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Polarization of bremsstrahlung at electron scattering in an anisotropic medium
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Bremsstrahlung from relativistic electrons is considered under conditions when some transverse direction of
momentum transfer is statistically preferred. It is shown that in the dipole approximation all the medium anisotropy
effects can be accumulated into a special modulus-bound transverse vector, N . To exemplify a target with N2 ∼ 1,
we calculate radiation from an electron incident at a small angle on an atomic row in an oriented crystal. Radiation
intensity and polarization dependencies on the emission angle and frequency for constant N are investigated.
Net polarization for the angle-integral cross section is evaluated, which appears to be proportional to N2/2, and
decreases with the increase of the photon energy fraction. A prominent feature of the radiation angular distribution
is the existence of an angle at which the radiation may be completely polarized, in spite of the target complete or
partial isotropy; that owes to existence of an origin-centered tangential circle for polarization in the fully differ-
ential radiation probability kernel. Possibilities for utilizing various properties of the polarized bremsstrahlung
flux for preparation of polarized photon beams and for probing intrinsic anisotropy of the medium are analyzed.
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I. INTRODUCTION

Relativistic electrons interacting with matter are efficient
sources of gamma radiation, which may be applied either for
probing nuclei and hadrons [1], or to deliver information about
the medium the electrons are passing through. The full set
of the radiation characteristics includes photon polarization,
which correlates with the preferential direction of acceleration
of the radiating particle in the medium, as well as with
the photon emission azimuthal angle. Detection techniques
sensitive to γ -quantum polarization have been developed to
date in a rather wide range of photon energies [2–4].

For electron scattering on one atom, which is practically a
spherically symmetric object, the whole problem is axially
symmetric, and thereby net polarization of the radiation
(i.e., when integrated over the relativistically small emission
angles) vanishes. In contrast, in condensed matter, partic-
ularly in crystals, due to correlation of atomic positions,
the aggregate fields can be highly anisotropic. But in what
concerns bremsstrahlung, it is essential to recall that the major
contribution to the radiation intensity comes from spatial
regions with highest electromagnetic field strength, whereas
for atoms those regions are perinuclear and nonoverlapping,
containing centrally symmetric fields, anyway. To compete
with this contribution, soft action of the atoms on the radiating
fast electron must be enhanced, in coherent manner. So
far, examples of highly azimuthally anisotropic motion or
scattering of electrons in crystals were basically restricted
to planar channeling [5] and coherent bremsstrahlung [6,7].
These cases demand perfect crystals, high initial electron beam
collimation, and precise crystal orientation with respect to the
incident beam. An extra benefit is the fair monochromaticity
of the emitted γ radiation.

But in case one is interested in radiation polarization
only, regardless of its monochromaticity, and so seeks only
scattering azimuthal anisotropy, not periodicity of the electron
motion in the medium, it seems sufficient to get by with a much
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rougher experimental setup. Taking a sufficiently thin crystal
cut about perpendicularly to one of the main crystallographic
directions, one can expect atomic chains along this direction
to maintain their orientation within the crystal thickness. An
elementary interaction of a fast-charged particle with a string
making a relatively small angle with the particle direction of
motion already introduces an asymmetry between two trans-
verse directions for particle deflection; the ordering of strings
in transverse directions on the crystal area is not a prerequisite.

The purpose of the present article is to calculate scattering
azimuthal asymmetry and the bremsstrahlung polarization for
the emerging problem of electron-string interaction, and esti-
mate minimal conditions for the crystal quality and orientation,
beam collimation degree, etc. Thereat, it may not suffice to
deal with scattering on one string, since a statistical ensemble
of strings contributes. In addition, even for thin crystals the
thickness may be large enough for failure of factorization
between scattering and radiation, so that radiation and motion
in the external field become an inseparable problem.

Concerning prospects of statistical and nonfactorized de-
scription of the radiation spectral intensity, a simplifying
property of electron propagation in atomic matter is that small
(relative to the electron mass) momentum transfers to atoms
dominate,1 justifying equivalent photon [7–9], also known as
dipole approximation [10]. The value of the latter approxima-
tion is that it makes the radiation differential probability simply
a quadratic form in the transferred momentum. That permits
statistical averaging over the momentum transfers in matter,
basically, in a model-independent way. As we will show, all the
anisotropy effects get absorbed into a single transverse vector,
pointing along the preferential direction of momentum transfer
in the medium, and having the absolute value related to the
asymmetry degree. However, at a substantial nonfactorizability
of radiation and scattering, the magnitude of this vector can
depend on the emitted photon energy.

1That is true for elastic scattering, but the latter, in fact, dominates
over inelastic when nuclear charges are Z � 1, as coherent contribu-
tion versus incoherent (Z2 versus Z).
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The plan of the paper is as follows. In Sec. II we define
the equivalent photon approximation for the bremsstrahlung
process, for simplicity initially presuming the scattering
factorization. We discuss the kinematical relations obeyed
by the polarized photons. In Sec. III we turn to averaging
over momentum transfers in matter, in particular relaxing the
scattering factorization assumption, and analyze possibilities
for obtaining high azimuthal anisotropy with macroscopic
targets. In Sec. IV we focus on the problem of electron
interaction with atomic strings, first evaluating bremsstrahlung
on one string, and then estimating the effects of multiple scat-
tering. In Sec. V we evaluate spectra and angular distributions
for the polarization bremsstrahlung yield at an arbitrary, but
(for simplicity) photon-momentum-independent, macroscopic
anisotropy parameter. A summary is given in Sec. VI.

II. BASIC BREMSSTRAHLUNG PROPERTIES
(FACTORIZATION CONDITIONS)

The general statement of a bremsstrahlung problem as-
sumes a relativistic electron [mass m, initial 4-momentum
p = (E, p)] scattering on a static solid target, not necessarily
intrinsically isotropic, and detecting γ quanta in the typical
direction close to p, hence, most probably emitted by the
incident fast electrons, and most probably not more than
one γ quantum per electron, given the weakness of electron
coupling to radiation. In a fully exclusive event, when the
final electron has a well-defined 4-momentum, too [denote it
as p′ = (E′, p′)], the 4-momentum conservation law and the
mass shell conditions read2:

p = p′ + k + q,

p2 = p′2 = m2, k2 = 0,

where k = (ω,k) is the momentum of the emitted γ -quantum,
and q = (0,q) the total momentum transferred from the
electron to the target.

Polarizations of the photons exchanged with the target can
be regarded as certain, described by a vector eµ, granted that
the target is heavy and recoilless. To view it as a source of a
static potential in the laboratory frame, we assume

e = (1,0), (1)

or Lorentz invariantly,

e · q = 0, e2 = 1. (2)

The final photon polarization vector e′µ in any gauge satisfies

e′ · k = 0, e′2 = −1.

The natural gauge for the final real photon is, in the laboratory
frame,

e′ = (0,e′).

Initial and final electron bispinors u, u′ obey Dirac equations

(p · γ − m)u = 0, ū′(p′ · γ − m) = 0, (3)

and the normalization conditions

ūu = ū′u′ = 2m.

2We set c = 1 and further will put h̄ = 1.

Large 4-momenta p, p′, k in the laboratory frame are
nearly collinear. Their spatial direction we will let be Oz;
spatial vector components orthogonal to Oz will be marked
with a subscript ⊥. The naturally emerging ratios of the large
collinear momenta will be defined in terms of their energy
components:

ω

E
= xω <∼ 1,

E′

E
= 1 − xω ∼ 1. (4)

A. Scattering factorization conditions

Let us begin with a simplified problem of radiation under the
scattering factorization condition. The scattering factorization
property implies finite-range interaction during an ultrarel-
ativistic collision, when the time of the scattering is much
shorter than the typical time of decay processes, including
the radiation emission (a sort of impulse approximation). That
makes the photon predominantly emitted from the electron
“legs” prior to and after the scattering. To understand how it
formally manifests itself in different popular frameworks, first
refer to the target rest frame, where one observes relativistic
extension (by Lorentz-factor γ ) of the radiation formation
length [7]

lform = q−1
z ∼ γ (1 − xω)

xωm
(5)

[qz stands for the longitudinal component of typical q

in the process, see Eq. (24) below], relative to the
field localization domain ∼ra (the atomic radius). Thus, the
factorization condition is

ra � lform, (i.e., qzra � 1). (6)

From another viewpoint, in a frame where the electron is
nonultrarelativistic and evolves together with its electromag-
netic proper field at times ∼m−1, the target atom becomes
longitudinally Lorentz-contracted to the size ∼ ra/γ , and
appears to the radiating electron as a short kicker, leading again
to same condition (6). Finally, when working in the momentum
representation, say, in terms of Feynman diagrams, the emitted
real photon typically changes the electron virtuality (square of
its 4-momentum in a virtual state) by amount ∼m2. As for
momentum exchange with the target, individual longitudinal
transfers q(i)

z which are of the order of r−1
a (though

∑
i q

(i)
z =

qz is kinematically restricted to be �r−1
a ) make denominator

of the electron’s propagator relativistically large—but a proper
compensation arrives from the energy numerator, typical for
vector coupling theories (the same reason as for finiteness
of forward cross sections; see, e.g. [11]). However, if the
real photon is emitted in between the momentum exchanges
with the target, it splits a hard electron propagator into two
hard ones, without a numerator compensation. Therefore, the
largest are contributions from diagrams in which the real
photon is the first or the last one in the sequence, leading to the
same ordering of radiation and scattering as inferred from the
previous spatial consideration (see Fig. 1). The technical profit
from the encountered ordering is that it allows factorizing
the amplitude of the entire process into a (nearly on-shell)
amplitude of scattering and the amplitude of radiation at a
single scattering act [12].

042723-2



POLARIZATION OF BREMSSTRAHLUNG AT ELECTRON . . . PHYSICAL REVIEW A 82, 042723 (2010)

p
k

p

p
k

p

n

1 2 n

e e e e

q

Ascat
diffr q

FIG. 1. Factorization of the photon radiation amplitude at elec-
tron scattering on a static source of electric field. Line thickness
reflects the electron virtuality, or fastness of the process: thinnest
lines, represent real electrons; medium thickness lines, propagation
between the scattering and photon emission; thick lines, propagation
between the scatterings.

As for Dirac matrix structure of the scattering amplitude,
for small-angle scattering it is particularly simple. In each
contribution to the amplitude from propagation between the
scatterings (say, on the initial end),

e · γ
p · γ − ∑

q(i) · γ + m(
p − ∑

q(i)
)2 − m2

e · γ,

the spin numerator can always be recast as

e · γ
(
p · γ −

∑
q(i) · γ + m

)
e · γ

= 2e · pe · γ +
(
−p · γ +

∑
q(i) · γ + m

)
e2. (7)

With e · p/m = γ (Lorentz-factor), ū′e · γ u/ū′u ∼ γ , the
second term in (7) is generally O(γ −2) relative to the first
one and can be neglected within the accuracy of the factor-
ization approximation (6). Proceeding so in all orders, the
matrix scattering amplitude can be written as e · γAdiffr

scat (q⊥),
where Adiffr

scat (q⊥) is the spin-independent near-forward angle
scattering amplitude including all orders of perturbation
theory. Physically, it can be regarded as diffractive (potential,
nonabsorptive), whereby its spin independence looks intuitive.

Ultimately, the factorization theorem for the small-angle
bremsstrahlung process assumes the form

Tfact = Adiffr
scat (q⊥)

√
4πeMrad(q⊥,k) {1 + O(qzra)}, (8)

with

Mrad = ū′
(

e′∗ · γ (p · γ − q · γ + m)e · γ

2p′ · k

− e · γ (p′ · γ + q · γ + m)e′∗ · γ

2p · k

)
u (9)

the tree-level radiation matrix element, and Adiffr
scat (q⊥) the

exact elastic scattering amplitude abridged of the conserved
electron bispinors. If we normalize Adiffr

scat (q⊥), in accord with
its diffractive interpretation, so that the diffractive scattering
differential cross section expresses as

dσ diffr
scat = ∣∣Adiffr

scat (q⊥)
∣∣2 d2q⊥

(2π )2
, (10)

the factorization theorem for probabilities will read

dσrad = 1

2E
|Tf i |2 d2q⊥

(2π )22E′
d3k

(2π )32ω

= dσ diffr
scat (q⊥) dWrad(q⊥,k). (11)

Here,

dWrad = 4πα

4EE′ |Mrad|2 d�k (12)

is the differential probability of single-photon emission into a
Lorentz-invariant phase space volume

d�k = d3k

(2π )32ω
. (13)

It is important to note that the formulated theorem does not
require softness of the emitted photon, in the sense that its
energy may be of the order of the initial electron energy. It
is for this reason that one must keep in Eq. (9) the exact spin
structure of the radiation matrix.

B. Comptonization conditions

Although q2 is not subject to an exact mass-shell restriction,
but in atomic matter q is typically soft, that is,

|q2| ∼ r−2
a � m2. (14)

Other kinematic invariants in the problem, p · q and p′ · q, are
∼m2, if xω ∼ 1. So, everywhere except in the overall factor to
be isolated later on, q2 can be neglected, thus leading to the
equivalent photon approximation:

Mrad ≈ Mrad|q2=0 = MCompt. (15)

The initial, equivalent photon polarization e is real.
We will not be interested in electron polarization effects

herein. Averaging of |M|2 over the initial electron’s polariza-
tion and summation over the final electron’s polarization is
simplified in the photon gauge of orthogonality to the initial
electron momentum:

e = ep, e′ = e′
p,

(16)
ep · p

def= 0 ≈ ep · q, e′
p · p

def= 0 = e′
p · k,

and leads to the result:

〈|MCompt|2〉el.spin

= 2
(|ep · e′

p|2 + |e∗
p · e′

p|2) + |ep|2 (q · k)2

p · qp · k

+ (|ep · e′
p|2 − |e∗

p · e′
p|2) (

p · q

p · k
+ p · k

p · q

)

= 4 (ep · e′
p)2 + e2

p

(q · k)2

p · qp · k
, (17)

where in the last line we took into account that for equivalent
photons e∗ = e. Therefore, the final photon polarization e′
will be linear, too. In the given gauge, it appears that the final
photon polarization correlates only with ep, but not with the
particle momenta.

In case of truly real photons, when e2
p = −1, Eq. (17)

turns to the Klein-Nishina formula for unpolarized electrons
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and linearly polarized initial and final photons [13,14], but
for pseudophotons the polarization vector square significantly
differs from 1 [see Eq. (26) below]. To apply Eq. (17)
in arbitrary gauge (in particular, to bremsstrahlung in the
laboratory frame, where the initial electron is relativistic, and e

and e′ in physically motivated gauges are by far not orthogonal
to p), it suffices to substitute for ep, e′

p their gauge-invariant
representations: 18

ep = e − q
e · p

p · q
, (18a)

e′
p = e′ − k

e′ · p

p · k
. (18b)

To determine the approximation accuracy, begin with noting
that among kinematic invariants, we were neglecting q2 com-
pared to p · k ∼ xωm2. This is a source of relative errors 1 +
O( q2

xωm2 ). But the entire radiation amplitude is of the order
ep · e′

p ≈ E
p′ ·e′
p′ ·k − E′ p·e′

p·k ∼ qz

q⊥
∼ γ

q⊥
xωm

, compared to that we
neglect contributions like E′ p·e′

(p·k)2 q
2 ∼ γ

q2

x2
ωm2 . Thereby, the

dipole approximation relative accuracy is not better than

1 + O

(
q⊥

xωm

)
. (19)

Accuracy (19) implies the condition

xω � q⊥
m

∼ 1

mra
∼ α ∼ 10−2 (dipole approximation).

(20)

In addition to that, the factorization condition (6) implies

γ � xω

1 − xω

1

α
� 1 (factorization on one atom). (21)

But at γ >∼ 103 the necessary conditions are fulfilled comfort-
ably enough, allowing for xω variation virtually the whole
interval from 0 to 1.

One should be aware, of course, that after folding with
a differential cross section of scattering in atomic fields
containing Coulombic cores, the accuracy of the equivalent
photon approximation will become logarithmic only [8,13].
But as mentioned in Sec. I, we will be seeking ways to
overcome this undesirable effect.

In what follows, generally we will not be indicating the
approximation accuracy explicitly.

C. Differential probability of polarized bremsstrahlung
in the laboratory frame: Angular distribution at a definite q

In the ultrarelativistic kinematics, more appropriate vari-
ables describing the emitted photon are xω defined by (4) and
the rescaled angle of emission with respect to initial (or final)
electron momentum:

� = E

m

(
k
ω

− p
E

)
≡ E′

m

(
k
ω

− p′

E′

)
− q

m

≈ E′

m

(
k
ω

− p′

E′

)
(22)

(in the dipole approximation, when q/m � � ∼ 1, initial
electron, final electron and photon momenta lie approximately
in the same plane). In their terms, denominators of Eqs. (17)
and (18) can be presented as

p · k = E′qz, p · q ≈ Eqz, (23)

where

qz = mxω(1 + �2)

2γ (1 − xω)
. (24)

The kinematic ratio entering Eq. (17) is

(q · k)2

p · qp · k
≈ x2

ω

1 − xω

. (25)

The equivalent photon polarization vector square (in product
with |Ascat(q⊥)|2 representing the equivalent photon flux) is

−e2
p = −1 − q2

(
e · p

p · q

)2

� −1 + q2

q2
z

= q2
⊥

q2
z

� 1, (26)

and the photon polarization correlator reduces to

ep · e′
p = −E

e′ · q

p · q
+

(
q

e · p

p · q
− e

)
· k

e′ · p

p · k

≡ −q · e′

qz

+ ωE

E′qz

(
q

e · p

p · q
− e

)
·
(

k

ω
− p

E

)
e′ ·

(
p

E
− k

ω

)

= − 1

qz

q⊥iGime′
m, (27)

where

Gim(�) = δim − 2

1 + �2
�i�m. (28)

The final photon phase space element simplifies to

d�k = dω

2ω

ω2dok

(2π )3
≈ dxω

xω

m2x2
ω

16π3
d2�. (29)

Inserting all the ingredients (25)–(27) and (29) into Eq. (17),
and this latter to Eq. (12), one arrives at the final expression
for the bremsstrahlung differential probability3:

xω

dWdip

dxωd2�
= m2x2

ω

16π3

4πα

4EE′ 〈(MCompt)
2〉el.spin

= α

4π2

q2
⊥

m2(1 + �2)2

× {
4(1 − xω) (Gimq̂m⊥e′

i)
2 + x2

ω

}
, (30)

3Inspection of Eqs. (30) and (35) shows that in addition to the
overall proportionality to q2

⊥, both dWdip/d�k and dWunpol/d�k are
still dependent on q̂⊥, and thus on q⊥ as a whole—in spite of
the condition q2

⊥ � m2. Effects of residual azimuthal correlations
in equivalent photon-induced reactions, in problems other than
bremsstrahlung, were noticed before [16]. This is not a genuine
factorization failure, since physical conditions of the latter hold
well, but rather a modification due to the polarization carried by
the equivalent photon flow. (The author thanks I. F. Ginzburg
for communication on this point). It is also true that the present
effect disappears when dWdip/d�k is integrated over the azimuthal
directions of � and summed over e′ (as is usually done in application
to inclusive peripheral particle production [9], or to energy losses
of fast-charged particles in matter, originally investigated by Fermi,
Weizsäcker, and Williams [8]).
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where

q̂⊥ = q⊥
|q⊥| .

One may notice that in the limit xω → 0 intensity (30)
reduces to that of classical particle dipole radiation in an
undulator [15]. In fact, vector a1 of [15] is similar to our vector
Gq̂⊥. Despite that the undulator motion is of a permanently
accelerated type, not scattering, the description in those cases is
largely similar, because Fourier transform expands small-angle
deflections at scattering in periodic modes, anyway.

On the other hand, to establish the relation of notation (30)
with familiar notations of the bremsstrahlung theory, one may
pass to the dipole approximation in the semiclassical radiation
amplitude:

I semicl · e′ =
(

p′

p′ · k
− p

p · k

)
· e′ (31)

≡
(

v′

ω − k · v′ − v

ω − k · v

)
· e′, (32)

with

v = p/E, v′ = p′/E′ (33)

being the initial and final ultrarelativistic electron velocities
(nearly unit vectors, 1 − v2 = 1 − v′2 = γ −2 � 1). Inserting
here v′ = v + χ and expanding up to linear terms in the small
electron deflection angle χ gives

I semicl · e′ ≈ 1

ω

{
2χ

γ −2 + θ2
− 4θ · χ

(γ −2 + θ2)2
θ

}
· e′, (34)

where

θ = k/ω − v = �/γ

is the radiation angle. This corresponds to the infrared-leading
term of Eq. (30). Notations (34) and (30) compared to (31) have
the merit of not involving large cancelations, and manifestly
expose the polarization direction—pointing along vector Gq̂⊥.

The unpolarized probability corresponding to Eq. (30) is
obtained by summing it over the independent directions of e′:

xω

dWunpol

dxωd2�
=

∑
e′

xω

dWdip

dxωd2�

= α

2π2

q2
⊥

m2(1 + �2)2

× {
2(1 − xω) (Gq̂⊥)2 + x2

ω

}
. (35)

Two representations for (Gq̂⊥)2 are of utility:

(Gq̂⊥)2 = 1 − 4

(1 + �2)2
(� · q̂⊥)2 (36a)

≡ (� + q̂⊥)2(� − q̂⊥)2

(1 + �2)2
. (36b)

Equation (36a) shows that (Gq̂⊥)2 has the upper bound 1,
whereas (36b) proves that it can decrease to zero:

0 � (Gq̂⊥)2 � 1.

The angular distribution of (35) is shown in Fig. 2.

2 1 0 1 2
x

2

1

0

1

2

y

FIG. 2. Logarithm of unpolarized radiation intensity (35), at
xω → 0, as a function of � (the radiation angle vector in units of γ −1).
The direction of q⊥ is chosen to be along the y axis. A pair of
dips (black spots) is manifest. With the increase of xω the dips get
filled in.

The fully differential radiation probability in all variables
q⊥,�,e′,xω is rarely subject to observation—usually measure-
ments are more inclusive, corresponding to integration over
all variables but one or two. Nonetheless, to be able to predict
behavior of the integrated probability, it is a prerequisite to
understand the features of the integrand. The main features are
listed below.

1. Quasi-Rutherford asymptotics in �. At large �, radia-
tion intensity (30) falls off as �−4 (i.e., follows essentially the
same law as the Rutherford scattering cross section). This is
a general consequence of proportionality of the amplitude to
one hard propagator—in the present case of an electron, not of
a photon. In fact, in Sec. V B 3 we shall yet encounter a kind
of “transient asymptotics” at moderate � (if xω is sufficiently
small).

2. Polarization alignment along circles at a definite q̂⊥.
It is easy to show by straightforward solution of the ordinary
differential equation,

d�y

d�x

= Gym(�x,�y)q⊥m

Gxm(�x,�y)q⊥m

, (37)

that curves tangential to the vector field of polarization
directions Gq̂⊥, are a family of circles,

�2 + const × [q × �]z = 1, (38)

passing through two knot points

�± = ±q̂⊥ (polarization knots, intensity dips) (39)

(see Fig. 3). Along with Gq̂⊥ ≈
�→±q̂⊥

� ∓ q̂⊥, in those points
to zero drops the polarization.

3. A pair of intensity dips at a definite q̂⊥. As is indicated
by Eq. (36b), there exists a pair of � values, specifically (39),
at which (Gq̂⊥)2 turns to zero. Those directions correspond to
minima in the radiation intensity at a definite q̂⊥ (see Fig. 2).

Features 2 and 3 and the coincidence of knots and dips seem
to be nonaccidental. The next subsection will shed more light
on their origin.
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FIG. 3. Photon polarization alignment in the � plane. The curves
tangential to polarization are mathematical circles. The direction of
q⊥ is along the y axis. The polarization degree depends on xω.

D. View from the initial electron rest frame:
Stereographic projection

The features of the polarization angular distribution are
realized best when we take a view from the initial electron rest
frame (IERF).

p = (m,0). (40)

In the ultrarelativistic limit, e · p → ∞, vector e tends to be
lightlike:

e = 1

m
(e · p, − e · p,0⊥). (41)

The final photon momentum in IERF has all components
commensurable:

k = (	,Kz,K⊥) K⊥ = k⊥, Kz = 	 cos 
, (42)

and e′
p is a spatial vector orthogonal to K :

e′
p = (0,e′

p), e′
p · K = 0, |e′

p| = 1. (43)

Vector q, which must be orthogonal to e, belongs to the light
front:

q =
(

p · q

m
,−p · q

m
,q⊥

)
,

p · q

m
∼ xωm, q2 = −q2

⊥,

(44)

and in this frame is not transverse; however, vector ep, with
which the final photon polarization correlates according to
Eq. (18a), is transverse:

ep =
(

0,0,−q⊥
e · p

p · q

)
, ep · q �= 0. (45)

So, the polarization vector correlator,

ep · e′
p ≈ −q⊥

qz

· e′
p, (46)

has the usual dipole appearance analogous to that of nonrel-
ativistic classical electrodynamics. Therewith, polarization e′

p

in IERF is distributed along meridians of a sphere of radiation
directions, the polar axis being set by the vector q⊥.

To reproduce Eqs. (27) and (28), it remains to relate
e′
p in IERF with e′ in the laboratory frame. This relation

appears to be particularly simple, too. The considered vectors

have equal moduli |e′
p| = |e′| = 1, and equal components

orthogonal to the photon scattering plane (K ,Oz) (because
these components are altered neither by the boost along Oz,
nor the gauge transformation—translation along 4-vector q).
Hence, components in the plane (K ,Oz) must have the same
norm and be related by a pure rotation. Obviously, since e′ is
nearly orthogonal to Oz, whereas e′

p is orthogonal to K , the
angle of this rotation is just the angle � between Oz and K :

e′
p = R�(�)e′. (47)

(R�(�) is a product of an operator of gauge transformation and
of a boost operator.) So, one can view (46) as

ep · e′
p = −q⊥

qz

Ge′, (48)

where

G = P⊥R�P⊥ (49a)

= (P⊥ − Pk⊥) + cos 
Pk⊥

≡ P⊥ − (1 − cos 
)Pk⊥ , (49b)

P⊥ being an operator of projection onto the plane ⊥ Oz, and
Pk⊥ a projector onto direction k̂⊥.

Finally, to construct for G an explicit representation in terms
of �, one first needs to specify 
(�). By definition,

� = γ
k⊥
ω

. (50)

Here ω, the photon energy in the laboratory frame, is related
to the energy and momentum by a light-cone dilation:

ω = γ (	 + Kz) (relativistic Doppler effect equation).

(51)

Together Eqs. (50) and (51) give

�

(
K
	

)
= k⊥

	 + Kz

(light aberration formula). (52)

Taking the square of Eq. (52), one relates �2 with cos 
:

�2 = tan2 


2
≡ 1 − cos 


1 + cos 

. (53)

Inverting this,

1 − cos 
 = 2�2

1 + �2
, (54)

and, thus, the operator entering (49b) is

(1 − cos 
) Pk⊥ = 2

1 + �2
� ⊗ �. (55)

Inserting (55) to (49b), we return to formulas (27) and (28).
The benefit from the described alternative view is the clari-

fication of the geometrical origin of the radiation polarization
angular distribution in IERF and in the laboratory. Rela-
tion (52), with the help of Fig. 4, may be interpreted as a projec-
tion of unit vectors K/	 (i.e., points on the radiation direction
sphere in IERF) onto a tangential plane of photon emission
angles � in the laboratory, performed from the sphere point
opposite the plane tangency point. Such a construction is
known in geometry as a stereographic projection [17]. It has a
few remarkable properties.
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2

k

Kz

2

ep, q

e p R e
e

stereogr. projection

pl
an

e
FIG. 4. (Color online) Correspondence between the photon emis-

sion angles and polarizations in the initial electron rest frame (�, e′
p)

and in the high-energy transverse plane (�, e′). For other notations,
see text. Vectors shown in bold also have components transverse to the
plane of the figure. The dashed red line designates the stereographic
projection implied by the proportion (52). As a result of the projection
of the meridional circles from the sphere onto the plane, one obtains
Fig. 3.

Theorem 1. Points of the sphere symmetric relative to the
plane z = 0 at a stereographic projection pass into points on the
plane, symmetric relative to the circle |�| = 1, in the sense
that the product of distances from this points to the origin
equals 1.

The proof is trivial: If 
1 = π
2 − α, 
2 = π

2 + α, then

�2
1�

2
2 = 1 − cos 
1

1 + cos 
1

1 − cos 
2

1 + cos 
2
= 1 − sin α

1 + sin α

1 + sin α

1 − sin α
= 1.

The value of Theorem 1 is that it explains unobvious
symmetries in the ultrarelativistic particle radiation angular
distribution as a manifestation of rather obvious symmetry
under Cartesian inversion in the dipole-radiating particle rest
frame.

There is another useful property:
Theorem 2. Stereographic projection maps any circle on the

sphere to a circle on the plane.
(The proof thereof is more complicated, and we omit

it, referring to the literature [17].) Now, since polarization
of dipole radiation in IERF is distributed on the radiation
direction sphere along meridional circles, with the polar axis
pointing along q⊥, there is no wonder that the bremsstrahlung
polarization tangential curves evaluated in Eq. (38) and
exhibited in (Fig. 3) are circles, too. (Not surprising either
is the existence of the knot pair, which is just a projection of
the knots on the sphere.)

The practical value of the circular polarization alignment
pattern will become clear in Sec. V, where we consider
polarized radiation angular distributions averaged over mo-
mentum transfers q⊥. The dipole radiation angular distribution
shape does not depend on |q⊥|, whereas averaging over
q̂⊥ directions implies superimposing polarized radiation in-
tensity distributions rotated with respect to each other. This
generally suppresses the radiation polarization, except around
the angle |�| = 1, where polarization is rotationally invariant.
As for the intensity minima of dipole radiation along polar

directions in IERF, they make the radiation equatorially
concentrated in IERF, which projects into a “bar” at |�| < 1
in the laboratory frame (cf. Fig. 2). The orientation of this
“bar” depends on q̂⊥, and so is sensitive to momentum transfer
averaging in matter. The existence of intensity and polarization
maxima can be used for extraction of polarized radiation beams
by the angular collimation technique, as will be discussed in
Sec. V.

III. STATISTICAL AVERAGING OVER
MOMENTUM TRANSFERS IN MATTER

Let us now proceed to description of the radiation on a
solid target. Momentum q⊥ imparted to the target is normally
beyond detection and has to be integrated over, with the weight

(2π )−2|Adiffr
scat (q⊥)|2 = dσ diffr

scat
d2q⊥

, and appropriate averaging over
the atomic configurations is due:

〈
dσrad

d�k

〉
=

〈∫
d2q⊥

dσ diffr
scat

d2q⊥

dWdip

d�k

〉
. (56)

For a macroscopic target, the differential cross section (56)
must be proportional to the target area if the beam is still
wider than the target, or to the area of the beam transverse
section, if it is narrower than the target (as is the usual practice)
and transversely uniform (otherwise, we can consider any
beam part uniform relative to the target inhomogeneities).
Dividing (56) by the interaction area S, one obtains a quantity
independent of S (but proportional to the target matter
density and thickness) and having the meaning of differential
probability for the given radiative process to occur per one
particle passed through the target.

With dWdip

d�k
given by Eq. (30), in (56) one encounters two

basic integrals:

1

S

〈∫
dσ diffr

scat q2
⊥

〉
= 〈q2

⊥〉, (57a)

1

S

〈∫
dσ diffr

scat (2q⊥mq⊥n − q2
⊥δmn)

〉
= 〈2q⊥mq⊥n − q2

⊥δmn〉,
(57b)

having the meaning of average momentum squares. For our
analysis to reach beyond the well-studied case of isotropic
target, it is a prerequisite that the average (57b) differs from
zero. In particular, that allows one to anticipate nonzero polar-
ization of the bremsstrahlung beam as a whole. Physically, this
average is related to the azimuthal anisotropy (“ellipticity”) in
scattering, though it may be not a direct measure of the latter
due to the radiative character of the averaging (see Sec. III B).

A. Vector anisotropy parameter and the anisotropy degree

Instead of (57b), it is convenient to deal with the ratio of
(57b) to (57a), which can represent the scattering asymmetry.
This ratio, which is a symmetric traceless tensor in two
transverse dimensions, can be characterized by the direction of
one of its two eigenvectors and the corresponding eigenvalue
(another eigenvector will be orthogonal to the first one and
correspond to the eigenvalue opposite in sign). Let N stand
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for the eigenvector corresponding to the positive eigenvalue,
then we express

〈2q⊥mq⊥n − q2
⊥δmn〉

〈q2
⊥〉

def= 2NmNn − N2δmn. (58)

If the tensor 〈q⊥mq⊥n〉 diagonalizes in axes x, y, and, say,
〈q2

y 〉 � 〈q2
x 〉, then

N2 =
〈
q2

y

〉 − 〈
q2

x

〉
〈
q2

y

〉 + 〈
q2

x

〉 (59)

(and N‖Oy). That implies a constraint

N2 � 1. (60)

Covariantly, one can infer the upper bound (60) by squaring
both sides of (58) and taking a double trace.

Now, the average differential probability of radiation can
be phrased in terms of the introduced vector N:

xω

〈
dWdip

dxωd2�

〉

= α

4π2

〈q2
⊥〉

m2(1 + �2)2

{
2(1 − xω)

× [(Gime′
i)

2(1 − N2) + 2(GimNme′
i)

2] + x2
ω

}
. (61)

At N2 = 1, Eq. (61) essentially coincides with Eq. (30).
Decomposing also the leftmost unity in braces of Eq. (61)
as 1 ≡ (1 − N2) + N2, we get a representation in the form
of an incoherent mixture of bremsstrahlung on the isotropic
target with that on an anisotropic one, in proportion (1 − N2) :
N2, determined by the target anisotropy degree. But for
polarization characteristics, that superposition is nontrivial,
inasmuch as the polarization direction and degree do not
express as any simple superposition.

B. Relaxing the scattering factorization assumption

An important concern about application of the
bremsstrahlung theory to particle passage through matter is
the vulnerability of the scattering factorization condition (6)
due to significant target thickness. Fortunately, a way for
generalization beyond the factorization is known, which
preserves the Dirac matrix structure of the radiation matrix
element, only trading the transferred momentum q⊥ times
Ascat for some overlap of initial and final electron wave
functions, now involving integration over longitudinal
coordinates.4 To make the text self-contained, we briefly
remind the idea behind that generalization [12].

In the first place, it is suggestive to straightforwardly
linearize the primordial factorized matrix element (9) with
respect to q⊥:

Mrad = ū′
{(

E

p′ · k
− E′

p · k

)
e′∗ · γ

+ e′∗ · γ q · γ γ 0

2p′ · k
+ γ 0q · γ e′∗ · γ

2p · k

}
u

4The only essential condition is that scattering angles do not become
comparable to γ −1 due to multiple scattering within the photon
formation length (5).

dip≈ 1

qz

ū′
{

1

qz

(v − v′) · q⊥e′∗ · γ

− e′∗ · γ q⊥ · γ γ 0

2E
− γ 0q⊥ · γ e′∗ · γ

2E′

}
u. (62)

Here, we have used Eq. (23) and relations

E

p′ · k
− E′

p · k
= 2EE′

m2ω

[
1

1 + (
� + q

m

)2 − 1

1 + �2

]

≈ − mω

EE′q2
z

� · q⊥ ≈ 1

q2
z

(v′ − v) · q⊥. (63)

Whatever the method used to further evaluate the spin-
averaged probability, the corresponding differential probabil-
ity is some bilinear form in both e′ and q⊥, and the answer is
already known—it is of the Compton-like form (30).

To go beyond the factorization assumption, we have to start
with the exact representation of the matrix element in terms of
overlap of the initial and final electron wave functions in the
static field of the target:

T =
√

4πie

∫
d3re−ik·rψ̄ ′(r)e′∗ · γψ(r). (64)

In the ultrarelativistic limit, the spin structure of the electron
wave functions assumes a field-independent form [13]: 65

ψ(r) ≈ ei p·r
(

1 + i

2E
∇⊥ · γ γ 0

)
ϕ(r)u, (65a)

ψ̄ ′(r) ≈ ū′e−i p′ ·r
(

1 − i

2E′ γ
0∇⊥ · γ

)
ϕ′∗(r), (65b)

where modulating scalar functions ϕ, ϕ′ obey Klein-Gordon
type equations: 66

v · ∇ϕ(r) − V (r) ϕ(r) = 1

2E
[� − V 2(r)]ϕ(r), (66a)

−v′ · ∇ϕ′(r) − V (r) ϕ′(r) = 1

2E′ [� − V 2(r)]ϕ′(r) (66b)

[v and v′ are the initial and final electron velocities defined
by (33), and V (r) the potential energy of the electron in the
electron field of the solid target].

Upon substitution of Eqs. (65) to (64),

Tu.−r. =
√

4πie

∫
d3reiq·r ū′

{
e′∗ · γϕ′∗ϕ

+ i

2E
ϕ′∗e′∗ · γ∇⊥ · γ γ 0ϕ

− i

2E′ γ
0∇⊥ϕ′∗ · γ e′∗ · γϕ

}
u, (67)

the first term in the braces of (67) appears to be energy
suppressed, because of the near orthogonality of e′∗ to ū′γu,
and so gives a contribution of the same order as the second
and third terms of (67) (spin corrections) containing energy
denominators explicitly. The matrix element nonfactorizability
implies that in spite of condition qz � q⊥, one cannot neglect
qz component in the exponent here, because at the scale Lcorr of
contributing longitudinal distances one may have qzLcorr ∼ 1.
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It seems that in Eq. (67) there are different types of
overlaps involving scalar wave functions, but in the dipole
approximation they all appear to be interrelated. Indeed,∫

d3reiq·rϕ′∗(r)ϕ(r)

≈ i

qz

∫
d3reiq·r (v′ · ∇){ϕ′∗(r)ϕ(r)}

≡ i

qz

∫
d3reiq·rϕ′∗(r)(v′ − v) · ∇ϕ(r)

+ i

qz

∫
d3reiq·r [(v′ · ∇ϕ′∗)ϕ + ϕ′∗v · ∇ϕ]

= i

qz

∫
d3reiq·r

{
ϕ′∗(v′ − v) · ∇ϕ + O

(
q2 + V 2

E′ ϕ′∗ϕ
)}

(68a)

= i

qz

(v′ − v) ·
∫

d3reiq·rϕ′∗∇⊥ϕ

{
1 + O

(
q⊥

xωm

)}
,

(68b)

where in passing to Eq. (68a) we have used wave
equations (66), and in passing to Eq. (68b) the estimate
|v′ − v| ∼ xωm

E′ [cf. Eq. (63)]. Another type of overlap is∫
d3reiq·r [∇⊥ϕ′∗(r)]ϕ(r)

= −
∫

d3reiq·rϕ′∗∇⊥ϕ − iq⊥
∫

d3reiq·rϕ′∗ϕ

≈
[
−1 + q⊥

qz

(v′ − v)·
] ∫

d3reiq·rϕ′∗∇⊥ϕ

= −
∫

d3reiq·rϕ′∗∇⊥ϕ

{
1 + O

(
q⊥
m

)}
. (69)

Thus, the entire overlap (67) can be cast in terms of a single
overlap between the scalar wave functions,

I⊥ (qz,q⊥) = qz

∫
d3reiqzz+iq⊥·r⊥ϕ′∗(r)∇⊥ϕ(r); (70)

specifically:

Tdip =
√

4πe
1

qz

ū′
{

1

qz

(v − v′) · I⊥e′∗ · γ

− 1

2E
e′∗ · γI⊥ · γ γ 0 − 1

2E′ γ
0I⊥ · γ e′∗ · γ

}
u. (71)

This is observed to have the very same Dirac matrix structure
as (62), the only difference being I⊥ taking place of q⊥.

As we see, the recipe for the generalization beyond the
scattering factorization is to make in the factorized matrix
element

Tfact =
√

4πeAdiffr
scat (q⊥)Mrad,

with Mrad given by (62), a replacement

q⊥Adiffr
scat (q⊥) →

qzLcorr∼1
I⊥ (qz,q⊥) , qz = qz (ω,�) . (72)

Here, factor eiqzz represents the effects of longitudinal
coherence sensitivity. Correspondence with the scattering
factorization is achieved when this exponential can be put to

unity (after a preliminary integration over z by parts, to make
the integrand vanish at infinity):

I⊥ = i

∫
d2r⊥eiq⊥·r⊥

∫
dzeiqzz

∂

∂z
[ϕ′∗(r)∇⊥ ϕ(r)]

→
qzLcorr�1

i

∫
d2r⊥eiq⊥·r⊥∇⊥ ϕ(r⊥,z � Lcorr)

= q⊥
∫

d2r⊥eiq⊥·r⊥ϕ(r⊥,z � Lcorr) (73)

(in the second line we have used that ∇⊥ϕ(r,z → −∞) =
∇⊥1 = 0, ϕ′∗(r,z → +∞) = 1). By the Huygens principle
(see, e.g. [18]), the latter integral equals to the elastic scattering
amplitude, if normalized as in Eq. (10). So,

I⊥ →
qzLcorr�1

q⊥Adiffr
scat (q⊥), (74)

offering a consistency check for the replacement rule (72).
To obtain the spin-averaged probability corresponding to

the generalized matrix element (71), one needs no dedicated
calculation. Obviously, it is a bilinear form in I⊥, which can
be retrieved from the factorized bilinear form by replacement
dσ diffr

scat q⊥mq⊥n → d2q⊥
(2π)2 I⊥mI⊥n. Thereat, the basic averages for

our quadratic form promote from (57a) and (57b) to

1

S

〈∫
dσ diffr

scat q2
⊥

〉
→

qzLcorr∼1

1

S

〈∫
d2q⊥
(2π )2

|I⊥|2
〉
, (75a)

1

S

〈∫
dσ diffr

scat (2q⊥mq⊥n − q2
⊥δmn)

〉

→
qzLcorr∼1

1

S

〈∫
d2q⊥
(2π )2

(2I⊥mI⊥n − δmnI
2
⊥)

〉
. (75b)

The factor 1/S in the right-hand sides may be explicitly
canceled if ϕ (but not ϕ′) is substituted by an integral-
normalized wave packet in transverse coordinates.

For the modified averages (75a) and (75b) we introduce
same shorthands as (57a) and (57b) but with the subscript
“rad”:

1

S

〈∫
d2q⊥
(2π )2

|I⊥|2
〉

≡ 〈q2
⊥〉rad,

1

S

〈∫
d2q⊥
(2π )2

(2I⊥mI⊥n − δmnI
2
⊥)

〉
≡ 〈2q⊥mq⊥n − q2

⊥δmn〉rad.

For expression of the anisotropy parameter, Eqs. (58) and (59)
remain valid, only with the replacement 〈q2

⊥〉 → 〈q2
⊥〉rad:

〈2q⊥mq⊥n − q2
⊥δmn〉rad

〈q2
⊥〉rad

= 2NmNn − N2δmn, (76)

N2 =
〈
q2

y

〉
rad

− 〈
q2

x

〉
rad〈

q2
y

〉
rad

+ 〈
q2

x

〉
rad

. (77)

IV. THE CASE OF AZIMUTHALLY ANISOTROPIC
SCATTERING AT ELECTRON PASSAGE THROUGH

AN ORIENTED CRYSTAL

Among conceivable applications of the connection between
the target intrinsic anisotropy and the radiation polarization
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is the possibility of preparation of a polarized photon beam.
For reliability of the polarization asymmetry measurements,
the beam polarization degree must be high enough, at least a
few tens percent, and, hence, N2 must be about as high. It is
not, however, obvious whether that sizable N2 can be attained
with macroscopic targets. As we had mentioned in Sec. I,
the main obstacle thereto is the hard isotropic contribution in
scattering. When treating the interaction with an individual
atom as perturbative, in (56) in the integral over q⊥, or in an
equivalent integral over impact parameters, the contribution
from the atomic distance scale ∼ra is comparable to that from
the distances from the nucleus of the order ∼m−1, where the
impact area is smaller but the acting force, and the generated
radiation, is stronger. That familiarly leads to a logarithmic
divergence of the integral over d2q⊥ from dσrad

d2q⊥
= dσscat

d2q⊥
dWrad,

with dWrad ∝ q2
⊥ and dσscat

d2q⊥
∼

q⊥�r−1
a

q−4
⊥ (Rutherford “tail”).

Introducing appropriate cutoffs (the upper one due to the dipole
approximation failure at q⊥ ∼ m, and the lower one due to the
atomic form-factor regulation), one gets with the logarithmic
accuracy:

∫
d2q⊥q2

⊥
1

q4
⊥

= π

∫ q⊥max=m

q⊥min=r−1
a

dq⊥
q⊥

= π ln mra ≈ π ln
1

α
.

(78)

Since in vicinities of the nuclei the scattering is isotropic, the
anisotropy parameter N2 gets suppressed at least by a factor
of ln 1

α
≈ 5.

A remedy to the encountered suppression could be sought
in utilizing oriented crystals. Once one aligns some strong
crystallographic axis under a small angle χ0 � 1 relative to
the electron incidence direction (see Fig. 5), the isotropy may
persist only up to the distance of transverse separation of
atomic nuclei in the string, �r⊥ ∼ daχ0, where da > 2ra is
the distance between atomic nuclei in the row, while from
scale �r⊥ up to ra the scattering should become anisotropic
(stronger in the direction transverse to the beam-string plane).
At a scale greater than χ0da, the cross section will no longer be
a sum of logarithmic cross sections of scattering on individual
atoms, but, rather, the motion will be governed by the aggregate
potential of the atoms. The number of atoms overlapping at
a given impact parameter is ∼ ra

χ0da
, and this is the factor the

cross section must increase by, whilst Coulombic logarithms
become insignificant in this region.

p

ra z

1
2

x

χ0

da

FIG. 5. Electron small-angle passage through an atomic row.
Momentum transfers in the y direction (transverse to the picture)
are enhanced compared to those in the x direction.

A. Electron interaction with a single atomic string

To verify our conjecture about the anisotropy enhancement
in electron-string interaction, yet to get an idea of the
longitudinal coherence sensitivity, consider first a problem of
electron radiation at scattering on a single atomic row under
a small angle of incidence. In the capacity of initial and final
state wave functions in the atomic row potential V (r), take
for simplicity the eikonal approximation (corresponding to
the neglect in Eq. (66) of the right-hand sides, as well as the
neglect of the angle between v and v′): 79

ϕ(r) ≈ e−i
∫ z

−∞ dz′V (z′,r⊥), (79a)

ϕ′∗(r) ≈ e−i
∫ ∞
z

dz′V (z′,r⊥), (79b)

ϕ′∗(r)ϕ(r) = eiχ0(r⊥), χ0(r⊥) = −
∫ ∞

−∞
dzV (z′,r⊥). (80)

Here χ0(r⊥) is commonly called the eikonal phase.
Substituting (79) into (70), one obtains [10]

I⊥ = −iqz

∫
d3reiq·r+iχ0(r⊥)∇⊥

∫ z

−∞
dz′V (z′,r⊥)

=
∫

d2r⊥eiq⊥·r⊥+iχ0(r⊥)∇⊥
∫ ∞

−∞
dzeiqzzV (z,r⊥) (81)

(the second equality results after integration by parts over z).
The integrals of |Ix(q⊥)|2, |Iy(q⊥)|2 engaged in definition of
N2 evaluate in a particularly simple form:

∫
d2q⊥|Ix,y |2 = (2π )2

∫
d2r⊥

∣∣∣∣∇x,y

∫ ∞

−∞
dzeiqzzV

∣∣∣∣
2

=
∫

d2q⊥q2
x,y

∣∣∣∣
∫

d3reiq·rV (r)

∣∣∣∣
2

, (82)

that is, the eikonal phase actually does not contribute to
the given integral, and the result is equivalent to the Born
approximation.

To proceed, we have to specify potential of an atomic row.
Let us, for simplicity, model it by a superposition of individual
screened Coulombic potentials. For a row ofN identical atoms
with nucleus charge Z, lined up in the xz plane at an angle
χ0 � 1 to the z axis,

Vrow(r) = Zα

N−1∑
n=0

e− y2+(x−χ0dan)2+(z−dan)2

ra√
y2 + (x − χ0dan)2 + (z − dan)2

. (83)

Fourier transform thereof results as

∫
d3reiq·rVrow(r) = 4πZα

q2
⊥ + r−2

a

N−1∑
n=0

ei(qz+χ0qx )dan

= 4πZα

q2
⊥ + r−2

a
ei(qz+χ0qx )da(N−1)/2

× sin (qz+χ0qx )daN
2

sin (qz+χ0qx )da

2

,

where in the first denominator term q2
z has been neglected

compared to r−2
a . When squaring (83), the sine ratio factor
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in a familiar way may be approximated by a sequence of
equidistant δ functions:

sin2 (qz+χ0qx )daN
2

sin2 (qz+χ0qx )da

2

≈
N�1

πN
∞∑

j=−∞
δ

(
(qz + χ0qx)da

2
− πj

)

= 2πN
χ0da

∞∑
j=−∞

δ

(
qx − 2πj

χ0da
+ qz

χ0

)
,

that is, qx integration reduces to summation over one-
dimensional inverse lattice vectors. As for qy integration, it
involves two basic integrals:∫ ∞

−∞

dqy(
q2

y + q2
x + r−2

a
)2 = π

2
(
q2

x + r−2
a

)3/2 (84a)

for
∫

d2q⊥|Ix |2, and∫ ∞

−∞

dqyq
2
y(

q2
y + q2

x + r−2
a

)2 = π

2
√

q2
x + r−2

a

(84b)

for
∫

d2q⊥|Iy |2. In the final result, it is convenient to treat
in the sum the term j = 0 separately. It has the meaning of
contribution from “continuous” potential, constant along the
string. In the higher terms one may neglect r−2

a relative to
( 2π
χ0da

)2. Thereby one obtains:

1

πN (4πZα)2

∫
d2q⊥|Iy |2 = π

χ0da

√
q2

z

χ2
0

+ r−2
a

+
jmax∑
j=1

1

j
,

(85a)

1

πN (4πZα)2

∫
d2q⊥|Ix |2 = πq2

z

χ3
0 da

(
q2

z

χ2
0

+ r−2
a

)3/2 +
jmax∑
j=1

1

j
.

(85b)

The summation upper limit jmax is determined by the same
principle as that of integration in (78)—it is set at qx ∼ m, so

jmax = jmax(χ0) ∼ χ0da

2π
m ∼ 20χ0,

jmax(χ0)∑
j=1

1

j
≈ max{1, ln[eCE jmax(χ0)]} def= L0(χ0).

For scattering on a single string at zero temperature, no
additional averaging over string ensembles is required, so
substitution of (85a) and (85b) to (77) gives the result for
the azimuthal anisotropy parameter:

N2 = 1

1 + 2 q2
z r2

a

χ2
0

+ 2
π

(
1 + q2

z r2
a

χ2
0

)3/2
χ0da

ra
L0(χ0)

(86)

[we remember that qz (ω,�) is defined by Eq. (24)].
Based on the above explicit formula, let us now assess the

effects of scattering on individual nuclei and of the longitudinal

coherence sensitivity. In the denominator of (86), terms q2
z r2

a

χ2
0

reflect the effect of longitudinal coherence sensitivity on the
anisotropy of radiation distribution. Apparently, the increase of
qz through ω always suppresses the anisotropy. The last term,
containing L0, accounts for effects of the string discreteness,

which are also suppressing the anisotropy. But due to the
factor χ0da

ra
(inverse coherence enhancement factor), this effect

weakens as χ0 decreases, and even at angles as large as

χ0 ∼ 0.2rad ∼ 10◦, L0(χ0) � 2, (87)

one has N2 ∼ 0.5, provided qzra

χ0
< 1

2 . In fact, at impact angles
(87), and qz ∼ xωm/γ , the ratio qzra

χ0
∼ xω

2αγχ0
quantifying the

longitudinal coherence effect on the anisotropy, will be small
provided

γ � xω

αχ0
∼ 103xω. N ≈ N (qz → 0) = const. (88)

In this case, N ≈ N (qz → 0) = const can be regarded as
independent of qz, and therefore of the emitted photon
momentum.

From the estimate (87) one can further infer the sufficient
crystal quality, the crystal orientation precision, and the beam
collimation degree; we will not discuss these items in detail
herein.

B. Multiple scattering on atomic strings

To be realistic, at electron passage through a real oriented
crystal, interaction with one string is not the whole story but
only an elementary act. Multiple interactions can affect the
distribution function in scattering angles, and yet, in case
of periodical string hitting, modify the radiation spectrum
through the periodic structure form factor.

For successive scattering on atomic rows with nearly
continuous string potentials, the modulus of the angle be-
tween the row and the electron motion direction is actually
approximately conserved (transverse energy conservation).
Hence, in multiple scattering on mutually parallel strings the
electron momentum will diffuse over a cone with the axis
along the string direction (“doughnut” scattering [19]), and
for a sufficiently thick target the scattering must isotropize.
To keep the scattering azimuthal anisotropy significant, one
should not permit the electron passage to such late a stage.
The allowable target thickness L is estimated by assuming
that at this distance the electron interacts with L

χ0

da
strings,

scattering on each one through a small angle

χ1 ∼ F0

E

ra

χ0
= 2V0

Eχ0
,

whence the change of the azimuth χ1

χ0
needs be �1, too, to

maintain the azimuthal anisotropy. Then, the mean square of
the scattering azimuthal angle on a sequence of (statistically

independent) strings, L
χ0

da

χ2
1

χ2
0
, is required to be less than unity.

So, the condition for the target thickness ensues as

L < Lisotr ∼ da
χ0

χ2
1

∼ da
E2χ3

0

4V 2
0

∼ da

4α4
χ3

0 γ 2

(
m

V0
∼ 1

α2

)
,

(89)

where da
4α4 ∼ 1–2 cm. At γ satisfying (88), with χ0 of the order

of (87), the effect of doughnut isotropization is weak.
On the other hand, if strings are encountered along the

particle path periodically (“string of strings” radiation [19],
similar to coherent bremsstrahlung [6]), then even at qzra

χ0
< 1

2
one can still have qzds

χ0
∼ 1, with ds the distance between the
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strings. Then, coherence effects in radiation may develop on a
larger spatial scale. If the period of string sequence is equal to
the photon formation length (5) at some ω, θ , then the spectrum
contains a resonant radiation peak at this frequency. Within
the peak, the value of qz, as well as of q⊥, may be regarded
as certain (the “point effect” in coherent bremsstrahlung [6]).
Then, the azimuthal asymmetry degree, again, would approach
unity, minus corrections on thermal atom oscillations, lattice
defects, etc.

To conclude this section, let us remark that physically
interesting examples of media with nonzero N2, of course, are
not restricted to string-like configurations described above.
There are many other configurations (textured polycrystals,
bent crystals [20], polarized nonspherical nuclei, etc.), which
even if not particularly convenient for polarized photon beam
production, are physically interesting by themselves. Such
systems allow diagnostics by the (polarized) bremsstrahlung.
The radiation polarization properties for such systems must
be qualitatively similar, since they are characterized by
the aggregate vector N only. Analysis of these properties
depending on the parameter N , as it assumes intermediate
values 0 < N < 1, is carried out in the next section.

V. BREMSSTRAHLUNG POLARIZATION OBSERVABLES

In general, function N(ω,�) is model dependent, and
models, in principle, may vary. To derive model-independent
conclusions, let us for the rest of this paper assume N to be
a constant [see condition (88)], though arbitrary, parameter.
Therewith, we will investigate the influence of N on the
radiation intensity and on polarization, both in the integral
photon beam and in the detail of angular distribution.

Upon replacement in (61) 〈q2
⊥〉 → 〈q2

⊥〉rad, the radiation
intensity differential distribution reads

xω

〈
dWdip

dxωd2�

〉

= α

4π2

〈q2
⊥〉rad

m2(1 + �2)2

{
2(1 − xω)

×[(Gime′
i)

2(1 − N2) + 2(GimNme′
i)

2] + x2
ω

}
. (90)

To separate the unpolarized part and the polarization, one needs
to split the dependence of Eq. (61) on e′ into the isotropic and
the quadrupole parts, writing

(Gime′
i)

2 = 1 − 4(� · e′)2

(1 + �2)2

≡ 1 + �4 + 2(�2δij − 2�i�j )e′
ie

′
j

(1 + �2)2
,

and

2(GimNme′
i)

2 ≡ (GlmNm)2 + [2GimNmGjnNn

− (GlmNm)2δij ]e′
ie

′
j ,

where

(GlmNm)2 = N2 − 4(N · �)2

(1 + �2)2
.

As a result, we bring Eq. (90) to the form

xω

〈
dWdip

dxωd2�

〉
= 1

2
xω

〈
dWunpol

dxωd2�

〉
+ α

4π2

〈q2
⊥〉rad

m2(1 + �2)2

× 2(1 − xω)

x2
ω

(2Tij − T δij )e′
ie

′
j , (91)

with tensor Tij emerging as

Tij = −2(1 − N2)

(1 + �2)2
�i�j + GimNmGjnNn, (92)

T its trace,

T = Tii = −2(1 − N2)�2

(1 + �2)2
+ (GlmNm)2, (93)

and the unpolarized part of Eq. (91) [equal to Eq. (90) summed
up over the independent polarization states e′

n]

xω

〈
dWunpol

dxωd2�

〉

= xω

∑
e′

〈
dWdip

dxωd2�

〉
= α

2π2

〈q2
⊥〉rad

m2(1 + �2)2

×
{

2(1 − xω)
1 + �4 + 2[N2�2 − 2(N · �)2]

(1 + �2)2
+ x2

ω

}
.

(94)

A. Spectrum and net polarization of the integral
radiation cone

If angular resolution of the emitted radiation is not pursued
in the experiment (which may become impractical at γ >

104), and only the natural collimation due to emission from
an ultrarelativistic particle is utilized, one must integrate
Eq. (91) over the small radiation angles (i.e., a � plane). The
angular integrations are carried out with the aid of the basic
integrals ∫

dφ�

2π
�i�j = 1

2
δij�

2, (95)∫
dφ�

2π
�i�j�l�m = 1

8
(δij δlm + δilδjm + δimδjl)�

4,∫ ∞

0

d�2(�2)m

(1 + �2)2+n
= m!(n − m)!

(n + 1)!
. (96)

The result is

xω

〈
dWdip

dxω

〉

= 1

2

∫
d�2 dφ�

2π
xω

〈
dWdip

dxωd2�

〉

= α〈q2
⊥〉rad

4πm2

{
2

3
(1 − xω)[2 + 2(N · e′)2 − N2] + x2

ω

}
.

(97)
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1 3 2 3 1
xω

1

3 4
2 3

1 2 Pnet N2

JBH xω JBH 0

FIG. 6. (Dashed curve) Bethe-Heitler spectral distribution of
bremsstrahlung energy [Eq. (98a)], normalized to its value at
xω = 0. (Oblique dashed line) The polarized fraction of the radiation
spectrum divided by N2, for the case of constant N . (Solid curve)
Net polarization of the photon beam [Eq. (99b)] divided by N 2.
Polarization orientation is ‖ N .

The unpolarized, Bethe-Heitler’s spectral intensity [which
otherwise might be obtained by integrating Eq. (94)]
ensues

JBH (xω) = xω

〈
dWunpol

dxω

〉
= xω

∑
e′

〈
dWdip

dxω

〉

= α〈q2
⊥〉rad

2πm2

{
4

3
(1 − xω) + x2

ω

}
(98a)

≡ α〈q2
⊥〉rad

2πm2

E′

E

(
E′

E
+ E

E′ − 2

3

)
(98b)

(see Fig. 6, upper dashed curve). Therein, the dependence
on N completely drops out—quite naturally, recalling that N
is representative of the quadrupole dependence on q⊥, while
after integration over � it can only be contracted with the
quadrupole tensor dependence on e′ [as Eq. (97) indicates],
but after summation over e′ all that averages to zero. The
integral of the xω-dependent expression in Eq. (98a) is unity:∫ 1

0
dxω

{
4

3
(1 − xω) + x2

ω

}
= 1.

Finally, the polarization deduced from Eq. (97) is directed
parallel to N ,

t+ ‖ N, (99a)
and its degree equals

Pnet = N2

2

1

1 + 3x2
ω

4(1−xω)

. (99b)

The semiclassical limit (xω → 0) of (99b) at N = 1 agrees
with the polarization 1

2 of dipole radiation from a classical
charged particle in a planar undulator [10]. The xω-dependent
factor describes the polarization suppression due to the photon
recoil. The function Pnet/N

2 is shown in Fig. 6 by the solid
curve.

The practical value of the nonzero net polarization is that
once there is a target with sizable N2/2, it may serve for
obtaining a polarized gamma-ray beam without the need for
narrow collimation and particular target thinness. The common
known drawback of incoherent bremsstrahlung radiation is
its continuous spectrum, but that may be overcome by
measurement of the energies of all final products of the induced
reactions.

2 1 0 1 2 3

x

2

1

0

1

2

3

y N

FIG. 7. Logarithm of the unpolarized differential cross section,
as a function of � (radiation angles in units γ −1), at N independent
of �, for N 2 = 1

2 , xω = 1
3 .

Vice versa, measurement of the net polarization may be
used as a technique for empirical determination of N for a
given target. If one’s aim is to obtain a polarized photon beam,
this will be equivalent to the source calibration in situ.

B. Angular distributions

1. Unpolarized intensity

Inspection of Eq. (94) reveals that the azimuthal anisotropy
embodied by the quadrupole dependence on the angle φ�

between � and N ,

N2�2 − 2(N · �)2 = −N2�2 cos 2φ�,

is sizable only when N2 ∼ 1, and only at angles � ∼ 1.
At � � 1, or � � 1, the unpolarized radiation differential
intensity isotropizes and becomes independent of N2 at all
[however, the polarization will be neither isotropic, nor small
there; see Eq. (108) following]. The distribution of unpolarized
intensity (94) in the � plane, for constant N , at exemplary
values N2 = 1

2 and xω = 1
3 , is illustrated in Fig. 7. As

compared with Fig. 2, no dips are left at N2 that small (and
xω that large), but there still remains a noticeable azimuthal
anisotropy, the radiation intensity being enhanced in a “bar”
orthogonal to N , because dipole radiation intensity is known
to be largest in directions orthogonal to that of the acceleration
(the much greater deflection due to the transverse recoil from
the photon emission proves to be of no consequence there). In
contrast, electron multiple scattering diffusion in the sample
will be fastest in the direction parallel to N .

If the resolution of radiation angles is feasible in the ex-
periment, measurement of the radiation azimuthal anisotropy
(say, at � ≈ 1) may offer a method for determination of
parameter N for a given target. Other methods are based
on polarization measurements, needing no electron detection.
We now proceed with discussion of the polarization angular
distribution.
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2. Polarization

As long as the linear polarization is a vector quantity, to
handle it practically, it is best to know its absolute magnitude
(degree) and the direction. However, those variables are not
in a linear relation to the calculated differential probability,
which, after momentum averaging in matter, turns to a generic
kind of tensor in e′ [see Eq. (90)]. This may prompt one to
deal with polarization asymmetries in some fixed coordinate
frame, such as Stokes parameters. But actually, in two
transverse dimensions expressing the polarization direction
explicitly is not difficult at all, involving at the most quadratic
equations.

From Eq. (91), the polarization degree is extracted as an
asymmetry

P(�,xω; N)
def=

max
e′

〈
dWdip

d�k

〉
− min

e′

〈
dWdip

d�k

〉
max

e′

〈
dWdip

d�k

〉
+ min

e′

〈
dWdip

d�k

〉

= α

2π2

〈q2
⊥〉rad(1 − xω)

m2(1 + �2)2

2λ+[Tij ]

xω

〈
dWunpol

dxωd2�

〉
= λ+[Tij ]

x2
ω

2(1−xω) + 1+�4+2[N2�2−2(N·�)2]
(1+�2)2

, (100)

where λ+[Tij ] is the positive eigenvalue of tensor (2Tij −
T δij ). In terms of the latter, λ+ may be expressed as

λ+ =
√

1

2
(2Tij − T δij )(2Tij − T δij ) ≡

√
2TijTij − T 2.

(101)

In our case (92), tensor Tij is formed by two vectors:

Tij = aiaj − bibj , (102)

with

ai = GimNm, bi =
√

2(1 − N2)

1 + �2
�i, (103)

which are not mutually orthogonal in general. Substituting
Eq. (102) to Eq. (101), one straightforwardly evaluates:

λ+ =
√

(a2 − b2)2 + 4[a,b]2 (104a)

≡ |a − b||a + b|. (104b)

Eigenvectors of a tensor of the form (102) can be expressed
covariantly in terms of the vectors a, b:

t± ‖ 2(a · b)a − (a2 + b2)b ± λ+b, (105a)

‖ 2(a · b)b − (a2 + b2)a ∓ λ+a, (105b)

t+ ⊥ t−. (105c)

The coefficients at a, b in (105a) and (105b) are found by
solving a system of two linear equations.

Substitution of (103) into Eqs. (104a) and (105a) leads to
representations:

λ+ =
√[

N2 − 4(N · �)2 + 2(1 − N2)�2

(1 + �2)2

]2

+ 8(1 − N2)[�,N]2

(1 + �2)2
, (106)

t± ‖ 2
1 − �2

1 + �2
(N · �)N +

[
2[2(N · �)2 + N2 − 1]�2

(1 + �2)2
− N2 ± λ+

]
�. (107)

One may note that at � � 1/N the polarization picture
simplifies, tending to

P → N2Pmax(xω), t+ ‖ N − 2(N · �)

�2
�. (� � 1/N )

(108)

So, the polarization distribution shape in this region is the
same as in the extremely anisotropic case |N| = 1, or for
nonaveraged xω

dWrad
dxωd2�

at a definite q⊥ (see Sec. II, Fig. 3),

except that the polarization degree is ∝ N2. However, in
practice, since N decreases with increasing � [according to
Eq. (86), N ∼

�→∞
�−2], at sufficiently large � isotropy must

set in. We refrain from studying the transition to this regime
insofar as it is model and process dependent.

The complete polarization picture (the polarization degree
and direction) is shown in Fig. 8. It appears to have a
richer structure than the corresponding unpolarized intensity
in Fig. 7. A novel feature at N < 1 is that the knot points

(39) split, admitting the “polarization flow” into the gaps.
Polarization zero positions now can be found from setting
P, or λ+ as given by Eq. (106), equal to zero. That yields

�> = ± N
N2

√
1 +

√
1 − N4, (109)

�< = ± N
N2

√
1 −

√
1 − N4. (110)

The mean geometric value of distances to these points from
the origin equals 1:

√
�>�< = 1. (111)

This can be traced to the fact that on the sphere of radiation
directions in the initial electron rest frame those points are
located symmetrically relative to plane z = 0, and upon the
stereographic projection they become conjugate with respect
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FIG. 8. Angular distribution of the polarization degree (density
plot) and orientation (black curves) at N independent of �, for N2 =
1
2 , xω = 1

3 . For principal profiles of this distribution see Figs. 9(a)
and 9(b), middle curves. The direction of N is vertical. At |�| → ∞
polarization degree tends to a constant value N2. The unpolarized
radiation intensity for the same parameters is displayed in Fig. 7.

to the unit circle (see Sec. II D, Theorem 1), whereas the gap
width,

�> − �< =
√

2
√

1 − N2

N
, (112)

exhibits “threshold behavior” as N departs from 1. However,
now the points of zero polarization do not correspond to any
dips in the radiation intensity (cf. Fig. 7).

Determination of the bremsstrahlung polarization zeros
may serve as another calibration method for the parameter N .
The virtue of this method is that it does not require absolute
measurements of intensity, but of the angles only. When N is
small, it is convenient to measure it through measurement of
�<, which is �< ∼ N , in contrast to Pnet ∼ N2. Vice versa,
when N2 is close to 1 (say, in coherent bremsstrahlung),
it is convenient to measure (112) due to the square-root
dependence.

The analytic form of the polarization tangential curves in the
generic case is complicated (though stereographic projection
can offer some simplifications), and we do not contemplate
determining it here. At least, at � = 1 it is apparent that t− ‖
�, hence, t+ ⊥ � (i.e.,5 polarization direction is steered along
the unit circle, anyway).

To gain more quantitative understanding of the profile of
polarization distribution, it is instructive to examine its two
principal profiles: � ‖ N and � ⊥ N . In those cases, a ‖ b,
or a ⊥ b, whereby Eqs. (106) and (107) substantially simplify.

5For the “+” sign, the right-hand side of (107) vanishes, giving
indeterminancy for t+. Fortunately, for t− such a problem does not
arise.
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(b)

(c)
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FIG. 9. (a) Polarization degree at � ‖ N for N independent of ω,
�, having magnitude N2 = 1

2 , and for photon energy fractions xω =
0, 1

3 , and 2
3 (top to bottom). Orientation of the polarization depends

on the interval; see Eq. (114). (b) Same as (a), except that profile
� ⊥ N is shown. Polarization orientation is ‖ N . (c) Polarization of
bremsstrahlung on an isotropic target (N = 0) for same values of xω.

(i) If � ‖ N ,

λ+ =
∣∣∣∣N2 − 2�2(1 + N2)

(1 + �2)2

∣∣∣∣ , (113)

and the polarization direction is: 114

t+ ‖ N if either |�| < �<, or |�| > �>, (114a)

t+ ⊥ N in the interval �< < |�| < �>. (114b)

Equation (114a) is inferred from Eq. (107) with the upper
sign, and Eq. (114b) from Eq. (107) with the lower sign. The
polarization degree (100) through (113) reduces to

P = |N2(1 + �4) − 2�2|
1 + �4 − 2N2�2 + x2

ω

2(1−xω) (1 + �2)2
. (115)
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This function is displayed in Fig. 9(a). It drops to zero at
� = �+<,�+>, has maxima at � = 0 and � = ∞, where it
achieves the same values

P(� = 0) = P(� = ∞) = N2Pmax(xω) = 2N2 (1 − xω)

1 + (1 − xω)2 ,

(116)

and a maximum at �2 = 1, where

P(� = ±N/|N|) = 1

1 + x2
ω

(1−xω)(1−N2)

. (117)

(ii) In the case of the orthogonal profile � ⊥ N ,

t+ ⊥ t− ‖ �,

(inferred from Eq. (107) with the lower sign), Eq. (106) turns
to

λ+ = N2 + (1 − N2)
2�2

(1 + �2)2
,

and so polarization degree (100) becomes

P = N2(1 + �4) + 2�2

1 + �4 + 2N2�2 + x2
ω

2(1−xω) (1 + �2)2
, (118)

shown in Fig. 9(b). It reaches a maximum at �2 = 1, where

Pmax(xω,N2) = 1

1 + x2
ω

(1−xω)(1+N2)

� Pmax(xω,1) ≡ Pmax(xω). (119)

[As Fig. 8 indicates, and can be proven based on Eqs. (100)
and (106), this is the absolute maximum for all �.] At � = 0
and ∞, polarization is minimal with the value N2Pmax(xω).

There is a feature already mentioned in Sec. II D, that at
� = 1 the polarization is capable of achieving 1, in spite of
the fact that we are summing portions of completely polarized
light, but with different polarization orientations [vector Gq̂⊥
with G given by Eq. (28), generally, rotates along with q̂⊥].
This is explained by recalling the pattern of polarization
alignment at a given q̂⊥ (Fig. 3): Since at � = 1 polarization
is oriented along a perfect circle centered at the origin of the
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FIG. 10. (Color online) Log-log plot of the dipole bremsstrahlung
angular distribution for an intrinsically isotropic target. Lower (red)
curve, semiclassical limit JBH(0,�)/JBH(0,0). Upper (blue) curve,
hard limit JBH(1,�)/JBH(1,0), equal to the differential intensity
prefactor 1/(1 + �2)2. The soft radiation angular distribution exhibits
two “knees”, at � ≈ 1

2 and � ≈ 2 whereas the hard radiation only
has one, at � ≈ 1.

plane, and that circle translates into itself under the rotations
of q̂⊥ corresponding to azimuthal averaging, the absolute
polarization at this special angle is unaffected by the scattering
isotropization.

To conclude this subsection, note that the spots of high and
directionally stable polarization at (�x,�y) ≈ (±1,0) are also
utilizable for extraction of a polarized photon beam by the
radiation collimation technology. However, with a collimation
facility at one’s disposal, one can obtain a polarized photon
beam on an isotropic target as well [see the next subsection
(and [21])]. One should mind also that at � ≈ 1 the radiation
intensity is by an order of magnitude lower than at � ≈ 0 (see
Fig. 10). On the other hand, the region � ≈ 0 is polarized, too,
though 2/N2 times weaker. But the latter drawback may be
compensated by an order-of-magnitude higher intensity. Thus,
for extraction of a polarized photon beam one may crop out an
angular strip at |�y | <∼ 0.7.

3. Isotropic target (N = 0)

Since most substances of natural origin are fairly isotropic
on macroscales, all early studies of bremsstrahlung presumed
the scattering isotropy. The results of classic works [22] are
readily reproduced from our generic equations.

Setting in our Eq. (61) N = 0, one reproduces the equation
for the polarization-dependent differential cross section of
bremsstrahlung in an isotropic medium obtained by May and
Wick [22]. To obtain separately the corresponding unpolarized
differential cross section and polarization, it suffices to let
N = 0 in our Eqs. (94), (106), and (107):

JBH (xω,�)

= xω

〈
dWisotr

dxωd2�

〉
= xω

〈
dWunpol

dxωd2�

〉 ∣∣∣∣
N=0

= α

2π2

〈q2
⊥〉rad

m2(1 + �2)2

{
2(1 − xω)

1 + �4

(1 + �2)2
+ x2

ω

}
, (120)

Pisotr(�,xω) = P(�,xω)|N=0

= 2�2

1 + �4 + x2
ω

2(1−xω) (1 + �2)2
. (121)

t+ ⊥ �. (122)

Equation (120) may be regarded as Bethe-Heitler’s radia-
tion intensity angular distribution in the leading logarithmic
approximation (the logarithmic factor being contained in
〈q2

⊥〉rad). Relation (122) is the observation of May and Wick
[22]. Its interpretation is that dipole emissivity dominates in
directions orthogonal to that of the acceleration i.e., the sample
of events containing a photon at an angle � is biased toward
momentum transfers in matter orthogonal to �; these events
are then likely to contain photon polarization collinear with q,
and thus perpendicular to �.

Concerning the previously mentioned angular distribution
shapes, we may add two remarks.

a. “Double knee” in the angular distribution of soft
radiation. The function

1 + �4

(1 + �2)2
≡ 1 − 2�2

(1 + �2)2
, (123)
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determining at small xω the right-hand side of Eq. (120),
has a minimum at � = 1 (precisely where the dips in the
nonaveraged dWdip/d�k are located; see Fig. 2). However,
function JBH (0,�), in fact, does not develop any minimum or
shoulder about this point, because it involves yet a prefactor
1/(1 + �2)2 decreasing steeper than (123) rises after its
minimum. Nonetheless, some imprint of function (123)
remains in behavior of the Bethe-Heitler radiation angular
distribution. To demonstrate that, let us plot logarithm of
JBH (0,�) versus the logarithm of � [case xω ≈ 0 is taken
to enhance the relative contribution of (123)]. In such kind
of a plot, any power-law dependence is represented by a
straight line. As compared with the behavior of the prefactor
1/(1 + �2)2, which has on this plot only one “knee” at � ≈ 1,
JBH(0,�) apparently has two “knees”—at about �1 ≈ 0.5 and
at �2 ≈ 2. In between those two “knees” the behavior is close
to ∼ �−2. Beyond �2, the falloff power turns to ∼ �−4, as is
required by the quasi-Rutherford law mentioned in Sec. II C.
This two-knee shape of the radiation angular distribution may
be worth minding at poor statistics measurements, since at
the second knee the differential cross section is already down
by a factor of nearly 10−2. But as xω grows, the distribution
approaches the one-knee limiting form.

b. Polarization maximum and its nondipole suppression.
For what concerns polarization [shown in Fig. 9(c)], again, the
prominent feature is that it reaches 100% at xω � 1, � = 1,
for the reasons already explained (but the example at N = 0
is just the most spectacular). However, with the account of
nondipole effects (see, e.g. [23]), polarization in the region
� ≈ 1 must deplete, because, at a definite though large q̂⊥ the
polarization tangential curves are still circles, but their centers
are shifted by a vector q⊥

2m
, and none of them coincides with

the origin anymore.

VI. SUMMARY

The present study suggests that there must exist macro-
scopic targets, on which relativistic electron scattering, and,
hence, the accompanying forward radiation, possesses a high
degree of azimuthal anisotropy. Suitable examples are single
crystals oriented by one of their strong crystallographic
axes at moderately small orientation angles ∼10−1 ÷ 10−2rad
with respect to the electron beam direction. The azimuthal
anisotropy of the scattering is quantified by parameter N
introduced in Sec. III. As we have investigated, the azimuthal
anisotropy is partially spoiled by nuclei vicinities and by
the radiation recoil [see Eq. (86)], but nonetheless, values
N2 >∼ 0.5 look realistic.

A straightforward application of polarized bremsstrahlung
is for preparation of polarized photon beams (of continuous
spectrum). Actually, there is a number of options for extracting
polarized photons from the bremsstrahlung flux:

(i) If only intrinsically isotropic targets are at one’s disposal,
there is no alternative to the traditional method [21] of
collimating the bremsstrahlung photon flux around the angle
� = 1 (i.e., θ = 1 · γ −1).

(ii) If the use of absorber collimators is prohibitive due to
the radiation angle smallness, as it tends to be at γ > 104,
one needs an intrinsically anisotropic target, the aggregate
(naturally narrow) cone of photons emitted on which is
polarized. But its polarization degree, according to Eq. (99b),
is � N2/2, with N2 < 1. For efficiency of such a polarized
beam, it is desirable to have N2 at least ∼0.7 ÷ 0.8.

(iii) Ultimately, if both a collimation tool and an intrinsi-
cally anisotropic target are available, one may either look for
the highest polarization degree, by isolating one of the two
spots of enhanced polarization (see Fig. 8). Or, if a moderate
polarization degree is acceptable provided the beam intensity
is high, there is an option of collimating out the strip of
angles perpendicular to N , in between of the polarization
zeros.

Another application of polarized bremsstrahlung from
relativistic electrons is for measuring intrinsic anisotropy of the
medium in which the electrons are moving. Such a diagnostics
may be useful during various experiments on relativistic
electron interaction with crystal-based targets. Obviously, the
radiation leaving the target without much rescattering is better
suited for detection than the emitting electrons themselves.
Again, for measurement of N by the bremsstrahlung yield one
can employ a number of techniques:

(i) If the radiation angles cannot be resolved, one has to
measure Pnet ∝ N2

2 [Eq. (99b); Fig. 6].
(ii) If the radiation angles are resolvable, one can estimate

N by the bremsstrahlung intensity azimuthal anisotropy, not
employing the polarization detection [Eq. (94); Fig. 7].

(iii) For the finest measurement of N , particularly under
conditions when it is close to 0 or 1, one can use the method of
finding polarization zero locations in the angular distribution
(Fig. 8). For N small, it is convenient to measure �< (since
it is linear in N ), whereas for N → 1, to measure the gap
�> − �<, which is ∼√

1 − N2 (see Sec. V B 2).
In conclusion, let us draw attention to a useful me-

thodic notion—the stereographic projection relation between
the laboratory frame and the initial electron rest frame
(Sec. II D). It helps reveal various symmetry properties
of the relativistic particle bremsstrahlung angular distribu-
tions, and may facilitate the calculation of bremsstrahlung
characteristics in some cases. It must also survive in the
nondipole bremsstrahlung case, which we hope to investigate
elsewhere.
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