600) + 81
26d

} . (Al
f

18Strictly speaking, differentiation of finite discontinuities will give
s-functional terms, but they will be imperceptible when inserted into
the denominator of Eq. (66).
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Outside the interval

/4 b 4R,
=0 < Oyr. < =20 (1~— >
2 2 R

(A12)

there are no roots to equation v(G,,), so the differential
cross section vanishes as an empty sum.

At a large upper limit, the sum in (A10) grows as /R/R,,
whereas the difference

R/4R,

1 R 1
I TR CH

tends to a finite limit equal to a Hurwitz ¢ function [whose
general definition is (100)]. Thereby, we may cast (A10) as

dBy, - 276, R, R ¢ 3’ v.r.»00 .

(Al4)

Here /R./R <« 1, and the unity in square brackets in (A14)
corresponds to the result anticipated in (A9). But one should
mind that at £ — 0, function {(%,S) blows up as «/LE So, the
correction in the square brackets in (A14) cannot be regarded
as everywhere small.

Now, we turn to the issue that £ is 6, dependent. When 6
varies (at 6, fixed) even in a narrow interval [see (68)], &
uniformly and repeatedly scans its definition interval from
0 to 1. Hence, the averaging over 6y is equivalent to the
integration over £ from O to 1. By virtue of the property

1 1
/0 deg (5,5) o0,

readily checkable from definition (A13) or (100), we have

dh b da
()=
d9v4r. 6o 0 d‘gv.r.

Rd T
e ev.r. + 590

(A15)

270.R,

4R,
x0 (-0, —Zo.(1-22¢)).
2 R

Thereby, we arrive at Eq. (72), without any corrections
~JRJR. u

For negatively charged particles, there arises a sum similar
to that of (Al), though the dependence v(7)(b) differs a
bit from v*)(b). Nonetheless, the averaging procedure is
completely analogous, the nonaveraged differential cross
section equals (82) times the bracketed factor of (A14). Upon
the 6p-averaging, through (A14) again, we arrive at Eq. (82).
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