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Bremsstrahlung including the polarization correlations is revisited by presenting a theoretical model which is
suited for the short-wavelength limit. The fast incoming electron is described by a Sommerfeld-Maue function,
whereas for the outgoing electron an exact Dirac function is used. The cross section for electrons radiatively
scattered from gold is calculated in the impact energy range 0.2–10 MeV and is compared to results from the
Elwert-Haug theory and to available experimental data and relativistic partial-wave calculations. As an ultrarel-
ativistic benchmark, the polarization correlations for 10 MeV electrons and 3–10 MeV photons are also given.
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I. INTRODUCTION

With the recent experimental and theoretical investigation
of radiative electron capture and radiative ionization by
bare, heavy projectiles aiming at differential cross sections
[1–3] and linear photon polarization [4–6], the interest in
the bremsstrahlung process has been revived. The linear
polarization P1 of bremsstrahlung photons emitted from
unpolarized high-energy electrons colliding with target atoms
was extensively studied some 50 years ago (see, e.g., [7–13]).
Also the spin asymmetry A from polarized electrons was
measured and interpreted [14–19]. However, the predictions
for the further polarization correlations which relate to linearly
polarized photons, published by Tseng and Pratt [10] for the
wide impact energy range from 5 keV to 1 MeV, have never
been tested experimentally.

With the advent of novel-type Compton polarimeters, a
series of experiments has been started to measure, for 100 keV
electrons, the dependence of all these polarization correlations
on photon energy and angle [20,21]. It is planned to extend
the measurements to several MeV impact energy in the near
future [22], which calls for theoretical predictions in this highly
relativistic regime.

Two theoretical prescriptions have become standard for
bremsstrahlung, both treating the photon field to first order. The
first model, with results for the differential cross section and
for P1, dates back to Bethe, Olsen, and Maximon [7,23] in the
ultrarelativistic regime, as well as to Elwert and Haug [9,24]
for weakly relativistic collision systems. In this theory the
electronic wave functions in the potential of a bare target
nucleus of charge number Z are described by the Sommerfeld-
Maue (SM) functions [25]. These functions reproduce the
Coulomb wave functions in the nonrelativistic regime and
approximate the exact Dirac functions for the higher energies.
More precisely, they agree with the Dirac functions up to
order Zα (where α = e2/h̄c is the fine structure constant), i.e.,
in the weak-relativistic regime. However, they become again
exact in the ultrarelativistic regime, provided the distance r

from the nucleus is much larger than Zα/p where p is the
electron momentum [26]. Consistent with these two regions
of applicability, a higher-order contribution to the transition
matrix element is dropped such that the remaining radiation
matrix element can be expressed in closed form. This is the
advantage of the SM theory (which has become known as
the Elwert-Haug theory). Based on this theory, Olsen and

Maximon [7] have extracted a simple analytic formula for
P1 in the ultrarelativistic regime.

The second model differs from the first by using exact
Dirac functions in place of the SM functions, with no further
approximation. This necessitates a partial-wave representation
of the differential cross section [8,27,28]. While SM results
are available up to 15 MeV [9,24] and beyond 20 MeV impact
energy [7], partial-wave results exist mostly at energies up to
2 MeV [10,29]. The reason is the strongly increasing numerical
effort involved, since at higher energies the number of partial
waves, needed for convergence, becomes very large. There are
also a few results at 5 MeV and beyond [30,31], and even at
the ultrarelativistic limit [32]. However, in these high-energy
partial-wave calculations, the photon angle is not resolved.

Figure 1 gives an overview of existing results for the
extrema of P1 as a function of photon emission angle. The case
is studied where the photon carries away 90% of the energy
of the electron, which impinges on gold, while the scattered
electron is not observed. Included are SM results covering the
whole impact energy region under consideration. Both models
agree fairly well with the available experimental data, showing
that the two extrema merge and that P1 remains finite (of order
unity [7]) in the ultrarelativistic regime.

The fact that the polarization correlations related to linearly
polarized photons are, with the exception of P1, purely
relativistic (since they vanish in the nonrelativistic limit and
increase with Zα [10]) makes them a sensitive tool for studying
the validity of the SM functions beyond the weak-relativistic
regime. The judgment of the SM functions by a direct
comparison between the SM theory and the partial-wave model
is, however, hampered by two facts. First, there are two SM
functions, often relating to very different energies, which enter
into the transition matrix element, and second, the SM theory
is subject to an additional approximation beyond replacing the
Dirac functions by the SM functions.

Therefore we introduce a prescription, termed the Dirac-
Sommerfeld-Maue (DSM) theory, where only one SM func-
tion, representing the fast (initial) electron, is introduced into
the radiation matrix element. The outgoing electron, on the
other hand, is described by an exact Dirac function. Such
a hybrid theory where the initial and final wave functions
are not eigenstates to the same Hamiltonian may suffer from
nonorthogonality effects or from inconsistencies. In fact,
orthogonality between the initial and final states holds only

1050-2947/2010/82(4)/042714(9) 042714-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.82.042714


D. H. JAKUBASSA-AMUNDSEN PHYSICAL REVIEW A 82, 042714 (2010)

FIG. 1. Linear polarization P1 of photons emitted with energy
ω = 0.9Ei,kin in e-Au collisions as a function of the collision energy
Ei,kin = Ei − c2. For each Ei,kin, the photon angle is chosen such
that P1 has its maximum value (upper points and curves) and its
minimum value (occurring at larger angles; lower points and curves).
The broken and chain curves are the present SM results for bare Au.
The full line results from the analytic formula (7.1) with (6.23) of [7],
valid in the forward regime only. The calculations of [8] (×) and [10]
(∗) result from the partial-wave model. Experimental results (near the
extrema of P1) are taken from [11] (�), [12] (�), [13] (•).

to first order in Zα (like in the SM theory) except in the
ultrarelativistic limit.

Our argumentation in favor of the DSM approach is the fol-
lowing. There is a one-to-one correspondence between the SM
functions and the nonrelativistic Coulomb waves, since the
respective transformation operator, eiki r (1 − ic

2Ei
α · ∇) e−iki r

[see Eq. (2.3) below] is invertible. Therefore, together with
the bound states, the SM functions form a complete set and
hence a basis for the expansion of a Dirac wave. Replacing
the Dirac wave by an SM function of the same momentum is
therefore equivalent to truncating this expansion after the first
term. Hence the DSM model is, at high enough energy (i.e.,
when the difference between the two functions is small and
the remaining terms of the expansion of minor importance),
a consistent perturbative approach. Its great advantage as
compared to the exact relativistic theory is the omission of
a partial-wave expansion of the initial state, which at 10 MeV
(and Z > 40) would require more than 120 partial waves for
an accuracy of the differential cross section below 5% [31].

Only bare nuclei are considered in the present calculations.
We will concentrate mostly on the short-wavelength limit
(SWL), the tip of the bremsstrahlung spectrum where the
whole collision energy is transferred to the photon, leaving the
outgoing electron at the continuum threshold of the nucleus.
Such an SWL collision system has several advantages. First,
for high-Z targets, the slow outgoing electron, according to
the criteria given above, can never be well described by an SM
function, calling for an improvement beyond the SM model.
Second, due to the large momentum transferred to the nucleus,
regions of space close to the nucleus are selected which are
the crucial ones for testing the validity of the SM function

at high energy. Third, for sufficiently high impact energies,
only a few partial waves of the final state are required [32,33],
which makes the DSM calculations feasible beyond 2 MeV.

There exist some SM and partial-wave results at the SWL
when Z is high. The SM calculations are done for the
differential cross sections [24,31] and P1 [9] up to 15 MeV.
The partial-wave results also concern the differential cross
sections [8,31,33,34] and P1 [8,34] at energies mostly below
2 MeV. In [34–36] another noticeable advantage of the SWL
was explored: the smooth transition between bremsstrahlung at
threshold and radiative recombination (RR) of a free electron
into infinitely high lying Rydberg states of the target. By
extrapolating RR to the continuum threshold, partial-wave
results up to 5 MeV can readily be obtained [37]. Such results,
extended to the polarization correlations pertaining to doubly
differential cross sections, were used in [38] to show that for
heavy nuclei the electron energy has to exceed 5 MeV in order
to describe all polarization correlations accurately with the
help of SM functions.

In Sec. II, we formulate the DSM theory for the SWL
and furnish the numerical details in Sec. III. Results for the
doubly differential photon emission cross section (integrated
over the electronic angular distribution) for 0.18–10 MeV
electrons scattering from Au79+ are given in Sec. IV and
are compared with the SM theory, the partial-wave model,
and experiment. The relation between the differential cross
sections for radiative recombination and bremsstrahlung at
threshold is explored to extract additional partial-wave results.
Finally, for 10 MeV electrons, results are presented for all
polarization correlations relating to linearly polarized photons.
There, the DSM theory is used at the SWL and the SM theory
for the lower photon energies (Sec. V). Concluding remarks
are given in Sec. VI. Atomic units (h̄ = m = e = 1) are used
unless indicated otherwise.

II. THE DSM THEORY FOR BREMSSTRAHLUNG

We consider the scattering of a high-energy electron of
(total) energy Ei and spin σi from a bare point nucleus
of charge Z and allow for the simultaneous emission of a
bremsstrahlung photon of energy ω. The doubly differential
cross section for the emission of the photon into the solid angle
d�k is given by [28,39,40]

d2σ

dω d�k

= 4π2ωkf Ef

c3v

∑
σf

∫
d�f |[eλ · W rad(σf ,σi)]|2,

(2.1)

where v is the collision velocity. The energy Ef =√
(kf c)2 + c4 of the scattered electron is fixed by energy

conservation, Ef = Ei − ω. Assuming that the electron is
not observed, we have summed over its final spin σf and
integrated over the solid angle d�f of emission.

To first order in the electron-photon interaction, the transi-
tion matrix element reads

eλ · W rad(σf ,σi) =
∫

d r ψ
(σf )†
f (r) (α · eλ) ψ

(σi )
i (r) e−ikr .

(2.2)
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FIG. 2. Collision geometry. The y axis and eλ1 point into the
drawing plane (marked by the backside

⊗
of an arrow). n⊥

s is the
projection of ns onto the (x,z) plane.

Here, α = (αx,αy,αz) is the vector of Dirac matrices, eλ the

polarization direction of the photon, and ψ
(σi )
i and ψ

(σf )
f ,

respectively, the initial and final states of the electron.
The incoming electron is described by a Sommerfeld-Maue

function [7,26]. Choosing the z axis along the momentum ki

of the incoming electron and employing spherical coordinates
r = {r,ϑ,ϕ}, this function reads

ψ
(σi )
i (r)

= Nki
eiki r cos ϑ

{
1F1(iηi,1,ikir(1 − cos ϑ)) + iZ

2c

×
[
αz(cos ϑ − 1) + 1

2
α− sin ϑ eiϕ + 1

2
α+ sin ϑ e−iϕ

]

× 1F1(1 + iηi,2,ikir(1 − cos ϑ))
}

u
(σi )
ki

, (2.3)

where ηi = ZEi/kic
2, α± = αx ± iαy, Nki

the normaliza-
tion constant with the modulus |Nki

|2 = ηi/[4π2(1 −
e−2πηi )], and 1F1 a confluent hypergeometric function.

We choose a geometry (see Fig. 2) where the collision
plane, which is spanned by ki and the photon momentum
k = k(sin θk,0, cos θk), coincides with the (x,z) plane. The
plane perpendicular to k is spanned by the polarization vectors
eλ1 = (0,1,0) and eλ2 = (− cos θk,0, sin θk), and an arbitrary
electron spin direction is characterized by ns = {1,αs,ϕs}.
Then a fixed photon polarization eλ and electron plane-wave
spinor u

(σi )
ki

are represented in the following way [41]:

eλ = sin ϕλeλ1 + cos ϕλeλ2 , ϕλ ∈ [0,π ),

u
(σi )
ki

= e−iϕs/2 cos
αs

2
u

(+)
ki

+ e+iϕs/2 sin
αs

2
u

(−)
ki

, (2.4)

αs,ϕs ∈ [0,2π ),

where u
(+)
ki

= Cki
(1,0,cki/(Ei + c2),0) and u

(−)
ki

=
Cki

(0,1,0, − cki/(Ei + c2)), with Cki
= [(Ei + c2)/2Ei]1/2,

are plane-wave four-spinors with electron spins parallel and,
respectively, antiparallel to ki . For ϕs = 0, αs describes spin
rotation in the scattering plane.

For the outgoing electron, a Dirac continuum state is used,
the partial-wave decomposition of which is given by [41]

ψ
(σf )†
f (r) =

∑
j lm

(
w†

σf
Yjlm(�f )

)
ψ

†
j lm(r)(−i)leiδlj ,

(2.5)

ψjlm(r) =
(

gjl(r)Yjlm(�)

ifjl(r)Yjl′m(�)

)
,

where Yjlm is a vector spherical harmonic [42], l′ = l ± 1
for j = l ± 1

2 , wσf
is a linear combination of the two-spinors

χ 1
2

= (1,0) and χ− 1
2

= (0,1), and δlj is the phase shift.
Let us now restrict ourselves to outgoing electrons at the

continuum threshold. When kf → 0, the radial functions have
a simple representation in terms of Bessel functions Jν [8,43],

fjl(r) = 1

r

κ

|κ|
1

c

√
Z

kf

J2γ (
√

8Zr),

gjl(r) = −1

r

κ

|κ|
1√
kf Z

× [
√

2ZrJ2γ−1(
√

8Zr) − (γ + κ)J2γ (
√

8Zr)],

γ =
√

κ2 − (Z/c)2, κ =
{

−(l + 1), j = l + 1
2 ,

l, j = l − 1
2 .

(2.6)

In the following, we make use of the representation of the
vector spherical harmonics [42],

Yjlm(�f ) =
∑
µ,ms

Ylµ(�f )χms

(
lµ

1

2
ms | jm

)
,

(2.7)
|µ| � l, ms = ±1

2
,

where we have introduced the Clebsch-Gordan coefficients
(lµ 1

2ms |jm). Further we apply the orthogonality property of
the spherical harmonics Ylm and the Clebsch-Gordan coeffi-
cients, as well as the completeness relation

∑
σf

wσf
w†

σf
= 1.

Then, inserting (2.5) into the radiation matrix element (2.2)
and performing the integration over �f and the summation
over σf in (2.1), the doubly differential cross section re-
duces to an incoherent sum over the final-state partial-wave
contributions,

d2σ

dω d�k

= 4π2ωkf Ef

c3v

∑
j lm

|Mjlm|2, (2.8)

Mjlm =
∫

d rψ†
j lm(r)(α · eλ)ψ (σi )

i (r)

× e−ikr(cos ϑ cos θk+sin ϑ sin θk cos ϕ).

III. NUMERICAL DETAILS

Since ψ
(σf )
f is a threshold continuum state, its angular

dependence is rather weak. Therefore we have restricted
ourselves to including only the j = 1

2 and j = 3
2 states in

the partial-wave expansion. For Z = 79 and impact energies of
2 MeV and above, even the d-wave contribution (j = 3

2 ,l = 2)
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is reduced by several orders of magnitude (except in a narrow
forward cone) so that one might even restrict oneself to the s

and p waves at the higher collision energies (see also [33]).
Let us split Mjlm into the two contributions from the upper

and lower components of ψjlm,

Mjlm =
∑

ms=± 1
2

(
χms

0

)† (
l m−ms

1

2
ms | jm

)

×
∫

d rgjl(r)Y ∗
l,m−ms

(�)φλi(r) − i
∑

ms=± 1
2

(
0

χms

)†

×
(
l′m − ms

1

2
ms | jm

)∫
d rfjl(r)Y ∗

l′,m−ms
(�)φλi(r),

(3.1)

where φλi abbreviates the (four-spinor) part of the integrand
in Mjlm which multiplies ψ

†
j lm(r).

With the representation of Ylµ in terms of the Legendre
functions P

µ

l (see [42] and Sec. 8.7 of [44]),

Ylµ(�) =
√

2l + 1

4π

√
(l − µ)!

(l + µ)!
P

µ

l (cos ϑ)eiµϕ, (3.2)

the ϕ integral of the spatial integrals in (3.1) can be done
analytically, ∫ 2π

0
dϕe−iµϕe−iq⊥r sin ϑ cos ϕeisϕ

= 2π (−i)|µ−s|J|µ−s|(q⊥r sin ϑ). (3.3)

Here we have introduced the transverse momentum transfer
q⊥ = k sin θk, and s ∈ {0,1, − 1} from the contribution of
ψ

(σi )
i (r). Thus the double integrals to be performed numeri-

cally are, for example,∫ ∞

0
dr r3/2J2γ−1(

√
8Zr)

∫ 1

−1
d(cos ϑ)P µ

l (cos ϑ)

× J|µ−s|(q⊥r sin ϑ)eiqzr cos ϑ
1F1(iηi,1,ikir(1 − cos ϑ)),

(3.4)

where we have introduced the longitudinal momentum
transfer, qz = ki − k cos θk. The other integrals which oc-
cur are related to (3.4) by replacing J2γ−1(

√
8Zr) by

r−1/2J2γ (
√

8Zr) or by replacing the confluent hypergeometric
function by h(ϑ) 1F1(1 + iηi,2,ikir(1 − cos ϑ)) with h(ϑ) ∈
{1, cos ϑ, sin ϑ}, and which are of better convergence than
(3.4).

For the treatment of radial integrals involving Bessel func-
tions (which are weakly decaying, but strongly oscillating), we
make use of the fact that integrals of the type

∫ ∞
1 dr rµJν(r)

are convergent for any ν ∈ R,µ ∈ C; see example 144 in [45].
This can be shown either by using complex analysis (see,
e.g., [46] for a related integral) or, for the case µ + ν > −1, by
introducing convergence generating functions and considering
the limit as they tend to unity (see pp. 711 and 684 in [44]),

lim
ε→0

∫ ∞

0
drrµJν(ar)e−εr = 2µ

aµ+1

�
(

ν+µ+1
2

)
�

(
ν−µ+1

2

) , a > 0.

(3.5)

Using the fact that the angular integral in (3.4) is a smooth
function of r , we can apply the above technique by considering,
in place of (3.4), a sequence of integrals,

Iε =
∫ rmax(ε)

0
drF (r)e−εr , (3.6)

where F denotes the r integrand in (3.4) after having per-
formed the angular integral, and rmax(ε) ∼ 8/ε is an upper cut-
off large enough to ensure convergence of the integral for fixed
ε. The appropriate choice of ε is dictated by the momentum
transfer to the nucleus, q = (q2

⊥ + q2
z )1/2 = |ki − k|, and the

nuclear charge Z. It increases (linearly) with Z and also with q

(respectively, with photon angle and impact energy). This be-
havior is based on the fact that rapid oscillations of the angular-
dependent functions (when q is large) lead to a reduction of the
radiation matrix element and to convergence at comparatively
small r . This convergence is also speeded up when the Bessel
function Jν(

√
8Zr) changes sign more rapidly (i.e., when Z

is large). From this numerics we estimate the accuracy of the
differential cross section and P1 to be about 1%, while the other
polarization correlations are less accurate, particularly at the
backward photon angles for high impact energies (5%–10%).
Further inaccuracies, predominantly at very small angles, are
introduced by terminating the final-state partial-wave series at
j = 3

2 . For angles θk � 10◦ they amount to 10%–15% when
Ei,kin ∼ 200–400 keV, dropping to �5% at 2 MeV.

IV. CROSS SECTION RESULTS

We start by providing the relation between radiative
recombination and bremsstrahlung at threshold. As shown
in [34] this relation invokes the density of states, dn/dE,
where n is the main quantum number of the Rydberg state
and E the energy. The derivation given below pertains to
the experimental treatment of cusp phenomena, but involves
strictly the limit n → ∞. For simplicity we consider the
nonrelativistic one-electron case. The nonrelativistic theory
for bremsstrahlung emission at the SWL (ω = 1

2 v2) gives the
following formula for the doubly differential cross section (see
Chap. 92 in [26]), assuming only dipole radiation,

d2σ SWL

dω d�k

= 16Z3 1

c3v5
sin2 θk. (4.1)

On the other hand, the differential cross section for the
radiative capture of a fast electron into a high Rydberg state of
a bare nucleus can be written in the following way [47]:

dσ (n)

d�k

= (2π )2v

c3
ωn�n(v) sin2 θk. (4.2)

In this expression, ωn = 1
2v2 + Z2

2n2 is the sum of the collision
energy and the binding energy of the Rydberg state. �n is
the electron momentum density, summed over the subshells
corresponding to the state n,

�n(v) =
n−1∑
l=0

l∑
m=−l

|ψ̂nlm(v)|2 = 8Z5

π2n3

1

(v2 + Z2/n2)4
, (4.3)

which decreases with n according to n−3 for high n. However,
in an experimental situation, one averages over the resolution
�ω of the photon detector. In particular, at the SWL, all
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Rydberg states with n � n0, where n0 is given by �ω =
ωn0 − 1

2v2 = Z2

2n2
0
, cannot be resolved (see, e.g., [48] for the

radiation from quasifree electrons). Therefore the measured
quantity is 〈

dσ RR

d�k

〉
�ω

= 1

�ω

∞∑
n=n0

dσ (n)

d�k

. (4.4)

Now we claim that in the limit �ω → 0, corresponding to
n0 → ∞, the bremsstrahlung formula (4.1) is retrieved. By
using the integral test for convergence [49], we find

lim
n0→∞ n2

0

∞∑
n=n0

1

n3
= 1

2
. (4.5)

Therefore,

lim
n0→∞

〈
dσ RR

d�k

〉
�ω

= lim
n0→∞

2n2
0

Z2

∞∑
n=n0

16

n3

Z5v

c3

1

(v2 + Z2/n2)3
sin2 θk

= 16Z3

c3v5
sin2 θk = d2σ SWL

dω d�k

. (4.6)

Numerically, the RR cross sections dσ (n)/d�k are cal-
culated for a series of n (typically up to n ∼ 16) and
are subsequently fitted by a power law A1(θk)/n3 that is
obeyed to high accuracy beyond n ≈ 8 [37]. From the result
(4.6) it follows that d2σ SWL/dω d�k = A1(θk)/Z2. Since the
formula Z2/(2n2) for the binding energy of high Rydberg
states remains valid for heavy nuclei, this prescription can also
be used in the relativistic case. (In Fig. 4 below, the additional
factor 103/27.21 is included to convert atomic units into keV.)

Figure 3 shows the angular dependence of the emitted pho-
tons for the two cases Ei,kin = 180 and 380 keV. Comparison
is made between the partial-wave model, the DSM theory, the
SM theory, and experiment. It is seen that the SM cross sections
are generally a factor of 2–3 too low (a fact well known from
previous investigations [24,33] for high nuclear charge), the
discrepancy increasing at the backward angles. As expected,
the partial-wave theory describes the experiment nicely, but
this is also true for the DSM model at angles θk � 120◦. At
the larger emission angles, relativity plays a more and more
important role (due to the increasing momentum transfer) such
that the SM functions are no longer appropriate. Turning to
the importance of screening (the partial-wave calculations are
done for the neutral target as used in experiment, while the
SM and DSM results are for a bare nucleus), we note that
for Ei,kin � 200 keV the relevant electron-nucleus distances
at the SWL (given by the inverse momentum transfer) lie
within the K-shell radius, even in the forward hemisphere.
Thus screening affects the normalization rather than the shape
of the wave function [33]. In the angular regime pertaining to
the total cross section, screening amounts to 5%–10% at impact
energies between 100 keV and 1 MeV [31,33], being small at
the backward angles and decreasing with energy [10,24,28].
So screening is at most of the same order as the numerical
accuracy of the DSM results, which justifies its neglect for all
cases considered.

FIG. 3. Doubly differential cross section for photon emission
from collisions of (a) 180 keV and (b) 380 keV electrons with Au at
the SWL (ω = 180 and 380 keV, respectively) as a function of photon
angle θk. Shown are the results from the partial-wave model [8] (solid
curve), DSM theory (dashed curve), SM theory (dot-dashed curve),
and experiment [50] (squares).

When the impact energy is further increased, the cross
section drops rapidly for θk � 20◦ without much changing
its overall shape. However, the photons are more and more
focused at very small angles, which even leads to an increase
of the cross section at θk = 0 for Ei,kin � 2 MeV (Fig. 4). This
behavior can be related to the dominant phase factor, ei(ki−k)r ,
in the radiation matrix element (2.2). We have kic = √

E2
i − c4

and in the SWL, kc = ω = Ei − c2 such that k/ki → 1 and
ki − k → c for Ei → ∞ [33]. Therefore, at θk = 0, the phase
(ki − k)r cos ϑ tends to a constant (in ki) with increasing Ei

[at 2 MeV, (ki − k)/c = 0.9]. Together with the prefactor ω in
(2.1), this leads to an increase of the cross section. However, for
any small but finite θk there exists some energy Eθ such that
for Ei > Eθ, |ki − k| increases strongly (eventually to ∞),
leading to a steep decrease of the cross section with energy.

Concerning the validity of the DSM theory, we recall that
the SM functions approach the exact functions for sufficiently
large energies Ei , provided r � Zα/ki. For θk = 0, this
condition can be translated into

r ∼ 1

|(ki − k) cos ϑ | � 1

(ki − k)

!� Zα

ki

. (4.7)

For Ei,kin = 2, 5, and 10 MeV, the ratio ki

ki−k
is equal to,

respectively, 5.4, 11.3, and 21.1. Thus for Au (Zα ≈ 0.6),
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FIG. 4. Doubly differential cross section for photon emission
from collisions of 2 MeV (upper curves) and 10 MeV (lower curves)
electrons with Au79+ at the SWL as a function of photon angle θk.

DSM model (solid curve), SM results (dashed curve). Included is the
SM result for Ei,kin = 10 MeV, ω = 5 MeV (dot-dashed curve), as
well as partial-wave results at 2 MeV (×) [37].

the SM initial-state function is reliable near and above 2 MeV
at small angles (see also Fig. 4).

In the backward regime, on the other hand, say θk = 180◦,
the condition (4.7) has to be replaced by (ki + k) | cos ϑ | � ki.

This holds only for polar angles close to 90◦ and therefore the
DSM model performs worse. From Fig. 4 it follows that at
2 MeV there are still considerable deviations between the DSM
and the partial-wave results for θk beyond 60◦. As concerns the
SM results, the inadequacy of the approximate final threshold
state (irrespective of Ei) prevents a better agreement with the
DSM model when the collision energy is increased.

In order to estimate the correction effects concerning
nonorthogonality, we calculated the singly differential cross
section Sω ≡ dσ/dEf (= dσ/dω) by integrating over the
photon solid angle, and compared it to the respective cross
section (termed S1) when the transition operator is set to
unity (i.e., in the absence of photons). For the Au target,
the ratio S1/Sω is given by 0.0092 (for 180 keV), 0.0024
(for 380 keV), 3.5 × 10−5 (for 2 MeV), and 1.2 × 10−6 (for
5 MeV). Thus the correction from the overlap between the
initial- and final-state wave functions is below the numerical
accuracy of our calculations and can be neglected.

Included in Fig. 4 is the SM theory for photons carrying
away only half the electron’s energy (ω = Ef,kin = 5 MeV,
where SM functions are appropriate except possibly at the
largest angles). As compared to the SWL at 10 MeV, the
corresponding cross section is enhanced at all angles and also
shows the steep increase toward θk = 0, while depending only
weakly on the angle beyond 140◦.

V. POLARIZATION CORRELATIONS

The polarization correlations for bremsstrahlung are spec-
ified in detail by Tseng and Pratt [10] using, however, a
reference frame in which the z axis is aligned with the photon
momentum rather than with the collision velocity. The starting
point is the representation of the differential cross section

(2.1) in the following form, making use of the time-reversal
invariance [10]:

dσ = 1
2dσ0(1 + C03ξ3 + C11ζ1ξ1 + C12ζ1ξ2

+C20ζ2 + C23ζ2ξ3 + C31ζ3ξ1 + C32ζ3ξ2), (5.1)

where ξk and ζk , k = 1,2,3, denote, respectively, the parame-
ters for photon and electron (initial-state) polarization, and dσ0

is the differential cross section averaged over the initial spin
of the electron and summed over the final electron spin and
photon polarization. Cik, i,k ∈ {0,1,2,3} are the nonvanishing
correlation parameters. With eλ from (2.4) for linear photon
polarization, we have

ξ1 = 2 sin ϕλ cos ϕλ, ξ2 = 0, ξ3 = 1 − 2 sin2 ϕλ, (5.2)

hence C12 and C32 do not occur. The electron spin direction
ns = (ζ1,ζ2,ζ3) is here defined with respect to the basis
ζ 1 = ex,ζ 2 = −ey,ζ 3 = −ez in our coordinate system (i.e.,
ζ 3 antiparallel to ki , ζ 2 aligned with k × ki , ζ 1 aligned with
ki × ζ 2).

The Stokes parameters P1 and P2 are obtained from the
geometry where the spin direction ns lies in the scattering plane
[ϕs = 0 in (2.4), respectively, ζ2 = 0 in the above basis]. In that
case, (5.1) reduces to dσ = 1

2 dσ0 (1 + C03ξ3 + C11ζ1ξ1 +
C31ζ3ξ1). If we choose ϕλ ∈ {0, π

2 } then ξ1 vanishes while
ξ3 ∈ {1, − 1}. Thus we get

P1 ≡ C03 = dσ (ϕλ = 0) − dσ (ϕλ = 90◦)

dσ (ϕλ = 0) + dσ (ϕλ = 90◦)

= dσ (eλ2 ) − dσ (eλ1 )

dσ (eλ2 ) + dσ (eλ1 )
. (5.3)

P1 is independent of ζ1 and ζ3 (respectively, of αs , the polar
angle of ns), such that also for unpolarized electrons, P1 is
calculated from (5.3).

For obtaining P2 (respectively, C11 and C31) we have to get
rid of C03, so we take ϕλ ∈ {45◦,135◦} where ξ3 vanishes. P2

is defined by

P2(αs) = dσ (ϕλ = 45◦) − dσ (ϕλ = 135◦)

dσ (ϕλ = 45◦) + dσ (ϕλ = 135◦)
= C11ζ1 + C31ζ3. (5.4)

In contrast to P1,P2 does depend on αs . It obeys the symmetry
property P2(αs + π ) = −P2(αs) since the augmentation of αs

by π changes the sign of ns (and hence of ζ1 and ζ3).
The polarization correlation C11 results from (5.4) by

choosing ns = ζ 1 and noting that αs = π
2 corresponds to

ζ1 = 1. In a similar way, setting ns = ζ 3 (with αs = 0 relating
to ζ3 = −1), C31 is obtained. Explicitly,

P2⊥ ≡ P2(90◦) = C11,
(5.5)

P2‖ ≡ P2(0) = −C31.

The remaining polarization correlations, C20 and C23,
characterize the electron spin polarization perpendicular to the
scattering plane with ζ1 = ζ3 = 0, corresponding to αs = π

2 .

Then one gets from (5.1), dσ = 1
2 dσ0(1 + C03ξ3 +

C20ζ2 + C23ζ2ξ3). In order to eliminate C03 we sum over
the photon polarization, i.e., we add the differential cross
sections obtained from ϕλ = 0 (ξ3 = 1) and from ϕλ = π

2
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FIG. 5. Angular dependence of the linear photon polarization P1

from 10 MeV electrons colliding with Au79+. Shown are SM results
for photon energies ω = 3 MeV (solid curve), 5 MeV (dashed curve),
and 9 MeV (dotted curve) as well as results from the DSM theory at
the SWL (dot-dashed curve).

(ξ3 = −1). This leads to
∑

λ dσ = dσ0(1 + C20ζ2). Conse-
quently, representing ns = ζ 2 by ϕs = −π

2 and ns = −ζ 2 by
ϕs = π

2 , the spin asymmetry is calculated from

A ≡ C20 =
∑

λ [dσ (↑) − dσ (↓)]∑
λ [dσ (↑) + dσ (↓)]

, (5.6)

where ↑ and ↓ represent, respectively, the pairs (αs,ϕs) =
(π

2 , − π
2 ) and (π

2 , π
2 ).

The last correlation parameter, C23, is not directly ac-
cessible. Let us define, for each spin direction, the linear
polarization according to formula (5.3),

P1(↑) = dσϕλ=0(↑) − dσϕλ=90◦ (↑)

dσ0
= C03 + C23,

(5.7)

P1(↓) = dσϕλ=0(↓) − dσϕλ=90◦ (↓)

dσ0
= C03 − C23,

with dσ0 = 1
2

∑
λ [dσ (↑) + dσ (↓)] . This leads to

C23 = 1
2 [P1(↑) − P1(↓)]. (5.8)

Figure 5 shows the Stokes parameter P1 for an impact
energy of 10 MeV and photon energies between 3 and
10 MeV. From the investigation of [38], it follows that for
P1, the SM functions provide a satisfactory description if the
kinetic energy is above 2 MeV, such that the application of
the SM theory is basically justified. Away from the short-
wavelength limit and for photon angles above 20◦ the linear
polarization is negative (which means that the photons are
predominantly polarized perpendicular to the collision plane,
a purely relativistic effect) and varies only weakly with θk .
However, there is a considerable overall rise of P1 when ω is
increased from 9 to 10 MeV. At very small angles, P1 varies
strongly with ω, showing a large negative peak for ω � 1

2Ei,kin,

but a positive peak when the SWL is approached. The change
of the forward maximum of P1 to a minimum when ω is
decreased was also found at lower impact energies (see Fig. 10
of Ref. [10] for Ei,kin = 0.5 MeV). In the high-energy regime,

FIG. 6. Angular dependence of the polarization correlations
P2|| = −C31 (solid curve), P2⊥ = C11 (dashed curve), C23 (dot-
dashed curve), and A = C20 (dotted curve) from 10 MeV electrons
colliding with Au79+. (a) ω = 5 MeV within the SM theory, (b)
ω = 10 MeV (SWL) within the DSM model.

the forward maximum decreases with impact energy at the
SWL; for ω = 0.9 Ei,kin, even to a negative value (see Fig. 1).

In Fig. 6(a), the polarization correlations P2,A, and C23

are displayed for Ei,kin = 10 MeV and ω = 5 MeV, using the
Sommerfeld-Maue theory. It was derived by Tseng and Pratt
[10] that P2⊥ = −C23 near θk = 0, and P2⊥ = C23 near θk =
180◦, which is clearly seen in the figure. However, as compared
to the results for ω/Ei,kin = 0.5 at an impact energy of 0.5 MeV
(Ref. [10], Fig. 26) the regime where P2⊥ and C23 are approxi-
mately symmetric to each other extends to much larger angles
(θk � 150◦) with only a small region where the slopes of P2⊥
and C23 roughly agree (θk � 170◦). The most striking feature
when Ei,kin is increased from 0.5 to 10 MeV is the global
decrease in modulus of the polarization correlations P2 and C23

(up to one order of magnitude). Again, there is the relativistic
focusing of the extrema to the forward angles. An exception
is the spin asymmetry A, the maximum of which is shifted to
backward angles and has a similar value at 0.5 and 10 MeV.

042714-7



D. H. JAKUBASSA-AMUNDSEN PHYSICAL REVIEW A 82, 042714 (2010)

FIG. 7. Angular dependence of the spin asymmetry A from
2 MeV (dashed curve), 5 MeV (solid curve), and 10 MeV (dotted
curve) electrons colliding with Au79+ at the SWL (DSM theory).

In Fig. 6(b), the same polarization correlations are plotted
at the SWL, calculated within the DSM model. Since the
emission of a 10 MeV photon requires very close collisions,
relativity is extremely important, and the polarization correla-
tions are indeed much larger than for ω = 5 MeV. Both C23

and P2⊥ exhibit a broad extremum in the forward hemisphere
and an additional narrow minimum at angles close to 180◦. As
concerns the spin asymmetry A, it was predicted a long time
ago, using a perturbative expansion, that A depends linearly
on Zα [51]. In fact, at ω = 10 MeV (and a gold target)
the maximum of A is ∼ 0.6 which is close to Zα = 0.58.

Moreover, as follows from Fig. 7, where the spin asymmetry at
the SWL is shown for impact energies between 2 and 10 MeV,
the maximum of A is still increasing with Ei in this energy
regime (whereas the minimum in the forward hemisphere gets
shallower). This increase of A up to at least Ei,kin = 10 MeV
is at variance with the conjecture of [51] that A should be
largest for v/c ≈ 0.6 (corresponding to Ei,kin ≈ 130 keV). It
should be noted that there are no literature results for A at
the SWL. However, even if we fix the ratio ω/Ei,kin = 0.75,
then at 130 keV one has |A| � 0.14 at all photon angles [10],
whereas the SM calculations at Ei,kin = 10 MeV (and the same
ratio) predict A ≈ 0.17 in its maximum near θk = 140◦.

VI. CONCLUSION

We have investigated the photon angular distribution and
the polarization correlations resulting from bremsstrahlung
of highly relativistic spin-polarized electrons colliding with
heavy ions such as gold. Particular emphasis was laid on
the short-wavelength limit where the electron transfers all
its kinetic energy to the photon. For this process the DSM

theory was developed where the wave function of the incoming
electron is described by a Sommerfeld-Maue function in place
of an exact relativistic function. This approximation, valid
above 5 MeV impact energy (except possibly at the largest
photon angles), leads to a considerable reduction of computer
time as compared to the relativistic partial-wave calculations,
thus allowing collision energies up to at least 10 MeV. The
DSM model can readily be extended to a small region below
the SWL by replacing the Bessel functions in (2.6) by the
corresponding exact radial functions and by including some
more final-state partial waves. The basic advantage of this
model, the small number of partial waves, is, however, lost
when photons with an energy much lower than the SWL are
considered.

Our main concern was the improvement of the doubly
differential cross section at the SWL as compared to the results
from the commonly used Elwert-Haug theory. Indeed, for the
two test cases Ei,kin = 180 and 380 keV where experimental
data and partial-wave results are available, the DSM model
performs well except for photon angles above 130◦. This
region of validity shrinks to smaller angles when the collision
energy is increased to 2 MeV. Only beyond 5 MeV will the
Sommerfeld-Maue function again perform well as conjectured
from the results of [38].

We have also studied the dependence of the polarization
correlations on photon energy and angle at 10 MeV and have
compared our results with the corresponding results of Tseng
and Pratt at 0.5 MeV, the highest collision energy considered
by these authors for a heavy (gold) target. For P1 we observe,
similar to the elementary process of bremsstrahlung (i.e.,
when electrons and photons are detected simultaneously in
a coplanar geometry [52]), that P1 is closest to unity when
the differential cross section has its maximum. The forward
focusing at 10 MeV is also seen for P2 and C23.

An exception is the spin asymmetry A which gets strongly
focused near θk = 180◦ when the collision energy is increased.
While the other polarization correlations are subject to an
overall decrease of modulus with collision energy beyond
2 MeV, the maximum of A increases with Ei,kin, at least up to
10 MeV. At collision energies near 15 MeV and θk near 180◦
the relevant distances will reach r = 1.3 × 10−4a.u. = 7 fm,
which is the radius of the Au nucleus. Thus A is a candidate
for measuring nuclear size effects when Ei,kin > 10 MeV
(see the predictions of [53] for the elastic backscattering of
spin-polarized electrons).
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