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Finite-temperature Cherenkov radiation in the presence of a magnetodielectric medium
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A canonical approach to Cherenkov radiation in the presence of a magnetodielectric medium is presented in
classical, nonrelativistic, and relativistic quantum regimes. The equations of motion for the canonical variables
are solved explicitly for both positive and negative times. Maxwell and related constitute equations are obtained.
In the large-time limit, the vector potential operator is found and expressed in terms of the medium operators.
The energy loss of a charged particle, emitted in the form of radiation, in finite temperature is calculated. A
Dirac equation concerning the relativistic motion of the particle in presence of the magnetodielectric medium is
derived and the relativistic Cherenkov radiation at zero and finite temperature is investigated. Finally, it is shown
that the Cherenkov radiation in nonrelativistic and relativistic quantum regimes, unlike its classical counterpart,
introduces automatically a cutoff for higher frequencies beyond which the power of radiation emission is zero.
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I. INTRODUCTION

Cherenkov radiation is the radiation with continuous
spectrum and specific angular distribution emitted by the
medium due to the motion of charged particles moving in
the medium with a velocity exceeding the phase velocity of
light in the transparent medium. The Cherenkov radiation in
transparent media was experimentally observed by Cherenkov
[1]. Theoretical explanation on this phenomenon was first
developed by Frank and Tamm [2]. They showed that the
particle should radiate when its velocity exceeds the velocity
of light in the medium as the emitted rays make an angle θ

with the charge velocity given by cos θ = c/vn, where v is the
speed of the particle, n is the index of refraction of the medium.
Also they are polarized with the electric field in the plane of
this angle. The radiation shock-front, called the Cherenkov
cone, is analogous to the Mach cone formed as objects move
with supersonic speeds through air. The Cherenkov theory has
drawn a great deal of attention all around the world. This
theory has been widely used in high-energy particle physics,
optics, cosmic-ray physics, high-power radiation sources, and
so on [3–6]. Typical examples are the discoveries of the
antiproton [7] and the J particle [8].

The classical theory of Cherenkov effect is sufficiently
accurate in the optical part of spectrum. For methodological
reasons, it is equally important to consider the quantum
theory of this effects. The phenomenological quantum theory
of the Cherenkov radiation developed by Ginzburg but the
dissipative character of the medium was neglected [9,10].
The source-theory explanation of this effect was given by
Schwinger et al. [11]. Unfortunately, due to the method of
combining the denominators of the propagators in parametric
form, the resulting integrals are exceedingly complicated and
approximations were necessarily made.

The first formulation of the finite-temperature quantum field
theory was presented by Dolan and Jackiw [12], Weinberg
[13], and Bernard [14] and the first application of it concerned
the effective potentials in Higgs theories. Also, the inclusion
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of temperature has been carried out in QED of Cherenkov
radiation only in a nondispersive dielectric medium [15]. The
main purpose of the present work is to develop a canonical
theory of the finite temperature Cherenkov radiation to evalu-
ate the electromagnetic field arising from the uniform motion
of a charged particle in the presence of a magnetodielectric
medium in different regimes, i.e, classical, nonrelativistic, and
relativistic quantum regimes. To achieve this goal we first
generalize a Lagrangian introduced in [16] to include the
external charges. This prepares not only the grounds to extend
the Ginzburg theory to include the dissipative character and
the permeable character of a medium but extracts a Dirac
equation for a relativistic particle in the presence of the
magnetodielectric medium to survey the relativistic effects of
the Cherenkov radiation to finite temperature regime.

The layout of the paper is as follows. In Sec. II, a Lagrangian
for the total system is proposed and a classical treatment
of the Cherenkov radiation to finite temperature regime is
investigated. In Sec. III, we use the Lagrangian introduced
in Sec. II to canonically quantize the electromagnetic field
rising from the moving external charges embedded in the
magnetodielectric medium. Maxwell and constitute equations
are obtained. We find that for sufficiently large times the vector
potential operator can be expressed in terms of the initial
medium operators. The consistency of these solutions for the
vector potential operator depend on the validity of certain
velocity sum rules. We also show how to relate the results to the
damping polarization model and phenomenological quantiza-
tion theories. By considering finite temperature effects, energy
loss of a charged particle emitted in the form of radiation
is calculated. Subsequently, this formalism is generalized
somehow to describe the relativistic moving particles. Finally,
we discuss the main results and conclude in Sec. III.

II. CLASSICAL THEORY

Cherenkov radiation has the property that it occurs with
uniform motion of a charged particle in a spatially homoge-
neous medium [17]. At first we attempt to treat the theory of
Cherenkov radiation in the presence of a linear homogeneous
magnetodielectric medium on basis of the classical theory.
In the first part of this section we generalize the approach
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presented in [16] to the case where there are some external
charges in the medium and in the second part we examine the
emission of electromagnetic wave, if it occurs, by the moving
particle. In the third section we will concentrate our attention
on the Cherenkov radiation in the finite temperature situation.

A. Classical dynamics

Classical and quantum electrodynamics in a linear magne-
todielectric can be accomplished by modeling the medium
with two independent reservoirs that interact with electro-
magnetic field. Each reservoir contains a continuum of three
dimensional harmonic oscillators describing the polarizability
and magnetizability properties of the medium [18]. Therefore,
in order to have a classical treatment of electrodynamics
in a homogenous magnetodielectric medium, we begin with
the following classical Lagrangian for the total system
(medium + electromagnetic field + external charges):

L(t) = Lres + Lem + Lq + Lint . (1)

The first term Lres is the reservoir part

Lres =
∫ ∞

0
dω

∫
d3r

1

2
[Ẋω(r,t) · Ẋω(r,t)

−ω2Xω(r,t) · Xω(r,t)]

+
∫ ∞

0
dω

∫
d3r

1

2
[Ẏω(r,t) · Ẏω(r,t)

−ω2Yω(r,t) · Yω(r,t)], (2)

where the dynamical variables Xω(r,t) and Yω(r,t) correspond
to the electric and magnetic characters of the medium,
respectively. The second term Lem is the electromagnetic field

Lem =
∫

d3r
[

1

2
ε0E2(r,t) − B2(r,t)

2µ0

]
. (3)

The third term Lq is the Lagrangian of the external charges
with mass mα and position rα

Lq = 1

2

∑
α

mα ṙ2
α(t) +

∑
α

[qα ṙα · A(rα,t) − qαφ(rα,t)], (4)

and finally Lint is the interaction term, which includes the
linear interaction between the medium and electromagnetic
field trough coupling functions f (ω) and g(ω) and also the
interaction between the external charges and electromagnetic
field

Lint =
∫ ∞

0
dω

∫
d3r f (ω)Xω(r,t) · E(r,t)

+
∫ ∞

0
dω

∫
d3r g(ω)Yω(r,t) · B(r,t). (5)

In Eqs. (3) and (5), E = − ∂A
∂t

− ∇φ and B = ∇ × A are the
total electric and magnetic fields and A and φ are the vector and
the scaler potentials. For simplicity we work in the reciprocal
space and write the fields in terms of their spatial Fourier
transforms. The range of the variable k in the reciprocal space
is restricted to the half-space denoted by a prime over the

integral, i.e.,
∫ ′

d3k [19], thus in the reciprocal half-space the
Lagrangian (1) can be written as

L(t) = Lq(t) + Lres(t) + Lem(t) + Lint (t), (6)

Lq = 1

2

∑
α

mα ṙ2
α(t) + 1

(2π )3/2

×
∑

α

∫ ′
d3k{qα[ṙα · A(k,t) − φ(k,t)]eık·rα + c.c.},

(7)

Lres(t) =
∫ ∞

0
dω

∫ ′
d3k(|Ẋω|2 − ω2|Xω|2)

+
∫ ∞

0
dω

∫ ′
d3k(|Ẏω|2 − ω2|Yω|2), (8)

Lem(t) =
∫ ′

d3k
(

ε0|Ȧ|2 + ε0|kφ|2 − |k × A|2
µ0

)

+ ε0

∫ ′
d3k(−ık · Ȧφ∗ + c.c.), (9)

Lint = −
∫ ∞

0
dω

∫ ′
d3k{f (ω) X∗

ω(k,t)[ıkϕ(k,t)

+ Ȧ(k,t)] + c.c.} +
∫ ∞

0
dω

∫ ′
d3k{g(ω) Y∗

ω(k,t)

× [ık × A(k,t)] + c.c.}, (10)

where we have applied X∗(k,t) = X(−k,t) and the similar
relations for the other dynamical fields [19]. we can obtain the
classical equations of the motion simply from Euler-Lagrange
equations. For the vector and scalar potentials A(k,t), φ(k,t)
we have

d

dt

(
δL

δ[Ȧ
∗
i (k,t)]

)
− δL

δ[A∗
i (k,t)]

= 0, i = 1,2,3

⇒ µ0ε0Ä(k,t) + µ0ε0ıkφ̇(k,t) − k × [k × A(k,t)]

= µ0Ṗ(k,t) + ıµ0k × M(k,t) + µ0J(k,t) (11)

and

d

dt

(
δL

δ[φ̇
∗
(k,t)]

)
− δL

δ[φ∗(k,t)]
= 0

⇒ −ε0ık · Ȧ(k,t) + ε0k2φ(k,t) = −ık · P(k,t) + ρ(k,t),

(12)

where

P(k,t) =
∫ ∞

0
dω f (ω) Xω(k,t), (13)

M(k,t) =
∫ ∞

0
dω g(ω) Yω(k,t), (14)

J(k,t) = 1

(2π )3/2

∑
α

qα ṙαe−ık·rα , (15)

ρ(k,t) = 1

(2π )3/2

∑
α

qαe−ık·rα , (16)

042901-2



FINITE-TEMPERATURE CHERENKOV RADIATION IN THE . . . PHYSICAL REVIEW A 82, 042901 (2010)

are, respectively, the Fourier transforms of the electric and
magnetic polarization densities of the medium. The Fourier
transforms of the external current and charge densities satisfy
the charge conservation in the reciprocal space ρ̇ = −ık · J.
Similarly from the Euler-Lagrange equations for the fields rα

and Xω, Yω we find

d

dt

(
δL

δ[ṙα,i(t)]

)
− δL

δ[rα,i(t)]
= 0, i = 1,2,3

⇒ mα r̈α(t) = qαE(rα,t) + qα ṙα × B(rα,t) (17)

and

d

dt

(
δL

δ[Ẋ
∗
ωi(k,t)]

)
− δL

δ[X∗
ωi(k,t)]

= 0, i = 1,2,3

⇒ Ẍω(k,t) + ω2Xω(k,t) = −f (ω) [Ȧ(k,t) + ıkϕ(k,t)],

(18)
d

dt

(
δL

δ[Ẏ
∗
ωi(k,t)]

)
− δL

δ[Y∗
ωi(k,t)]

= 0, i = 1,2,3

⇒ Ÿω(k,t) + ω2Yω(k,t) = g(ω) ık × Ȧ(k,t). (19)

The formal solution of the field equation (18) is

Xω(k,t) = Ẋω(k,0)
sin ωt

ω
+ Xω(k,0) cos ωt

+ f (ω)
∫ t

0
dt ′

sin ω(t − t ′)
ω

E(k,t ′), (20)

where the first term is the inhomogeneous solution of Eq. (18)
and the second term is the homogeneous one. We will show
that after quantization the homogeneous solution becomes a
noise operator. However, since we are only interested in the
induced polarization, we keep the inhomogeneous solution
and using Eq. (13), we find the electric polarization density
of the medium in reciprocal space

P(k,t) = ε0

∫ ∞

0
dt χe(t − t ′)E(k,t ′), (21)

where χe is the electric causal susceptibility of the medium
and in terms of the coupling function f can be written as

χe(t − t ′) =
{

1
ε0

∫∞
0 dω sin ω(t−t ′)

ω
f 2(ω) t > t ′

0 t < t ′
(22)

which is the origin of the significant Kramers-Kronig
relations [17]. In a similar fashion the magnetic polarization
density of the medium in reciprocal space can be obtained
straightforwardly using the formal solution of Eq. (19) as

M(k,t) = 1

µ0

∫ ∞

0
dt χm(t − t ′)B(k,t ′), (23)

where χm is the magnetic causal susceptibility of the medium
which in terms of the coupling function g can be written as

χm(t − t ′) =
{

µ0
∫∞

0 dω sin ω(t−t ′)
ω

g2(ω) t > t ′

0 t < t ′
. (24)

The electric permittivity and the inverse magnetic permeability
of the magnetodielectric medium are defined in terms of χe

and χm as

ε(ω) = 1 + χe(ω) (25)

and

κ(ω) = 1 − χm(ω), (26)

where

χe,m(ω) =
∫ ∞

0
dtχe,m(t)eıωt .

By using Eqs. (22) and (24), we can obtain the following
important relations in the frequency domain:

χe(ω) = 1

ε0

∫ ∞

0
dω′ f 2(ω′)

ω′2 − ω2 − ı0+ , (27)

χm(ω) = µ0

∫ ∞

0
dω′ g2(ω′)

ω′2 − ω2 − ı0+ . (28)

These are complex functions of frequency which satisfy
Kramers-Kronig relations and have the properties of response
functions, i.e., ε(−w∗) = ε∗(ω) and κ(−w∗) = κ∗(ω) and
Imε(ω) > 0, Imµ(ω) > 0 provided that f 2(−ω∗) = f 2(ω)
and g2(−ω∗) = g2(ω). It can be shown that these functions
have no poles in the upper half-plane and tend to zero as
ω −→ ∞. If we are given definite electric permittivity and
inverse magnetic permeability of the medium then we can
inverse the relations (22) and (24) and find the corresponding
coupling functions f (ω) and g(ω) as

f (ω) =
√

2ωε0

π
Imε(ω), (29)

g(ω) =
√

− 2ω

πµ0
Imκ(ω), (30)

where the minus sign in the second expression is used since
for a magnetodielectric medium Imµ(ω) > 0, therefore
Imκ(ω) < 0. In order to illustrate the relations between the
coupling functions and the electric permittivity and the inverse
magnetic permeability of a magnetodielectric medium, let us
restrict our attention to a single resonance electric permittivity
which can be obtained from the Lorentz oscillator model

ε(ω) = 1 + ω2
pe

ω2
0e − ω2 − ıγeω

(31)

and a single resonance magnetic permeability [20]

µ(ω) = 1 + ω2
pm

ω2
0m − ω2 − ıγmω

, (32)

where ωpe and ωpm are the coupling strengths, ω0m, ω0m

are the transverse resonance frequencies, and γe, γm are the
absorption parameters. Now by using Eqs. (29) and (30) the
coupling functions f (ω) and g(ω) can be obtained as

f 2(ω) = 2γeε0ω
2
peω

2/π(
ω2

0e − ω2
)2 + γ 2

e ω2
, (33)

g2(ω) = 2γmω2
pmω2/πµ0(

ω2
0m + ω2

pm − ω2
)2 + γ 2

mω2
. (34)

Following the standard approach to classical electrodynam-
ics, we choose the Coulomb gauge k · A = 0, so that the
vector potential A is a purely transverse field. By using the
Euler-Lagrange equation for ϕ̇∗, we eliminate ϕ from Eq. (11)
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and substituting Eqs. (21) and (23) into Eq. (11), obtain the
following inhomogeneous wave equation:

µ0ε0Ä(k,t) + k2A(k,t) − µ0k
2
∫ t

0
dt ′χm(t − t ′) A(k,t ′)

+µ0
∂

∂t

∫ t

0
dt ′χe(t − t ′) Ȧ(k,t ′) = µ0J⊥(k,t), (35)

where the transverse current is defined as J⊥ = ∑2
λ=1 J ·

eλ(k) with unit polarization vectors eλ(k),λ = 1,2, which are
orthogonal to e3(k) = k

k
= k̂ and to one another. This equation

can be solved in terms of initial conditions using the Laplace
transforms. For any time-dependent operator �(t) the forward
Laplace transform is defined as

�̃f (s) =
∫ ∞

0
dte−st�(t), (36)

obviously, the Laplace transform contains all information
about the time evolution of � for positive t . In the following we
wish to determine the time evolution of the relevant operators
of our model for any time, either positive or negative. Hence,
we also introduce the backward Laplace transform

�̃b(s) =
∫ ∞

0
dte−st�(−t). (37)

Let ε̃(s) and κ̃(s) be the Laplace transformations of ε(t)
and κ(t), respectively. Then Ã

f
(k,s) and Ã

b
(k,s), i.e., the

forward and backward Laplace transformation of A(k,t), can
be obtained as follows:

Ã
f,b

(k,s)

= sε̃(s)

s2ε̃(s) + k2c2κ̃(s)
A(k,0) ± 1

s2ε̃(s) + k2c2κ̃(s)
Ȧ(k,0)

+ 1

ε0

∑
λ

(J̃
f,b

(k,s) · eλ(k))eλ(k)

s2ε̃(s) + k2c2κ̃(s)
. (38)

The time-dependent vector potential is obtained from a contour
integration over the Bromwich contour by an inverse Laplace
transformation. From Eq. (38) we find the vector potential for
t > 0 [21],

A(k,t)= ξ (t)A(k,0) + ζ (t)Ȧ(k,0) − 1

2πε0

∑
λ

∫ +∞

−∞
dωe−ıωt

× [J̃
f

(k, − ıω + 0) · eλ(k)]

ω2ε(ω) − k2c2κ(ω)
eλ(k), (39)

where

ξ (t) = 1

2πı

∫ +ı∞

−ı∞
dsest sε̃(s)

s2ε̃(s) + k2c2κ̃(s)

=
∑

j

Re

(
e−ı�j t

v
j
g

v
j
p

)
(40)

and

ζ (t) = 1

2πı

∫ +ı∞

−ı∞
ds

est

s2ε̃(s) + k2c2κ̃(s)

= 1

kc

∑
j

Im

(
e−ı�j t

v
j
g

cκ(�j )

)
. (41)

In these expressions, we changed the integration variable from
s to −ıω + η, with a small but positive η. Therefore, we
introduce the electric permittivity and the inverse magnetic
permeability of the magnetodielectric medium in the frequency
domain as ε(ω) = ε̃(−ıω + 0) and κ(ω) = κ̃(−ıω + 0) for
real ω, and, correspondingly, ε̃(ıω + 0) and κ̃(ıω + 0) as their
complex conjugations ε∗(ω) and κ∗(ω), respectively. We define
for each allowed frequency �j , the group velocity v

j
g = ∂ω

∂k
and

the phase velocity v
j
p = ω

k
where the frequencies �j (k) and

�∗
j (k) are the complex-frequency solutions of the dispersion

relation ω2ε(ω) − k2c2κ(ω) which has no zeros in the upper
half-plane. It is worth emphasizing that for a lossy medium, we
lose the usual dispersion relation in which a limited number
of discrete frequencies ω are associated with each wave vector
k. Thus k and ω must be considered as independent real
variables [22].

Now the vector potential for t < 0 is obtained from the
inverse Laplace transform of Eq. (38) as

A(k,t)= ξ (t)A(k,0) − ζ (t)Ȧ(k,0) − 1

2πε0

∑
λ

∫ +∞

−∞
dωe−ıωt

× [J̃
b
(k, + ıω + 0) · eλ(k)]

ω2ε∗(ω) − k2c2κ∗(ω)
eλ(k), (42)

The coefficients η(t) and ζ (t) in Eqs. (39) and (42) damp
out exponentially in time since all �j in the exponentials
have negative imaginary parts. Therefore, for large times,
the medium and electromagnetic field tend to an equilibrium
which is determined by the characteristic damping time
τj = 1/Im�j . After a few times the maximum characteristic
damping time, only the third term survives in these equations
since they have poles on the imaginary axis in the complex
s plane. Also, these terms in Eqs. (39) and (42) are zero
for negative and positive t , respectively [23]. Thus, we may
combine the two expressions into a single one and use the
Fourier transform to obtain the vector potential in real space
for all t

A(r,t) =
∫ +∞

0
dω

∫
d3k eık·r−ıωtA+(k,ω) + c.c., (43)

with the positive-frequency Fourier component

A+(k,ω) = −1

(2π )5/2ε0

∑
λ

[
J̃

f
(k, − ıω + 0) · eλ(k)

ω2ε(ω) − k2c2κ(ω)

+ J̃
b
(k,ıω + 0) · eλ(k)

ω2ε∗(ω) − k2c2κ∗(ω)

]
eλ(k). (44)

It is not difficult to show that the transverse electric field can
be written as

E⊥(r,t) = −ı

∫ +∞

0
dω ω

∫
d3k [eık·r−ıωtA+(k,ω) − c.c.].

(45)

From Eq. (39) we can see that the coefficient ξ (t) in Eq. (40)
takes the value 1 at time t = 0 and therefore the coefficient
ζ (t) takes the value 0. These constraints are satisfied, if
certain velocity sum rules are adopted. In this way, we
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find the following modified velocity sum rules for all wave
vectors k: ∑

j

Re

(
v

j
g

v
j
p

)
= 1 (46)

and ∑
j

Im

(
v

j
g

κ(�j )

)
= 0, (47)

which are resembling the quantum relations obtained in [21]
and [24], now generalized to a magnetodielectric medium.

B. Classical theory of Cherenkov radiation (T = 0)

Theoretically, when considering the Cherenkov radiation,
one usually treats the charge motion with a constant velocity
which corresponds to the so-called Tamm Frank problem [2].
Consider a point charge e uniformly moving in a magnetodi-
electric medium with a velocity v. Therefore, according to
Eq. (15)

J(k,t) = ev
(2π )3/2

e−ık·vt , (48)

then

J̃
f

(k, − ıω + 0) = ev
(2π )1/2

δ(ω − k · v). (49)

Now substituting Eq. (49) into Eq. (45), we obtain

E⊥(r,t) = −ıe

8π3ε0

∑
λ

∫ +∞

0
dω ω

×
∫

d3k
[

eık·re−ıωtv · eλ(k)

ω2ε(ω) − k2c2κ(ω)
− c.c.

]
× δ(ω − k · v)eλ(k). (50)

In this case the energy loss of a point charged particle per
unit length emitted in the form of radiation, is defined by the
braking force acting on the charge at its location [17,25]

dW

dt
= ev · E⊥ |r=vt

= ıe2

8π3ε0

∑
λ

∫ +∞

0
dω ω

×
∫

d3k
[
eı(k·v−ω)t [v · eλ(k)]2

k2c2κ(ω) − ω2ε(ω)
− c.c.

]
δ(ω − k · v).

(51)

Letting θ be the angle between v and k, then
∑

λ[v · eλ(k)]2 =
v2(1 − cos2 θ ). Therefore we find

dW

dt
= ıe2v

4π2ε0

∫ +∞

0
dωω

∫ +∞

0
dkk

∫ +1

−1
d(cos θ )

×
[
eı(kv cos θ−ω)t (1 − cos2 θ )

k2c2κ(ω) − ω2ε(ω)
− c.c.

]
δ

(
cos θ − ω

kv

)

= e2v

2π2ε0

∫ +∞

0
dωω

∫ +∞

0
dkk

Im[k2c2κ(ω) − ω2ε(ω)]

|k2c2κ(ω) − ω2ε(ω)|2

×
(

1 − ω2

k2v2

)
(52)

that the electromagnetic waves are emitted at an angle to the
path of the particle determined by

cos θ = ω

kv
. (53)

The transparent magnetodielectric medium can be considered
in principle as a limiting case of the lossy dispersive medium.
Actually, there are some ranges of frequencies over which the
imaginary parts of the permittivity and permeability of the
magnetodielectric medium can be ignored. In a transparent
magnetodielectric medium the energy loss of a charge a only
a result of radiation. In this case the imaginary parts of the
electric permittivity and the inverse magnetic permeability
must tend to zero, thus

lim
Im ε(ω), Im µ(ω)→0

Im[k2c2κ(ω) − ω2ε(ω)]

|k2c2κ(ω) − ω2ε(ω)|2

= πµ(ω)δ(n2(ω)ω2 − k2c2) =
∑

j

πµ(�j )vg

j

2�jn(�j )c
δ(ω − �j ),

(54)

where n2(ω) = ε(ω)µ(ω) and the frequencies �j (k) are
the complex-frequency solutions of the dispersion relation
ω2ε(ω) − k2c2κ(ω). Now substituting Eq. (54) into Eq. (52)
and performing the integration over ω and converting the
integration over k to an integration over �j , we obtain

dW

dt
= e2v

4πε0c2

∑
j

∫ +∞

0
d�j �j µ(�j )

(
1 − c2

v2n2(�j )

)
.

(55)

It is seen from the Dirac δ function in Eqs. (54) and (52)
that radiation is possible only if the inequality v > c/n(�j )
is satisfied. We define the Cherenkov cone cos θ = c/vn(�j )
corresponding to any frequency �j for which v > c/n(�j ),
where θ is the angle between the wave vector k of the radiated
electromagnetic wave and the velocity of the particle v. It is
easy to show that when there is only one frequency for each k,
then Eq. (55) tends to the result of [9,17,26].

C. Finite temperature Cherenkov radiation in classical regime

Our considerations so far have been applied to zero
temperature. The generalization of the formalism for this
case is straightforward. It is known that the medium and
electromagnetic field are in the thermal equilibrium in this
regime. The inclusion of temperature may be done in the usual
manner [27–29]. The finite temperature expression, as is well
known, is found by replacing the frequency integral by a sum
over Matsubara frequencies according to the transition

h̄

∫ ∞

0

dξ

2π
f (ıξl) → kBT

∞ ′∑
l=0

f (ıξl), ξl = 2πkBT l/h̄, (56)

where T and kB are the temperature and Boltzmann constant
and the prime on the summation mark denotes that the zeroth
term is given half-weight as is conventional. The effect of
finite temperature on the energy loss in the form of Cherenkov
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radiation can be easily taken into account by using Eqs. (56)
and (52)

dW

dt
= ıe2vkBT

πε0h̄

∞′∑
l=0

ξl

∫ +∞

0
dkk

Im
[
k2c2κ(ıξl) + ξ 2

l ε(ıξl)
]

∣∣k2c2κ(ıξl) + ξ 2
l ε(ıξl)

∣∣2
×
(

1 + ξ 2
l

k2v2

)
. (57)

We know that the function coth(h̄ω/2kBT ) has an infinite
number of poles at ωl = ıξl and elsewhere is analytic and
bounded. This enables us to write Eq. (57) as

dW

dt
= e2v

2π2ε0

∫ +∞

0
dω ω coth

(
h̄ω

2kBT

)

×
∫ +∞

0
dkk

Im[k2c2κ(ω) − ω2ε(ω)]

|k2c2κ(ω) − ω2ε(ω)|2
(

1 − ω2

k2v2

)
.

(58)

Then with suitable rearrangement of the exponentials in the
hyperbolic cotangent we obtain

dW

dt
=
(

dW

dt

)
T =0

+
(

dW

dt

)
T �=0

, (59)

where(
dW

dt

)
T =0

= e2v

2π2ε0

∫ +∞

0
dω ω

∫ +∞

0
dkk

× Im[k2c2κ(ω) − ω2ε(ω)]

|k2c2κ(ω) − ω2ε(ω)|2
(

1 − ω2

k2v2

)
(60)

and(
dW

dt

)
T �=0

= e2v

2π2ε0

∫ +∞

0
dω

2ω

e(h̄ω/2kBT ) − 1

∫ +∞

0
dkk

× Im[k2c2κ(ω) − ω2ε(ω)]

|k2c2κ(ω) − ω2ε(ω)|2
(

1 − ω2

k2v2

)
.

(61)

The last formula differs from the zero-temperature formula
only by the multiplicative factor 2[e(h̄ω/2kBT ) − 1]−1 which has
the asymptotic behavior 0 and 4kBT /h̄ω at low temperatures
kBT � h̄ω and at high temperatures kBT 	 h̄ω, respectively.
In fact, the Matsubara frequency sum naturally separates
into a term which is temperature independent and a term
containing the Bose-Einstein distribution. In some sense the
replacement of Matsubara frequency sum by an integral, as in
(58), is equivalent to switching from imaginary time (discrete
frequencies in Euclidean space) to real time (continuous
energies in Minkowski space).

A transparent magnetodielectric medium can be considered
in principle as a limiting case of a lossy dispersive medium. In
this case using Eq. (54), we obtain

dW

dt
= e2v

4πε0c2

∑
j

∫ +∞

0
d�j �j µ(�j )

× coth

(
h̄�j

2kBT

)(
1 − c2

v2n2(�j )

)
(62)

which is the finite temperature generalization of Eq. (55). It is
easy to show that for a nondispersive medium, Eq. (55) tends
to the result of [30].

III. QUANTUM THEORY

The classical theory of Cherenkov radiation effects is
sufficiently accurate in the optical part of the spectrum [10]. For
methodological and physical reasons, it is equally important to
consider the quantum theory of this effects. Quantum theory
enables us to derive the classical equation with the appropriate
corrections. We extract the Maxwell equations and constitute
relations and the vector potential field operator in the first part
of this section, and in the following we calculate the radiation
intensity within a nonrelativistic and relativistic theory.

A. Canonical quantization

In the description of the canonical quantization of the elec-
tromagnetic field, we choose the Coulomb gauge k · A(k,t) =
0. In this gauge the vector potential A is a purely transverse
field and can be decomposed along the unit polarization vectors
eλ(k)λ = 1,2

A(k,t) =
2∑

λ=1

Aλ(k,t) eλ(k). (63)

The dynamical fields Xω and Yω have both transverse and
longitudinal parts and can be expanded as

Xω(k,t) =
3∑

λ=1

Xωλ(k,t) eλ(k). (64)

Furthermore, by using the Lagrange’s equation for the scalar
potential φ, we find a Lagrangian depending on a reduced
number of dynamical variables in the reciprocal space

L = 1

2

∑
α

mα ṙ2
α(t) +

3∑
λ=1

∫ ∞

0
dω

∫ ′
d3k(|Ẋ ωλ|2 − ω2|Xωλ|2

+ |Ẏ ωλ|2 − ω2|Y ωλ|2) +
2∑

λ=1

∫ ′
d3k

(
ε0|Ȧλ|2 − |kAλ|2

µ0

)

+
∫

d3k[AλJ
∗⊥
λ (k,t) + H.c.] +

2∑
λ=1

∫ ′
d3k{−ȦλP

∗⊥
λ

× (k,t) + [ık × (Aλeλ(k)] · M∗(k,t) + H.c.}

+
∫

d3k
(

(ık · P)ρ∗

ε0|k|2 + H.c.

)
−
∫

d3k
|ρ|2

ε0|k|2

−
∫

d3k
|ık · P|2
ε0|k|2 . (65)

The Lagrangian (66) can now be used to obtain the corre-
sponding canonical conjugate variables of the fields within the
half k-space as

−D⊥
λ (k,t) = δL

δ(Ȧ
∗
λ)

= ε0Ȧλ(k,t) − P ⊥
λ (k,t), (66)

Q
ωλ

(k,t) = δL

δ(Ẋ
∗
ωλ)

= Ẋ ωλ, �ωλ(k,t) = δL

δ(Ẏ
∗
ωλ)

= Ẏ ωλ,

(67)
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pα(t) = δL

δ(ṙα)
= mα ṙα + qαA(rα,t). (68)

Now the fields can be quantized canonically in a standard
fashion by demanding equal-time commutation relations
among the variables and their conjugates. For electromagnetic
field components, and the dynamical variables of the external
charges, we find, respectively,

[A∗
λ(k,t), − D⊥

λ′(k′,t)] = ıh̄δλλ′δ(k − k′), (69)

[rαi(t),pαj (t)] = ıh̄δij (70)

and for the reservoir fields

[X∗
ωλ(k,t),Q

ω′λ′(k
′,t)] = ıh̄δλλ′δ(ω − ω′)δ(k − k′), (71)

[Y ∗
ωλ(k,t),�ω′λ′(k′,t)] = ıh̄δλλ′δ(ω − ω′)δ(k − k′) (72)

with all other equal-time commutators being zero. Using the
Lagrangian (66) and the expression for the canonical conjugate
variables in (69), we obtain the Hamiltonian of the total system

H =
2∑

λ=1

∫ ′
d3k

( |D⊥
λ − P ⊥

λ |2
ε0

+ |kAλ|2
µ0

)

+
∑

α

(pα − qαA(rα,t))2

2mα

+
3∑

λ=1

∫ ∞

0
dω

×
∫ ′

d3k(|Ẋωλ|2 + ω2|Xωλ|2 + |Ẏ ωλ|2 + ω2|Yωλ|2)

−
2∑

λ=1

∫ ′
d3k[(ιk × (Aλeλ(k)) · M∗(k,t) + H.c.]

+
∫ ′

d3k
|ιk · P|2
ε0|k|2 +

∫ ′
d3k(

(−ιk · P)ρ∗

ε0|k|2 + H.c.)

+
∫ ′

d3k
|ρ|2

ε0|k|2 . (73)

If we apply Heisenberg equation to the operators Dλ and Aλ,
and use the commutation relation (69), Maxwell equations in
the reciprocal space can be obtained as

Ȧλ(k,t) = ı

h̄
[H,Aλ(k,t)] = −D⊥

λ (k,t) − P ⊥
λ (k,t)

ε0
, (74)

Ḋ
⊥
λ (k,t) = ı

h̄
[H,D⊥

λ (k,t)] = |k|2
µ0

Aλ(k,t)

− eλ(k) · [ık × M(k,t)] − J⊥
λ (k,t). (75)

Multiplying both sides of these equations by the polarization
unit vectors and summing over the polarization indices we find

D⊥(k,t) = ε0E⊥(k,t) + P⊥(k,t), (76)

Ḋ
⊥

(k,t) = ık × H(k,t) − J⊥(k,t), (77)

where D⊥ is the transverse displacement field, E⊥ = −Ȧ is the
transverse electric field and µ0H(k,t) = ιk × A(k,t) − µ0M
is the magnetic induction field and

J⊥(k,t) = 1

2(2π )3/2

∑
α

2∑
λ=1

qα(ṙαe−ιk·rα + e−ιk·rα ṙα) · eλ(k).

(78)

In the presence of external charges, the longitudinal compo-
nents of the electric and displacement fields can be written
respectively as

E‖(k,t) = − k̂(k̂ · P)

ε0
− ıkρ(k,t)

ε0|k|2 , (79)

D‖(k,t) = ε0E‖(k,t) + P‖(k,t) = − ıkρ(k,t)

|k|2 . (80)

If we differentiate Eq. (76) with respect to the time variable t

and use Eq. (77), we find the quantum counterpart of Eq. (11)
for the vector potential in the reciprocal space as

µ0ε0Ä(k,t) + |k|2A(k,t) − µ0Ṗ
⊥

(k,t)

−µ0ık × M(k,t) = µ0J⊥(k,t). (81)

Equation (81) is the Langevin equation for the vector potential
A(k,t), wherein, the explicit form of the electric and magnetic
polarization densities of the medium is known. The quantum
Langevin equation can be considered as the basis of the
macroscopic description of a quantum particle coupled to
an environment or a heat bath [31]. Similarly, it is easy to
show that the Heisenberg equation of motion for the external
charged particles is

mα r̈α = ı

h̄
[H,pα − qαA(rα,t)]

= qαE(rα,t) + 1

2
qα[ṙα × B(rα,t) − B(rα,t) × ṙα].

(82)

Using the commutation relations (71), (72) and applying the
total Hamiltonian (73), it can be shown that the combination
of the Heisenberg equations of the canonical variables X(ω,t)
and Y(ω,t) lead to the same equations (18) and (19) with
the solutions (20) and (23), respectively. Now by substituting
Eqs. (20) and (23) in the integrands of Eqs. (13), we find the
electric and magnetic polarization densities of the medium in
reciprocal space

P(k,t) = ε0

∫ ∞

0
dt χe(t − t ′)E(k,t ′) + PN (k,t), (83)

M(k,t) = 1

µ0

∫ ∞

0
dt χm(t − t ′)B(k,t ′) + MN (k,t), (84)

where χe and χm are the same electric and magnetic suscepti-
bilities of the medium defined in Eqs. (22) and (24), the noises

PN (k,t) =
∫ ∞

0
dωf (ω)

(
Ẋω(k,0)

sin ωt

ω
+ Xω(k,0) cos ωt

)
,

(85)

MN (k,t) =
∫ ∞

0
dωg(ω)

(
Ẏω(k,0)

sin ωt

ω
+ Yω(k,0) cos ωt

)
(86)

are the electric and magnetic polarization noise densities
associated with absorption, with the causal behavior of the
medium, respectively. To facilitate the calculations, let us
introduce the following annihilation operators:

aλ(k,t) =
√

1

2h̄ε0c|k| [ε0c|k|Aλ(k,t) − ıD⊥
λ (k,t)], (87)
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dλ(k,ω,t) =
√

1

2h̄ω
[ωXωλ(k,t) + ıQ

ωλ
(k,t)], (88)

bλ(k,ω,t) =
√

1

2h̄ω
[ωY ωλ(k,t) + ı�ωλ(k,t)]. (89)

From equal-time commutation relations for the fields
(69)–(72), we obtain the following equal-time commutation
relations for the creation and annihilation operators:

[aλ(k,t),a†
λ′ (k′,t)] = δλλ′δ(k − k′), (90)

[dλ(k,ω,t),d†
λ′ (k′,ω′,t)] = δλλ′δ(ω − ω′)δ(k − k′), (91)

[bλ(k,ω,t),b†λ′ (k′,ω′,t)] = δλλ′δ(ω − ω′)δ(k − k′). (92)

The commutation relations (90)–(92) in contrast to the pre-
vious relations (69)–(72), which were correct only in the half
k-space, are now valid in the whole reciprocal space. Inverting
Eqs. (87) and (88), we can write the canonical variables A, Xω,
and Yω in terms of the creation and annihilation operators as

A(k,t) =
√

h̄

2ε0c|k|
2∑

λ=1

[aλ(k,t) + a
†
λ(−k,t)]eλ(k), (93)

Xω(k,t) =
√

h̄

2ω

3∑
λ=1

[dλ(k,ω,t) + d
†
λ(−k,ω,t)]eλ(k), (94)

Yω(k,t) =
√

h̄

2ω

3∑
λ=1

[bλ(k,ω,t) + b
†
λ(−k,ω,t)]eλ(k). (95)

Now by employing the Fourier transforms of these recent
relations, the Hamiltonian of the total system (73), in the real
space, can be recast into the final form

H =
∫

d3r
[

− D⊥(r,t) · P(r,t)
ε0

+ P2(r,t)
2ε0

−∇ × A(r,t) · M(r,t)
]

+
∑

α

[pα − qαA(rα,t)])2

2mα

+ 1

8πε0

∫
d3r

∫
d3r′ [∇ · P(r,t)][∇′ · P(r′,t)]

|r − r′|
− 1

4πε0

∑
α

qα

∫
d3r

[∇ · P(r,t)]
|r − rα|

+ 1

8πε0

∑
α �=β

qαqβ

|r − rα| + HF + He + Hm, (96)

where

P(r,t) =
3∑

λ=1

∫ ∞

0
dω

∫
d3k

√
h̄

2ω
f (ω)

× [dλ(k,ω,t)eık·r + H.c.]eλ(k), (97)

M(r,t) =
3∑

λ=1

∫ ∞

0
dω

∫
d3k

√
h̄

2ω
g(ω)

× [bλ(k,ω,t)eık·r + H.c.]eλ(k), (98)

and

HF =
2∑

λ=1

∫
d3k h̄c|k| a†

λ(k,t)aλ(k,t), (99)

He =
3∑

λ=1

∫
dω

∫
d3k h̄ω d

†
λ(k,ω,t)dλ(k,ω,t), (100)

Hm =
3∑

λ=1

∫
dω

∫
d3k h̄ω b

†
λ(k,ω,t)bλ(k,ω,t) (101)

are the Hamiltonian of the electromagnetic field and the
medium in the normal ordering form.

We now proceed to solve the wave equation (81) along the
lines of the classical wave equation (35) using the Laplace
transform technique. After some lengthy and elaborated cal-
culations (see Appendix), the vector potential in the large-time
limit, i.e., when the medium and electromagnetic field tend to
an equilibrium state, can be obtained as

A(r,t) = −ı

ε0

2∑
λ=1

∫
d3k

∫
dωω

√
h̄

2(2π )3ω
f (ω)

×
(

dλ(k,ω,0)e−ıωt eık·r

−ω2ε(ω) + c2k2κ(ω)
− H.c.

)
eλ(k)

+ ı

ε0

2∑
λ=1

∫
d3k

∫
dω

√
h̄|k|2

2(2π )3ω
g(ω)

×
(

bλ(k,ω,0)e−ıωt eık·r

−ω2ε(ω) + c2k2κ(ω)
− H.c.

)
sλ(k), (102)

where sλ(k) = k̂ × eλ(k). In the large-time limit, the vector
potential operator will be a function of the medium operators
only, i.e., the radiation is due to the medium, which still
satisfies Maxwells equations, as expected. Also the canonical
commutation relation (69) is preserved in this limit if in
addition to the velocity sum rules (46) and (47), which still
legitimate in the quantum domain, the following velocity sum
rule for a magnetodielectric medium is also satisfied (see
Appendix):

[A∗(k,t), − D⊥(k′,t)]

=
∫ +∞

0
dω

ω3Imε(ω) − k2c2ωImκ(ω)

|−ω2ε(ω) + c2k2κ(ω)t |2 = π

2

⇒
∑

j

Re

[
v

j
gv

j
p

c2

]
= 1. (103)

The form of vector potential operator given in (102) agrees
with previous works, if one replaces the medium annihilation
operators dλ(k,ω,0) and bλ(k,ω,0) in the large-time (96)
with the diagonalizing annihilation operators Ke,λ(k,ω) and
Km,λ(k,ω), derived by the damped polarization formalism
[24,32] and also if one makes similar replacements for
the creation operators f e

λ (k,ω) and f m
λ (k,ω) derived by the

phenomenological formalism [33,34], where again the same
expressions for the field and medium operators are recovered.

B. Nonrelativistic quantum theory of Cherenkov radiation

We consider a charge particle with mass m and electric
charge e uniformly moving in a linear homogeneous mag-
netodielectric medium described by the Hamiltonian (96). In
fact, we consider a total system of two noninteracting parts,
that is, the free electron and a system, which consist of the
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electromagnetic field and the magnetodielectric medium in
interaction. Therefore the Hamiltonian operator of the total
system (96), i.e., electromagnetic field, the medium, and the
particle, in the large-time limit, can be rewritten as

H = H0 + Hint ,

H0 = Hele + HF ,

Hele = p2

2m
,

(104)

HF = :
3∑

λ=1

∫
dω

∫
d3k h̄ω {d†

λ(k,ω,t)dλ(k,ω,t)

+ b
†
λ(k,ω,t)bλ(k,ω,t)},

Hint = −ep · A(x,t)

m
,

where x is the position operator of the particle and we have
ignored the term A2 since the Cherenkov radiation can be
considered as a first order process in which the number of
photons changes by ±1. Also the direct Coulomb interaction
between the electron and the medium has been omitted
from the Hamiltonian (96) since it can give rise to radiative
transitions only in third or higher orders.

The moving charged particle with the momentum h̄q has
the quantum state |q〉

p |q〉 = h̄q |q〉 , (105)

where |q〉 is the momentum eigenvector of the particle which
in a coordinate representation can be written as

〈x|q〉 = ψq(x) = 1

(2π )3/2
eı q·x, (106)

therefore the Hamiltonian Hele = p2/2m for a free particle
has the eigenvector |q〉 with the energy eigenvalues Eq =
h̄2q2/2m. The unperturbed Hamiltonian H0 = Hele + HF has
the eigenstate

|ele + rad〉 = |ele〉|rad〉
which are the direct product of the eigenstates of Hele and HF .
In order to separate out the emission of Cherenkov radiation
from various other processes which might occur, such as,
for example, ionization, emission of bremsstrahlung, etc., we
restrict our attention to first order transitions. Therefore we
apply quantum mechanical perturbation theory up to the first
order approximation to treat the transition probability per unit
time for a free particle of momentum h̄q to emit a photon of
momentum h̄k and energy h̄ω thereby changing its momentum
to h̄(q − k) as following:

�q→q−k = 2π

h̄
|〈1k|〈q − k|Hint |q〉|0〉|2 δ

×
(

h̄2q2

2m
− h̄2

2m
|q − k|2 − h̄ω

)
, (107)

where the states |0〉 and |1k〉 present the vacuum state
of the electromagnetic field and the excited state of the
electromagnetic field with a single photon with wave vector
k and frequency ω, respectively. The argument of the Dirac δ

function displays the conservation of energy and the square of

the matrix element of Eq. (107) is obtained by using Eqs. (102)
and (104) as

|〈1k|〈q − k|Hint |q〉|0〉|2

= h̄e2

16π3ε2
0m

2ω
{|β(ω,|k|)|2|〈q − k|e−ı k·xp · eλ(k)|q〉|2

+ k2|γ (ω,|k|)|2|〈q − k|e−ı k·xp · sλ(k)|q〉|2} (108)

by using Eqs. (106) and (105) the matrix elements in above
equation are just h̄k · eλ(k) and h̄k · sλ(k), respectively. Let θ

be the angle between q and k and let v = h̄q/m be the particle
velocity, we find

�q→q−k = e2v(1 − cos2 θ )

4π3ε0h̄k

(
ω2Imε(ω) − k2c2Imκ(ω)

|−ω2ε(ω) + k2c2κ(ω)|2
)

× δ

[
cos θ − ω

kv

(
1 + h̄k2

2mω

)]
, (109)

therefore, photon is emitted at an angle to the path of the
particle given by

cos θ = ω

kv

(
1 + h̄k2

2mω

)
. (110)

If the energy of the photon h̄ω is much less than the rest mass
of the particle mc2 then this is approximately Eq. (53) which
gives the classical Cherenkov angle. The total energy radiated
per unit time is found to be

dW

dt
= e2v

2π2ε0

2∑
λ=1

∫
d3k

∫ +∞

0
dωh̄ω�q→q−k

= e2v

2π2ε0

∫ +∞

0
kdk

∫ +∞

0
ωdω

×
[

1 − ω2

k2v2

(
1 + h̄k2

2mω

)2 ]

× Im

(
1

−ω2ε(ω) + k2c2κ(ω)

)
. (111)

We note that the integration on the azimuthal angle is trivial.
The integration on polar angle is done with the help of the
Dirac δ function in Eq. (111) and(
ω2Imε(ω) − k2c2Imκ(ω)

|−ω2ε(ω) + k2c2κ(ω)|2
)

= Im

(
1

−ω2ε(ω) + k2c2κ(ω)

)
.

(112)

It is easily shown that Eq. (111) is consistent with the result
of [35] and in the classical limit as h̄ −→ 0, reduces to the
classical results (52).

C. Relativistic quantum theory of Cherenkov radiation

The description of particles used in the preceding section
is valid only when the particles are moving at velocities small
compared to the velocity of light. The preceding formalism
must be generalized somehow to describe the relativistic
moving particles, that is, we should drive the Dirac equation for
external particles embedded in the magnetodielectric medium.
For this purpose, we substitute the following Lagrangian for
external particle instead of the Lagrangian (4) [36,37]
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Lq = ıh̄c

2

∫
d3x

⎡
⎣ 3∑

µ=0

(
ψ̄(x,t)γ µ ∂ψ(x,t)

∂xµ
− ∂ψ̄(x,t)

∂xµ
γ µψ(x,t)

)⎤⎦− mc2ψ̄ψ

+ e

∫
d3x

⎧⎨
⎩

3∑
j=1

[cψ̄(x,t)γ jψ(x,t)Aj (x,t)] − ψ̄(x,t)γ 0ψ(x,t)ϕ(x,t)

⎫⎬
⎭ , (113)

where γ µ,µ = 0, . . . ,3 are the Dirac matrices with γ 0 = β,
γ j = βαj , and ψ̄ = ψ†β. In a standard representation we have

β =
(

I 0
0 −I

)
, αj =

(
0 σj

σj 0

)
, (114)

where σj ,j = 1,2,3 are Pauli spin matrices and I is the
unit matrix. It is worth mentioning that the Lagrangian of
the magnetodielectric medium (8) need not be written in a
covariant form since the medium is at rest and a nonrelativistic
description is enough although it can be written in a covariant
form straightforwardly. We proceed along the lines of the
preceding section and instead of the canonical momentum
of the particle pα we define the canonical conjugate variable
of the Dirac particle ıh̄ψ† as

ıh̄ψ†

2
= ∂L

∂ψ̇
. (115)

The quantization procedure for the Dirac field can be achieved
by imposing equal-time anticommutation relation among the
field components

{ψα(x,t),ψ†
β(x′,t)} = δαβδ(x − x′) (116)

together with {ψα(x,t),ψβ(x′,t)} = 0. Here we have chosen
the anticommutation relation, since we are developing a
theory of particles that obey Fermi-Dirac statistics. Using the
Lagrangian (65) and (113) and the expression for the canonical
conjugate variables in (69)–(72) and (116), we obtain the
Hamiltonian of the total system

H =
∫

d3x (−ιh̄cψ†(x,t)α · ∇ψ(x,t) + mc2ψ†(x,t)βψ(x,t))

+
3∑

λ=1

∫ ∞

0
dω

∫ ′
d3k(|Ẋωλ|2 + ω2|Xωλ|2 + |Ẏ ωλ|2

+ ω2|Yωλ|2) −
2∑

λ=1

∫ ′
d3k[(ιk × (Aλeλ(k)) · M∗(k,t)

+ H.c.] +
∫ ′

d3k
|ιk · P|2
ε0 |k|2 +

∫ ′
d3k

(
(−ιk · P)ρ∗

ε0 |k|2 + H.c.

)

+
∫ ′

d3k
|ρ|2

ε0 |k|2 −
∫ ′

d3k(J∗(k,t) · A(k,t) + H.c.)

+
2∑

λ=1

∫ ′
d3k

( |D⊥
λ − P ⊥

λ |2
ε0

)
. (117)

It is easily shown that the Heisenberg equation for the dynamic
variable of the electromagnetic and medium fields lead to the
same constitute equations (83) and (84) and also Maxwell

equations (76)–(79) in the reciprocal space. The Fourier
transforms of the external current and charge densities are
defined by

J(k,t) = ec

(2π )3/2

∫
d3x ψ†(x,t)α ψ(x,t)e−ık·x, (118)

ρ(k,t) = e

(2π )3/2

∫
d3x ψ†(x,t) ψ(x,t)e−ık·x. (119)

If we apply Heisenberg equation to the Dirac fields ψ(x,t)
and make use of the anticommutation relation (116), the Dirac
equation in the presence of the electromagnetic field can be
obtained as

ıh̄ψ̇(x,t) = −cα · [ıh̄∇ + eA(x,t)]ψ(x,t)

+ eϕ(x,t) + mc2βψ(x,t), (120)

where

ϕ(x,t) = 1

(2π )3/2

∫
d3k

(−ık · P(k,t)

ε0k2
+ ρ(k,t)

ε0k2

)
eık·x

(121)

is the scalar potential of the electromagnetic field defined
in Eq. (12). We now expand the Dirac field ψ(x,t) in
eigenfunctions of the Dirac equation in the absence of the
electromagnetic field

ψ(x,t) = 1

(2π )3/2

4∑
µ=1

∫
d3q cµ(q,t)ψµ(q), (122)

where ψµ(q) = uµ(q)eıq·x and uµ(q) are four-component
spinors of the Dirac equation with eigenvalues
Eq = ±

√
h̄2c2q2 + m2c4 with the normalization condition

u†
µ(q)uν(q) = δµν [28] and cµ(q,t) are the annihilation

operators of the particle with momentum h̄q. By substituting
Eqs. (122) and (102) in (117), the Hamiltonian of the total sys-
tem in the large-time limit can be recast in the following form:

H = H0 + Hint ,

H0 = Hele + HF ,

Hele =
4∑

µ=1

∫
d3q Eqc

†
µ(q,t)cµ(q,t), (123)

HF = :
3∑

λ=1

∫
dω

∫
d3kh̄ωd

†
λ(k,ω,t)dλ(k,ω,t)

+ b
†
λ(k,ω,t)bλ(k,ω,t)} :

Hint = −
∫

d3k[J∗(k,t) · A(k,t) + H.c.]
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= −ec

∫
d3x

∫
d3k ψ∗α · A(k,t)ψ

= ıce

ε0

2∑
λ=1

4∑
µ,µ′=1

∫
d3k

∫
d3q

∫ ∞

0
dω

√
h̄ω

2(2π )3
f (ω)

×
(

u†
µ(q)α · eλ(k)uµ′(q − k)

−ω2ε(ω) + c2k2κ(ω)
c†µ(q)cµ′(q − k)

× dλ(k,ω,0)e−ıωt − H.c.

)
− ıce

ε0

2∑
λ=1

4∑
µ,µ′=1

∫
d3k

×
∫

d3q
∫ ∞

0
dω

√
h̄|k|2

2(2π )3ω
g(ω)

×
(

u†
µ(q)α · sλ(k)uµ′(q − k)

−ω2ε(ω) + c2k2κ(ω)
c†µ(q)cµ′(q − k)

× bλ(k,ω,0)e−ıωt − H.c.

)
. (124)

The unperturbed Hamiltonian H0 = Hele + HF has the
eigenstate

|ele + rad〉 = |ele〉|rad〉
which are the direct product of the eigenstates of Hele and
HF . we again apply first order perturbation theory to treat the
transition probability per unit time for a free Dirac particle of
momentum h̄q to emit a photon of momentum h̄k and energy
h̄ω thereby changing its momentum to h̄(q − k)

�q→q−k = 2π

h̄
|〈1k|〈q − k|Hint |q〉|0〉|2 δ(

√
h̄2c2q2 + m2c4

−
√

h̄2c2|q − k|2 + m2c4 − h̄ω), (125)

where the argument of the Dirac δ function displays the con-
servation of energy. We may proceed to calculate the energy
loss per unit time as we did in the previous section but with a
little modification here. The sum over final states must include
a sum over the final spin states of the particle with positive
energy µ = 1,2, also we average over the initial spin states

dW

dt
= 1

2

2∑
λ=1

2∑
µ,µ′=1

∫
d3k

∫ ∞

0
dωh̄ω�q→q−k. (126)

In order to calculate the above equation we must evaluate the
following sums:

S = 1

2

2∑
λ=1

2∑
µ,µ′=1

|u†
µ(q)α · eλ(k)uµ′(q − k)|2, (127)

S ′ = 1

2

2∑
λ=1

2∑
µ,µ′=1

|u†
µ(q)α · sλ(k)uµ′(q − k)|2. (128)

For this purpose we introduce the annihilation operators [38]

�(q) = cα · p + βmc2 + |Eq|
2|Eq| (129)

�(q − k) = cα · (q − k) + βmc2 + |Eq−k|
2|Eq−k| , (130)

and we obtain

S = 1

8
Tr{[α · eλ(k)]�(q − k)[α · eλ(k)]�(q)}

= 1

2

{
1 − m2c4

|Eq||Eq−k| + 2[eλ(k) · v1]2

c2
− v1 · v2

c2

}
, (131)

S ′ = 1

8
Tr{(α · sλ(k)]�(q − k)[α · sλ(k)]�(q)}

= 1

2

{
1 − m2c4

|Eq||Eq−k| + 2[sλ(k) · v1]2

c2
− v1 · v2

c2

}
, (132)

where we have used v = h̄c2q/Eq and v1 and v2 are
the velocities before an after the emission of the photon
respectively. The sum over polarizations can be carried out as
in Eq. (52). The result is

S = S ′ = v2
1

c2
(1 − cos2 θ )

+ 1

2

{
1 −

√(
1 − v2

1

/
c2
)(

1 − v2
2

/
c2
)− v1 · v2

c2

}
, (133)

where again θ is the angle between q and k given by

cos θ = ω

vk

[
1 + h̄ω

2mc2

(
k2c2

ω2
− 1

)√
1 − v2

c2

]
. (134)

We mention here that in the classical theory only the first
term occurs on the right-hand side of Eq. (134) and the
second and third terms are a consequence of nonrelativistic
and relativistic quantum theory, respectively. These terms are
small since the wave length of the electron is much smaller
than the photon’s wavelength [39,40]. Also the second term
in Eq. (133) is a small correction to the result we found in
the preceding section. We neglect this term and the rest of
the calculation is similar to what presented in the preceding
section. The only difference here is that Eq. (134) must be
used instead of Eq. (110). The result is

dW

dt
= e2v

2π2ε0

∫ +∞

0
dkk

∫ +∞

0
dωω

×
(

1 − ω2

v2k2

[
1 + h̄ω

2mc2

(
k2c2

ω2
− 1

)√
1 − v2

c2

]2)

× Im

(
1

−ω2ε(ω) + k2c2κ(ω)

)
. (135)

Comparing this expression and Eq. (111) with its classical
counterpart, Eq. (52), it is seen that the only difference
is in the argument of the δ function. In fact, we note
that the integrations over k and ω in classical equation (52)
diverge but its nonrelativistic and relativistic counterpart that is
Eqs. (111) and (135) have no divergent behavior. To appreciate
the physical significance of this subject, we consider a
transparent and nondispersive magnetodielectric medium. We
note that Eqs. (110) and (134) for 0 < v < c and n > 1 provide
a cutoff in frequency ω < ωnonrel,rel

c which in nonrelativistic
and relativistic regimes are respectively given by

ωnonrel
c = 2mc2(nβ − 1)

h̄n2
(136)
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and

ωrel
c = 2mc2(nβ − 1)

h̄(n2 − 1)
√

1 − β2
, (137)

where β = v/c. These cutoffs are still bounded above by the
electron energy mc2 or mc2/

√
1 − β2, respectively. Thus, we

can use one of these cutoffs for the range of integrations to
obtain a physically acceptable result for the classical radiation
intensity.

It is easy to show that in a transparent magnetodielectric
medium Eq. (135) becomes

dW

dt
= e2v

4πε0c2

∑
j

∫ +∞

0
d�j�jµ(�j )

×
(

1 − c2

n2v2

[
1 + h̄�j

2mc2
(n2 − 1)

√
1 − v2

c2

]2)
,

(138)

which tends to the correct relation in the classical and extreme
relativistic limits.

D. Finite temperature Cherenkov radiation in quantum regime

Our considerations so far have been applied to zero
temperature. The inclusion of temperature may be done in
the usual manner [27]. In this case the transition probability
(125) for a free Dirac particle of momentum h̄q to emit a
photon of momentum h̄k and energy h̄ω thereby changing its
momentum to h̄(q − k) is obtained as

�q→q−k

= 2π

h̄
|Hint |2 (Nk + 1)[1 − nF (q − k)]δ(

√
h̄2c2q2 + m2c4

−
√

h̄2c2|q − k|2 + m2c4 − h̄ω), (139)

where

Nk = 1

eh̄ω/kBT − 1
(140)

and

nF (q − k) = 1

e
√

h̄2c2|q−k|2+m2c4/kBT + 1
. (141)

Here the factor Nk + 1 comes from the phonon creation
operator for transition from the initial state with nk photons to
the final state with nk + 1 photons. In fact, we use the thermal
average of nk which is Nk. This photon emission process take
place as stimulated and spontaneous emission. Similarly, the
factor 1 − nF (q − k) is the probability that the electron state
q − k is empty, so that the operator c†µ(q − k) can create an
electron in that state. There is also a factor nF (q), which is the
probability that q is occupied with an electron that is unity.
But in calculating the total energy radiated as Cherenkov
radiation, we have to omit some important processes. They
arise from other electrons in the system with the same spin
state. These electrons can not be found in the state q since
our electron is occupying it already. Thus the other electrons
of the system will reduce the transition probability (139) and
we must subtract the transition probability due to the presence
of other electrons from Eq. (139) [27]. Therefore by using
Eqs. (126)–(135), the total energy radiated in finite temperature

is found to be

dW

dt
= e2v

2π2ε0

∫ +∞

0
dkk

∫ +∞

0
dωω

×
(

1 − ω2

v2k2

[
1 + h̄ω

2mc2

(
k2c2

ω2
− 1

)√
1 − v2

c2

]2)

× Im

(
1

−ω2ε(ω) + k2c2κ(ω)

)
FT (ω), (142)

where

FT (ω) = (Nk + 1)[1 − nF (q − k)] − NknF (q − k)

= eh̄ω/kBT

eh̄ω/kBT − 1

[
e|Eq−h̄ω|/kBT − e−h̄ω/kBT

e|Eq−h̄ω|/kBT + 1

]
. (143)

The last equation differs from the zero temperature equation
(135) only by the multiplicative factor FT (ω) which has the
following asymptotic behavior at low temperatures kBT � h̄ω

and at high temperatures kBT 	 Eq, respectively:

FT (ω) ∼ 1,

FT (ω) ∼ Eq

2h̄ω
= mc2

2h̄ω
√

1 − (v/c)2
.

It is easy to show that in a transparent magnetodielectric
medium, the finite temperature generalization of Eq. (135)
becomes

dW

dt
= e2v

4πε0c2

∑
j

∫ +∞

0
d�j�jµ(�j )

×
(

1 − c2

n2v2

[
1 + h̄�j

2mc2
(n2 −1)

√
1 − v2

c2

]2)
FT (�j )

(144)

which in a nondispersive medium tends to the result of [15].

IV. CONCLUSION

In this paper, we have generalized a Lagrangian introduced
in [11] to include the external charges. In this formalism
the medium is modelled with two independent collections of
vector fields. The classical electrodynamics in the presence
of a polarizable and magnetizable medium is discussed and
the susceptibility functions of the medium are calculated
in terms of the coupling functions. The energy loss of a
point charged particle per unit length emitted in the form
of radiation, called Cherenkov radiation, is obtained in both
zero and finite temperature in classical regime. A fully
canonical quantization of both electromagnetic field and the
dynamical variables, modeling the medium, is demonstrated.
In the Heisenberg picture, the constitutive equations of the
medium together with the Maxwell equations are obtained
as the equations of motion of the total system. The wave
equation for the vector potential is solved. It is shown how
the vector potential operator in this theory can be expressed
in terms of the medium operators at an initial time. The
consistency of these solutions for the field operators are found
to depend on the validity of certain velocity sum rules. It
is also shown how this scheme is related to the damping
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polarization and phenomenological quantization theories. The
large-time limit and quantum mechanical perturbation theory
is applied to treat the finite temperature Cherenkov radiation
in the domain of the nonrelativistic and relativistic quantum
regimes. The total energy radiated per unit time is calculated
which is consistent with both classical and extreme relativistic
limits. The approach is based on a Lagrangian formalism and
magnetic properties of the medium and the relativistic motion
of the particle are included. This model can be applied to the
case of Cherenkov radiation in a nonlinear medium which is
under consideration.
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APPENDIX

In this appendix we give the analogous expression for
the vector potential in the quantum domain. Furthermore,
we evaluate the time-dependent coefficients for the vector
potential operator. By using Eqs. (83) and (84) the wave
equation (81), can be written as

µ0ε0Ä + |k|2 A + µ0
∂

∂t

∫ t

0
dt ′χe(t − t ′)Ȧ(k,t ′)

−µ0 |k|2
∫ t

0
dt ′χm(t − t ′)A(k,t ′)

= µ0
∂PN ⊥

∂t
+ µ0ık × MN + µ0J⊥. (A1)

We find the full time dependence of the vector potential by
taking the inverse Laplace transform. The inverse Laplace
transformation as defined before is a contour integration
over the Bromwich contour. After transforming to frequency
variables we obtain

A(r,t) =
2∑

λ=1

∫
d3k

√
h̄

2(2π )3ε0ck
[η(k,t)aλ(k,0)eık·r

+ H.c.]eλ(k) + 1

ε0

2∑
λ=1

∫
d3k

∫
dω

√
h̄

2(2π )3ω

× [β(ω,k,t)dλ(k,0)eık·r + H.c.]eλ(k)

+ ı

ε0

2∑
λ=1

∫
d3k

∫
dω

√
h̄k2

2(2π )3ω
[γ (ω,k,t)

× bλ(k,0)eık·r + H.c.]sλ(k) +
∑

α

2∑
λ=1

qα

2
ζ (k,t)

× [ṙαδ(r − rα) + δ(r − rα)ṙα] · eλ(k)eλ(k), (A2)

where

η(k,t) = 1

2πı

∫ +ı∞

−ı∞
dsest sε̃(s) − ıck

s2ε̃(s) + k2c2κ̃(s)

=
∑

j

[
Re

(
e−ı�j t

v
j
g

v
j
p

)
− ıIm

(
e−ı�j t

v
j
g

cκ(�j )

)]
,

(A3)

β(ω,k,t) = f (ω)

2πı

∫ +ı∞

−ı∞
ds

sest

(s + ıω)[s2ε̃(s) + k2c2κ̃(s)]

= −ıωf (ω)e−ıωt

−ω2ε̃(ω) + k2c2κ̃(ω)
, (A4)

γ (ω,k,t) = g(ω)

2πı

∫ +ı∞

−ı∞
ds

est

(s + ıω)[s2ε̃(s) + k2c2κ̃(s)]

= g(ω)e−ıωt

−ω2ε̃(ω) + k2c2κ̃(ω)
, (A5)

ζ (k,t) = 1

2πı

∫ +ı∞

−ı∞
ds

est

s2ε̃(s) + k2c2κ̃(s)

= 1

kc

∑
j

Im

(
e−ı�j t

v
j
g

cκ(�j )

)
. (A6)

The solution of the wave equation is the sum of a transient
and a permanent part. The latter are expressed solely in terms
of the initial medium operators. Long after the initial time,
vector potential operator will be a function of the medium
operators alone since it has poles on the imaginary axis in
the complex s plane. With the velocity sum rules discussed
in Sec. II, one can see that the coefficient η(k,t) equals 1
at time t = 0 whereas the other coefficients have the initial
value 0.
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