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Intershell correlations in Compton photon scattering by an atom
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The role of the intershell correlation effect is theoretically investigated using the example of the Ne atom in
nonresonance Compton high-energy x-ray photon scattering by a free atom. The calculation results qualitatively
reproduce the same results in the formalism of the generalized oscillator strength and the random phase
approximation with exchange for the Compton photon and electron scattering by an atom; when the incident
photon energy is 11 keV and the scattering angle is 90◦, they correspond well with the results of the synchrotron
experiment presented in the work by Jung et al. [Phys. Rev. Lett. 81, 1596 (1998)].
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I. INTRODUCTION

Theoretical and experimental study of the nonersonance
Compton x-ray photon scattering by a free atom (Kane [1],
Pratt et al. [2]) in the soft and hard energy range (from 300 eV
to 1.5 MeV) allow one to receive fundamental information
on the scattering object, specifically on the nature and role
of many-particle effects and their quantum interference.
Such studies are widely required in modern physics. They
appear to be important especially in such fields as laser
thermonuclear fusion, creation and use of x-ray free electron
laser, plasma physics, surface physics, ionization radiation,
and astrophysics.

The program of studies of correlation, nonlocal-exchange,
and dynamic effects in the states of nonresonance Compton
photon scattering by an atom are represented by Carney
and Pratt [3] and Suri [4] in the context of modifications
of incoherent scattering function approximation and impulse
approximation which are widely used in scientific literature.
In Ref. [5] the theory of nonresonance Compton x-ray photon
scattering by a many-electron atom is developed beyond the
limits of the mentioned approximations. Incidentally, this
theory does not contain the limitation η = qa0/Z � 1 peculiar
to the impulse approximation (Eisenberger and Platzmann [6]).
Here, q is the impulse given to the atom, a0 is the Bohr radius,
and Z is the atomic nucleus charge. So, if the energy of
the incident photon studied in the present work is 11 keV
and the scattering angle is 90◦, we have η ≈ 0.42 and the
impulse approximation turns out to be formally ill-posed.
The theory and analysis technique in Ref. [5] lets us realize
the indicated program. In the work [5], the role of radial
relaxation effects of atomic core electron shells in the deep
vacancy field for incident photon energies (h̄ω1) in the 1s shell
ionization threshold region (I1s) is studied. In the present work
we study the absolute values and form of the doubly differential
cross section of the nonresonance Compton scattering in
the far postthreshold (h̄ω1 � I1s) scattering region. In such
energies of the incident photon, the valence and subvalence
atomic shells make the main contribution to the scattering
cross section (Biggs et al. [7], Jaiswal and Shukla [8]). It is
known, that if we deal with an excitation-ionization of the
few-electron subvalent atomic shell, the effect of correlation
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appears between this shell and the adjoined many-electron
shells (Amusia and Ivanov [9]). This effect has been examined
in detail for the Compton photon and electron (and other
charged particles) scattering by atoms in the context of
the generalized oscillator strength (GOS) formalism and the
random phase approximation with exchange (RPAE) (Amusia
et al. [9,10]). In this work we are not investigating any
new physics beyond the intershell correlations effect already
studied in the GOS formalism and the RPAE. Our goal is
to investigate the degree to which this effect occurs in the
nonresonance Compton scattering of a hard x-ray photon by
a light atom. The neon atom [Ne; ground-state configuration
[0] = 1s22s22p6(1S0)] is taken as a subject of inquiry.

II. THEORY

We shall examine the nonresonance Compton unpolarized
photon scattering by the atomic n1l1 shell with 1S0 term of the
ground state:

h̄ω1 + [0] → n1l
4l1+1
1 εl(1LJ ) + h̄ω2, (1)

where n1l1 � f , εl > f , h̄ is the Planck constant, ω1(ω2) is
the cyclic frequency of the incident (scattered) photon, f is
the Fermi level (quantum number population of atom valence
shell), and the resultant 1LJ term (J = L) of the open core n1l1
shell and of the luminous εl electron of continuous spectrum
is determined in the LS coupling scheme. In Eq. (1) and further
we do not record closed shells.

The 2s subvalence and 2p valence shells in the Ne atom
are significantly separated in energy from the 1s deep shell
(for example, I1s − I2s

∼= 822 eV). This fact enables one to
neglect the correlation influence of 2s and 2p shells on the 1s
shell. As a result, we examine the wave function of the final
state of 1sεl scattering in the Hartree-Fock one-configurational
approximation. Then, the doubly differential cross section of
the nonresonance Compton unpolarized photon scattering by
the 1s shell of the Ne atom takes the following form in the
atomic units system (e = h̄ = me = 1, e is the electron charge,
and me is its mass) [5]:

σ1s = αβ

∫ ∞

0
M(ε)G1s(ε) dε, (2)

M(ε) =
∞∑
l=0

[l]R2
l (1s,εl), (3)
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Rl(1s,εl) =
∫ ∞

0
P1s(r)jl(qr)Pεl(r) dr, (4)

G1s(ε) = 1

γb

√
π

exp

[
−

(
ε − 	1s

γb

)2]
, (5)

q = ω1

c

√
1 + β2 − 2β cos θ. (6)

In Eqs. (2)–(6) the following values are determined:
d2σ (1s)/dω2d� ≡ σ1s , α = r2

0 (1 + cos2 θ ), r0 is the classical
electron radius, � is the spatial escape angle of scattered
photon, θ is the scattering angle, β = ω2/ω1, [l] = 2l + 1,
Pεl is the radial part of the wave function of εl electron,
γb = �beam/2

√
ln 2, �beam is the width at half maximum of

the instrumental Gaussian function G, 	1s = ω1 − ω2 − I1s ,
jl is the spherical Bessel function of the first type of l order, q

is the module of the scattering vector (impulse given to atom),
and c is the speed of light in vacuum.

To take into account the radial relaxation effect in the 1s
vacancy field we have to substitute in Eq. (3) when l = 0,1
the probability amplitude of Rl transition for the following
expression:

Bl(1s,εl) = N1s

[
Rl(1s0,εl+) − Rl(1s0,2l+)

〈2l0 | εl+〉
〈2l0 | 2l+〉

]
,

(7)

N1s = 〈1s0 | 1s+〉〈2s0 | 2s+〉2〈2p0 | 2p+〉6, (8)

〈2l0 | εl+〉 =
∫ ∞

0
P2l0 (r)Pεl+(r) dr. (9)

In Eqs. (7)–(9) the radial parts of the wave functions of the
1s0, 2s0,2p0 electrons are obtained by solving the Hartree-Fock
equations for configuration of the atom ground state. The radial
parts of the wave functions of the 1s+, 2s+, 2p+, εl+ electrons
are obtained by solving the Hartree-Fock equation averaged
over 1,3l terms for configuration of the 1s+εl+ scattering final
state.

When the incident photon energy examined in the present
work is ω1 = 11 keV, the probability of direct transition into
the final state of 2p5εl scattering is three times as much
as the probability of transition into the intermediate virtual
state of 2sεl′ scattering. Due to this fact we can neglect
the correlation influence of 2s shell on 2p shell. Then, the
doubly differential cross section of the nonresonance Compton
unpolarized photon scattering by the 2p shell of the Ne atom
takes the following form [5]:

σ2p = 3αβ

∫ ∞

0
L(ε)G2p(ε) dε, (10)

L(ε) =
∞∑
l=0

(l + 1)
[
R2

l (2p,ε(l + 1)) + R2
l+1(2p,εl)

]
. (11)

We shall consider the inverse correlation influence of the many-
electron 2p shell on the few-electron 2s shell in the first order of
quantum mechanical perturbation theory and build the wave
function of the 2sεl scattering final state in the well-known
(see, e.g., the works by Jucys [11] and Froese-Fischer [12])
configurations mixing presentation:

φl = |2sεl〉 +
∫ ∞

0
Ql

dx

z + iλ
, (12)

Ql = (−1)l
∑

l′=l±1

Vll′ |2p5xl′〉, (13)

lim
λ→0

1

z + iλ
= P

1

z
− iπδ(z). (14)

In Eqs. (12) and (14) the following values are defined:
z = x0 − x, the wandering pole of the integrand function x0 =
ω1 − ω2 − I2p, P is the symbol of the Cauchy principal value
integral and δ is the Dirac delta function. In Eq. (13) the matrix
element of the Ĥ operator of electrostatic configurations
mixing (Ti ≡ LiSi)

C1 = l
N1−1
1 l

N2
2

(
l
N3
3 ,T3

)
,T , (15)

C2 = (
l
N1
1 l

N2−1
2

(
l
N3−1
3 ,T ′

3

)
,T0

)
xl′,T , (16)

is determined in the LS coupling scheme by specification of
the general result (Karazija [13]) for V = 〈C1|Ĥ |C2〉. Exactly,
for l1 = 0, l2 = 1, l3 = l, N1 = 2, N2 = 6, N3 = 1, T = 1l in
Eqs. (15) and (16), we obtain

Vll′ = all′F1(2pεl; 2sxl′) + bll′Gl(2pεl; xl′2s), (17)

all′ = (−1)g

√
max(l,l′)

3[l]
, (18)

bll′ = 2

[l]
(1‖C(l)‖l′). (19)

In Eqs. (17)–(19) F1 and Gl are direct and exchange integrals
of electrostatic mixing and l + l′ + 1 = 2g is a whole number.
Then, the doubly differential cross section of the nonresonance
Compton unpolarized photon scattering by the 2s shell of the
Ne atom (modified in comparison with the expression from
Ref. [5]) takes the form:

σ2s = αβ

∫ ∞

0
A(ε)G2s(ε) dε, (20)

A(ε) =
∞∑
l=0

[l]|Rl(2s,εl) + Dl|2, (21)

Dl =
∫ ∞

0
ψl

dx

z + iλ
, (22)

ψl =
∑

l′=l±1

(1‖C(l)‖l′)Vll′Rl(2p,xl′). (23)

The physical interpretation of scattering probability amplitude
in Eq. (21) can be represented in the form of Feynman
diagrams in the context of nonrelativistic quantum theory
of many bodies (March et al. [14], Amusia [15]). Figure 1
represents the diagrams for interfering partial amplitudes of
scattering probabilities Rl(2s,εl) [Fig. 1(a)] and Dl [Fig. 1(b)
for the direct part and Fig. 1(c) for the exchange part of the
matrix element Vll′ ]. The symbols are as follows: ω1(ω2) is
an incident (scattered) photon; i(j ) = 2p(2s) is a vacancy;
x is an electron of intermediate scattering state; ε is an
electron of final scattering state; the right (left) arrow indicates
the state coming into being above (below) Fermi level; the
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FIG. 1. Presentation of Feynman diagrams for the probability
amplitude of the nonresonance Compton photon scattering by 2s
shell of the Ne atom with provision for intershell correlations. The
symbols are given in the text.

wavy line indicates the Coulomb interaction; time direction
is from left to right (t1 < t2); the light circle agrees with the
matrix element of the jl(qr) operator of contact interaction.
For example, the diagram given in Fig. 1(a) describes the
probability amplitude of four events in one spatial-temporal
point: ω1 photon absorption by atomic j shell, j vacancy
production, and production of ω2 photon and ε electron in
vacuum as well. In the present work we do not deal with
the mathematical techniques of Feynman diagrams. They are
given just to illustrate the quantum dynamic of intershell
correlations in nonresonance Compton photon scattering by
an atom on the one-particle level.

III. RESULTS AND DISCUSSION

The calculations are made at the fixed value of the incident
photon energy ω1 = 11 keV as in the experiment in the work
by Jung et al. [16]. Variation of the ω1 value is the subject
of separate study. For the width of instrumental function the
value �beam = 5 eV is taken. This value is much less than
characteristic widths of calculated (see Figs. 4 and 5) Compton
scattering cross-section profiles (∼200 eV). In this case, the
information on the role of intershell correlations is not distorted
by the value of the instrumental resolution. On the other side,
the adopted value �beam exceeds the region widths (	ω, eV)
of the resonance line appearance of L1 (	ω ∼ 1; Wilhelmi
et al. [17]) and L23 (	ω ∼ 10−16; Zinner et al. [18]) spectra
of Ne atom photoabsorption. This fact enables one to consider
in Eqs. (3), (11), and (21) only the continuous spectrum of
scattering final states. We also neglect the spin-orbit splitting
of the 2p1/2,3/2 core shell (splitting constant δSO∼ 0.1 eV;
Deslattes et al. [19]).

In computing the principal value of the integral in Eq. (22)
we use the parabolic interpolation of the integrand function
numerator on the interval [a,b], a = x0 − µ, b = x0 + µ, µ ∼
(I2s − I2p) × 10−2. Then, we obtain

P
∫ ∞

0
ϕdx → f (a) − f (b) +

(∫ a

0
+

∫ ∞

b

)
ϕdx, (24)

ϕ = f (x) (x0 − x)−1. (25)

Due to the singular structure of the function from Eqs. (24) and
(25), the effect of electrostatic configurations mixing 2sεl and
2p5xl′ becomes apparent at the small energy values of the εl

and xl′ electrons of the continuous spectrum. This statement
is illustrated in Fig. 2 by the calculation results of integrals
F1 and G1 for the partial 2sεp scattering channel in the cross
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FIG. 2. Values of electrostatic mixing integrals F1(2pεp; 2sxd)
and G1(2pεp; xd2s) for the partial 2sεp channel of the nonresonance
Compton photon scattering by the Ne atom.

section from Eq. (20): if ε,x ∼ (0; 500) eV, the values of these
integrals change grossly.

When calculating the scattering cross sections from
Eqs. (2), (10), and (20) we consider the harmonics l from 0 to
25. Considering the higher harmonics (l > 25), we change the
results not more than for 0.1%. This statement is illustrated
by data given in Table I, where the relative contributions of
l harmonics in the 2sεl and 2p5εl scattering channels are
shown in relation to the incident photon energy. It can be seen,
if ω1 increases, that the nonresonance Compton scattering
process becomes more and more multipolar: increasingly
higher harmonics are involved in the scattering process. So,
if there is the one leading harmonic l = l1 + 1 for ω1 =
1 keV in scattering channels 2l

4l1+1
1 εl, there are several

leading harmonics when ω1 = 11 keV. This result qualitatively
reproduces the same in the formalism of GOS and RPAE in
the case of increasing the impulse given to the atom in the
Compton photon and electron scattering by an atom [9,10].
Thus, the harmonics having l > 10 are practically depressed
in the sum from Eq. (21) for the 2sεl scattering channel
compared with harmonics having l � 10. For this reason, the
correlation integral Dl is calculated only for l values from
0 to 10 (for l > 10 the value is accepted Dl = 0). Figure 3
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TABLE I. Relative contributions of l harmonics to the doubly
differential cross section of the nonresonance Compton x-ray photon
scattering by the Ne atom in scattering 2sεl and 2p5εl channels.
The scattering angle θ = 90◦. The calculation is made in one-
configurational Hartree-Fock approximation with provision for radial
relaxation effects.

h̄ω1 (keV) l ηsl(%)a ηpl(%)

0 15 14
1 1 70 10

2 14 74
� 99 98

0 8 5
1 12 15

11 2 36 32
3 24 25
4 15 19

� 95 96

aηsl = (σ (l)
2s /σ2s) × 100%, σ2s is the maximum value of the cross

section from Eq. (20), and σ
(l)
2s is the maximum value of the cross

section from Eq. (20) for the fixed l harmonic from Eq. (21).

9.5 10.0 10.5 11.0

-0.5

0.0

0.5

1.0

1.5

hω
c

ρ 
(%

)

hω
2
 (keV)

FIG. 3. Intershell correlations function from Eq. (26) for the
Ne atom. The incident photon energy h̄ω1 = 11 keV; the width
of spectral resolution �beam = 5 eV. Scattering angles are as
follows: continuous curve, 60◦; chain-dotted curve, 90◦; broken curve,
120◦. The Compton profile break threshold h̄ωc = h̄ω1 − I2p , I2p =
19.84 eV (our nonrelativistic calculation).

shows the calculation results for the intershell correlations
function:

ρ = [
(σ IC − σ HF)/σ HF

m

] × 100%, (26)

σ =
∑
nl�f

σnl. (27)

The following indexes are determined here: HF is the calcula-
tion of the Compton scattering full cross section from Eq. (27)
in the Hartree-Fock (HF) one-configurational approximation
with provision for the radial relaxation effect, m is the maximal
(fixed for every scattering angle) value of the scattering
full HF cross section, and IC indicates that the intershell
correlations (IC) are considered by Eqs. (22) and (23) in the
scattering full cross-section 2sεl channel. Figure 3 shows two
effects: (1) Intershell correlations result in redistribution of
scattering intensity in the maximum region of the Compton
profiles. When ω1 = 11 keV and θ is from 60◦ to 120◦

the value of this redistribution turns out to be ∼0.9%–1.3%.
(2) The more the scattering angle is, the wider the influence
region of intershell correlations. This result confirms the
well-known fact (Kane [1], Karazija [13]) that the more
the scattering angles are, the wider the Compton profiles.
We shall notice that the determined insignificant value of
the intershell correlation influence on the full cross section
from Eq. (27) is primarily conditioned by two circumstances.
First, when ω1 = 11 keV, the influence of this effect in
the 2sεl scattering channel is efficiently extinguished by
high values of the scattering cross section in the 2p5εl

scattering channel. Second, in l-partial channels of 2sεl

scattering the intershell correlations affect amounts practically
to magnitudes of greater order. Indeed, considering this effect
enlarges the HF cross section in ∼9% for l = 0, lessens
the HF cross section in ∼30% for l = 1, enlarges the
HF cross section in ∼3% for l = 2, and lessens the HF
cross section in ∼7% for l = 3 (Fig. 4). In addition, the
intershell correlations affect results in the redistribution of
scattering intensity both for the fixed l harmonic and between
harmonics. However (see Table I), the role of the dipole
(l = 1) harmonic significantly sinks if compared with the
quadrupole harmonic (l = 2). In addition, the role of the
intershell correlation is insignificant in the quadrupole har-
monic scattering (∼3%). This result qualitatively reproduces
the same in the formalism of GOS and RPAE in the case
of the Compton photon and electron scattering by an atom
[9,10].

In Fig. 5, the calculation results of the scattering full
cross section from Eq. (27) are compared with the results
of the synchrotron experiment in the work by Jung et al.
[16]. Here, we did not include the final 1sεl state of the
nonresonant Compton scattering since its contribution to the
cross section at ω2 � ω1 − I1s

∼= 10.13 keV turned out to be
σ1s(103r2

0 eV−1 sr−1) ∼ 10−2. The doubly differential cross
section of Rayleigh elastic scattering by atom electrons with
provision for a wide hierarchy of many-particle effects is
calculated by using the techniques of the authors of Ref. [20].
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FIG. 4. Doubly differential cross sections of the nonresonance Compton unpolarized x-ray photon scattering from Eq. (20) by the Ne atom in
fixed l harmonics in the scattering partial 2sεl channel. Theory of the present work is as follows: continuous curve indicates one-configurational
Hartree-Fock approximation with provision for the radial relaxation effect; broken curve indicates the considered intershell correlations.
h̄ω1 = 11 keV, θ = 60◦, �beam = 5 eV.

The experimental profile of the scattering cross section is
obtained in relative units. Thereby we tied the results of our
calculation to the maximum of the experimental spectrum
when ω2

∼= 10.97 keV. The theory of our work agrees well
with the experiment. But the high precision of the experiment
(inaccuracy of the measurements is ∼2%) does not allow one to

see the intershell correlations effect, whose magnitude does not
exceed ∼0.5%–1.0% at the experimental spectral resolution
�beam = 250 eV. Therefore, from a methodological standpoint
the one-configurational Hartree-Fock approximation (with
provision for the radial relaxation effect) remains at 2%
inaccuracy and the spectral resolution is the quite reliable
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FIG. 5. Doubly differential cross section of the unpolarized x-ray
photon scattering by the Ne atom at h̄ω1 � I1s . Theory of the present
work is as follows: light circles and up-triangles indicate contributions
of 2s → εl and 2p → εl transitions to nonresonance Compton
scattering accordingly; down-triangles indicate the contribution of
Rayleigh scattering (Hopersky et al. [20]); the continuous curve
indicates the full theoretical scattering cross section with provision
for radial relaxation effects and intershell correlations. Dark circles
indicate the synchrotron experiment (in relative units) by Jung et al.
[16]. �beam = 250 eV (from Ref. [16]).

method for calculation of absolute values and forms of the
doubly differential cross section of the nonresonance Compton
high-energy x-ray photon scattering by a free atom.

IV. CONCLUSION

Using the example of the Ne atom, it is stated that
the intershell correlations effect changes the full, doubly
differential scattering cross section of the one-configurational
Hartree-Fock approximation in ∼0.9%–1.3%, when the in-
cident photon energy is 11 keV (it is much more than the
energy of the core shell ionization thresholds) and the studied
range of the scattering angles is from 60◦ to 120◦. It is
stated that the change of incident photon energy results in
changing the participating degree of partial l symmetries of
continuous spectrum electrons in the scattering process. It is
also determined that the intershell correlations effect has a
different influence on the scattering partial l cross sections
in the scattering 2sεl channel. These two facts qualitatively
reproduce the physical results obtained in the formalism of
GOS and RPAE in studies of Compton photon and electron
scattering by an atom (Amusia et al. [9,10]) and give the
theoretical description of the intershell correlation dynamics
a complicated character. It should be noted that the role
of this effect in studied scattering spectra can significantly
increase according to the decrease of incident photon energy.
It should also be expected that the creation of the x-ray
free electron laser (Plönjes et al. [21]), which can generate
the photons with energy to 12.4 keV (the wave length is
∼1.0 Å), enables a detailed and high-sensitivity experimental
observation of the intershell correlations effect in the non-
resonance Compton high-energy x-ray photon scattering by a
free atom.
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