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The two-body Coulomb Schrödinger equation with different types of nonhomogeneities are studied. The
particular solution of these nonhomogeneous equations is expressed in closed form in terms of a two-variable
hypergeometric function. A particular representation of the latter allows one to study efficiently the solution in
the asymptotic limit of large values of the coordinate and hence the associated physics. Simple sources are first
considered, and a complete analysis of scattering and bound states is performed. The solutions corresponding to
more general (arbitrary) sources are then provided and written in terms of more general hypergeometric functions.
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I. INTRODUCTION

A large variety of physical and mathematical problems
can be formulated in terms of nonhomogeneous differential
equations. The importance of this topic is put in evidence by
the fact that it is considered in most of the undergraduate
and graduate mathematical books for physicists, engineers,
and so on. In electromagnetic theory, for example, the study
of fields in presence of sources is directly related to the
theory of nonhomogeneous differential equations [1]. Another
very important branch of application is found in atomic
physics; more precisely, nonhomogeneous equations play a
fundamental role in scattering theory (see, e.g., Refs. [2,3]).
The dynamics of the collision between two particles is ruled
by the Schrödinger equation. Every collisional process can
be associated, within the time-independent approach, to an
initial condition corresponding to the solution of a simplified
Hamiltonian where some of the interactions of the full
Hamiltonian are neglected. The wave function satisfying the
full Schrödinger equation is then generally written as the sum
of the simplified and the scattering solution. This separation
leads straightforwardly to a nonhomogeneous equation where
the source is the product of the neglected interactions and
the asymptotic solution [2,3]. This is exactly the line fol-
lowed by, e.g., the exterior-complex-scaling approach [4,5].
Another, though different, application is found when building
the asymptotical cosinelike stationary function within the
J-matrix method [6–8]. Both approaches, which are widely
and successfully used in treating a large variety of scattering
problems, are based on the solution of nonhomogeneous (or
driven) Schrödinger equations. The aim of this article is
to present a closed form solution for a driven Schrödinger
equation which includes a Coulomb interaction: This case is
of fundamental importance for the atomic physics community.

Because of mathematical difficulties, only in few cases
a direct solution of nonhomogeneous differential equations
is considered. The standard method to deal with nonhomo-
geneous Schrödinger equations is based on the use of the
Green function. In scattering studies, the solution can be
written as an integral of the product of a Green function,
the interaction and the asymptotic solution [2,3]. One of
the advantages related to this approach is that it provides
directly the appropriate asymptotic behavior of the solutions.

However, as shown by the authors (see Ref. [9]), it can lead to
erroneous conclusions when dealing with long-range Coulomb
interactions and inappropriate initial states. This shows the
relevance of counting with exact and closed form solution for
driven Schrödinger equations as those presented below.

In this article, a nonhomogeneous Schrödinger equation
which includes a Coulomb interaction is solved in closed form.
The formulation of the problem is presented in Sec. II A. The
solution, as well as the driven term, are expanded in terms
of spherical harmonics leading to a set of nonhomogeneous
radial equations. For the Coulomb interaction and for particular
types of sources (decreasing exponential times a power of the
coordinate), a closed form solution can be found and expressed
in terms of a generalized hypergeometric function in two
variables (Sec. II B). A representation of this function as a
series of product of Kummer and Gauss functions permits a
derivation of an expression for the asymptotic behavior of the
solutions (Sec. II C). A physical study of the Coulomb wave
equation with a simple source is provided in Sec. III A for
both positive and negative energies. The source considered
is general enough to the used as the basic brick for almost
any source. This is discussed in Sec. III B, where the formal
solution is provided in terms of a generalized hypergeometric
function of three variables. A summary and concluding
remarks are given in Sec. IV. Atomic units (h̄ = e = 1) are
used throughout.

II. THE NONHOMOGENEOUS TWO-BODY
COULOMB PROBLEM

A. Formulation of the problem

As mentioned in the introduction different types of non-
homogeneous two-body Coulomb problem are related to
a number of physical applications. We consider thus the
following general problem:

[H − E]�(r) = �0(r), (1)

where the Hamiltonian H = − 1
2µ

∇2 + z1z2
r

includes the ki-
netic energy (reduced mass µ) and a Coulomb potential for
two charges z1 and z2 (a subcase of interest is given by the
case when one of the charges is zero). The potential being
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spherically symmetric, the wave function �(r) may be written
with a partial waves decomposition

�(r) =
∑
l,m

Rlm(r)Ym
l (θ,ϕ), (2)

where Ym
l (θ,ϕ) represent spherical harmonics [10] (l and

m represent the eigenvalues of, respectively, the angular
momentum operators L and Lz). Similarly, we may expand
the source �0(r) as

�0(r) =
∑
l,m

clmFl(r)Ym
l (θ,ϕ), (3)

where the radial part Fl(r) does not depend on m. Using the
orthonormalization property of the spherical harmonics [10],
the radial parts are then related through:[

− 1

2µ

(
d2

dr2
+ 2

r

d

dr
− l(l + 1)

r2

)
+ z1z2

r
− E

]
Rl(r)

= Fl(r), (4)

where Rlm(r) = clmRl(r).
So far, no assumption has been made over the functions

Fl(r) of the radial source. In order to maintain our study
as general as possible, we consider now the following rather
general formulation

Fl(r) = 1

r
fl(r) = 1

r

(
e−λrrl

∞∑
s=0

al,sr
s

)
, (5)

which implies that rFl(r) is analytic. No assumption is made
on λ; when �(λ) > 0, the source vanishes at large distances.
The transformation

Rl(r) = hl(r)

r
(6)

converts Eq. (4) into the following[
− 1

2µ

(
d2

dr2
− l(l + 1)

r2

)
+ z1z2

r
− E

]
hl(r)

= fl(r) = e−λrrl

∞∑
s=0

al,sr
s . (7)

A particular case of this equation have been discussed and
solved in terms of Laguerre function expansions [7,8].

The solutions of the nonhomogeneous differential equa-
tion (7) are given by the linear combination

hl(r) =
∞∑

s=0

al,shl,s(r), (8)

where hl,s(r) are solutions of the simpler equation[
− 1

2µ

(
d2

dr2
− l(l + 1)

r2

)
+ z1z2

r
− E

]
hl,σ (r)

= al,σ e−λrrl+σ . (9)

Here, we have used σ instead of s to have the opportunity
to consider real or complex values of the power of the
nonhomogeneity. The general solution of (9), hG

l,σ (r), can be
written as a sum of the three terms

hG
l,σ (r) = A

Reg
l v

Reg
l (r) + A

Irreg
l v

Irreg
l (r) + hP

l,σ (r). (10)

The first two, v
Reg
l (r) and v

Irreg
l (r), are the solutions of the

corresponding homogeneous equation, which is the well-
known Coulomb differential equation. Setting the energy
E = k2/(2µ) hereafter taken as positive, and defining the
Sommerfeld parameter α = z1z2µ/k, the solutions are given
by [3,11]:

v
Reg
l (r) = NC(l)rl+1eikr

1F1

(
iα + l + 1

2l + 2

∣∣∣∣ ; −2ikr

)
(11a)

v
Irreg
l (r) = NC(l)rl+1eikrU

(
iα + l + 1

2l + 2

∣∣∣∣ ; −2ikr

)
, (11b)

where 1F1(a,b; z) and U (a,b; z) represent the regular and
irregular solutions of the Kummer equation [12,13]. Both
solutions, regular [vReg

l (r)] and irregular [vIrreg
l (r)] at the origin,

are real functions. The normalization constant

NC(l) = (2k)l+1

2

|�(iα + l + 1)|
�(2l + 2)

e− π
2 α, (12)

is chosen in such a way to have the following large distance
behaviors

v
Reg
l (r) −→ sin[�C(l) + σC(l)], (13a)

v
Irreg
l (r) −→ cos[�C(l) + σC(l)], (13b)

where

�C(l) = kr − α ln(2kr) − π

2
l (14)

σC(l) = Arg[�(iα + l + 1)]. (15)

One of the aims of this article is to provide useful
analytic expressions for the particular solution hP

l,σ (r) and its
asymptotic behavior. The second aim is to use these results as
basic bricks for general type of sources (Sec. III).

To set the problem in a more appropriate form, we need to
make a series of simple transformations in Eq. (9). We first
introduce the change of function

hP
l,σ (r) = (−2µ)

(−2ik)σ+1
al,σ eikrrl+1fl,σ (r) (16)

which leads to[
r

d2

dr2
+ (2l + 2 + 2ikr)

d

dr
− 2αk + 2ik(l + 1)

]
fl,σ (r)

= (−2ik)σ+1e−(λ+ik)r rσ . (17)

Second, the change of variable u = −2ikr , transforms the
previous into a nonhomogeneous Kummer-type equation [13]
of the form[

u
d2

du2
+ (c − u)

d

du
− a

]
fl,σ (u) = eρuuσ , (18)

where the following definitions have been used

a = iα + l + 1, c = 2l + 2, ρ = 1

2

(
1 + λ

ik

)
. (19)

Equation (18) is the starting point of the present study. The
two solutions of the corresponding homogeneous equation are
known. The particular solution has been considered in the book
of Babister [14], but no complete study was presented. Other
authors, like, for example, Buchholz [15], have considered a
particular type of nonhomogeneous Kummer-like equations.
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B. A particular solution hP
l,σ (r) of the nonhomogeneous

differential equation (18)

The nonhomogeneous differential Eq. (18) can be solved
first by expanding the exponential factor eρu and making then

use of the procedure explained in the book of Babister [14]. A
closed form of the particular solution of Eq. (18) is given by
Eq. (4.219) [14]:

fl,σ (u) = uσ+1
∞∑

m=0

∞∑
n=0

�(σ + 1 + a + m + n) �(σ + 1 + n) �(σ + c + n)

�(σ + 1 + a + n) �(σ + 2 + m + n) �(σ + 1 + c + m + n)

un+mρn

n!
, (20)

as long as σ is not a negative integer. This double series
can be related to the series representation of a two variables
hypergeometric function, named �(1),

�(1)

(
a1,a2| b1,b2

c1| d1,d2

∣∣∣∣ ; x1,x2

)

=
∞∑

m1=0

∞∑
m2=0

(a1)m1 (a2)m2 (b1)m1 (b2)m1+m2

(c1)m1 (d1)m1+m2 (d2)m1+m2

x
m1
1 x

m2
2

m1!m2!
, (21)

which we have introduced and discussed in Ref. [16] in
a different context ((a)n = �(a + n)/�(a) represents the
Pochhammer symbol in terms of Gamma functions). By direct

comparison, the parameters ai,bi,c1,di and the variables xi

(i = 1,2) read

a1 = σ + 1, a2 = 1, (22a)

b1 = σ + c = 2l + 2 + σ,
(22b)

b2 = c1 = a + σ + 1 = iα + l + 2 + σ,

d1 = σ + 2, d2 = σ + c + 1 = 2l + 3 + σ. (22c)

x1 = ρu = −(ik + λ)r, x2 = u = −2ikr. (22d)

The particular solution hP
l,σ (r) of Eq. (9) can thus be expressed

in terms of �(1) as follows:

hP
l,σ (r) = (−2µ) al,σ

1

(σ + 1) (2l + 2 + σ )
eikrrl+σ+2�(1)

(
σ + 1,1|2l + 2 + σ,iα + l + 2 + σ

iα + l + 2 + σ |2 + σ,2l + 3 + σ

∣∣∣∣ ; −(ik + λ)r, − 2ikr

)
.

(23)

Even for real values of σ , λ, and al,σ , i.e., a real source, the
particular solution hP

l,σ (r) is not necessarily real.
The �(1) function was introduced in Ref. [16] to express

the solution of a nonhomogeneous equation different from
(18) and had equal variables x1 = x2. In this sense, the
appearance—here—of a �(1) function, with x1 �= x2, is sur-
prising. In Ref. [16] we have established a number of properties
of the function �(1), which is a Kampé de Fériet function [17],
and provided series and integral representations. However, to
study the asymptotic behavior of hP

l,σ (r), we found it neces-
sary to derive another—more adequate—series representation
which is derived in Ref. [18]. Indeed, in the limit r → ∞ it is
useful to uncouple as much as possible the variables ρ and u

which will be, respectively, bound and large. Using the results
given in Ref. [18], the solution hP

l,σ (r) can be expressed as

hP
l,σ (r) = (−2µ)al,σ

eikr r l+σ+2

(σ + 1) (2l + 2 + σ )

×
∞∑

m=0

(2ikr)m

m!

(σ + 1)m(iα + l + 2 + σ )m
(2 + σ )m(2l + 3 + σ )m

× 1F1

(
iα + l + 2 + σ + m

2l + 3 + σ + m

∣∣∣∣ ; −2ikr

)

× 2F1

( −m,2l + 2 + σ

iα + l + 2 + σ

∣∣∣∣ ;
1

2

(
1 + λ

ik

))
. (24)

This representation has the particularity of being a series
of product of Kummer and Gauss functions depending—
separately—on the coordinate r(or u) and the parameter ρ =
1
2 (1 + λ

ik
); the coupled dependence on these quantities, which

was nontrivial in (23), was resummed in a particular manner.
Note that, because of the negative integer as first parameter,
the Gauss function 2F1 reduces to a polynomial of order m.

The special case λ = 0, for which the exponential term of
the source reduces to 1, may be of interest. Mathematically,
this situation has been considered by Babister (Eq. (4.233)
of Ref. [14]), and the particular solution can be expressed
in terms of a Lommel function. Setting λ = 0 in formula
(24), however, does not provide any substantial simplification
since the Gauss function for argument equal 1/2, even in our
polynomial case, does not reduce to a simple function. For
λ → ∞ the sources vanishes exponentially. By asymptotic
analysis of expression (24) it can be shown that the particular
solution disappears as λ−σ−1.

C. The asymptotic behavior of the particular solution

We now investigate the asymptotic behavior (r → ∞) of
hP

l,σ (r); in this limit, both x1 and x2 are large, while the ratio
x1/x2 takes the finite constant value ρ = 1

2 (1 + λ
ik

). After a
careful investigation, we found that among all the available
representations of the �(1) function, the one given by (24)
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considerably facilitates the asymptotic study. Using the results
given in Ref. [18] with our parameters a2 = 1, d2 = b1 + 1,
and b2 = c1, it reads

�(1) −→ (−x2)−c1
�(a1 + 1) �(b1 + 1)

�(a1 + 1 + b1 − c1)

× 2F1

(
a1,b1

a1 + 1 + b1 − c1

∣∣∣∣; 1 − x1

x2

)

+ �(a1 + 1)�(b1 + 1)

�(c1)
ex2x

c1−b1−1−a1
2

× 2F1

(
b1,a1

c1

∣∣∣∣ ;
x1

x2

)
− a1b1

x2
2[

ex1

(
x1

x2

)b1−c1

+ �(b1)

�(c1 − b1)
(−x1)−b1x

c1−b1
2

]
.

(25)

The asymptotic form of the particular solution hP
l,σ (r), given

by (23), becomes

hP
l,σ (r) −→ −2µal,σ

(
C1r

−iαeikr + C2r
iαe−ikr

+C3r
σ+le−λr + C4

eikr

r2+2l
r iα

)
, (26)

where

C1 = (2ik)−(iα+l+σ+2) �(2l + 2 + σ ) �(1 + σ )

�(−iα + l + 2 + σ )

× |�(iα + l + 2 + σ )|2|�(iα − l − 1 − σ )|2
|�(iα + l + 1)|2|�(iα − l)|2

× 2F1

(
σ + 1,2l + 2 + σ

−iα + l + 2 + σ

∣∣∣∣; 1

2

(
1 − λ

ik

))

C2 = (−2ik)iα−l−σ−2 �(2l + 2 + σ ) �(1 + σ )

�(iα + l + 2 + σ )

× 2F1

(
σ + 1,2l + 2 + σ

iα + l + 2 + σ

∣∣∣∣; 1

2

(
1 + λ

ik

))

C3 = −(2ik)iα−l−2(ik + λ)−iα+l ,

C4 = −�(2l + 2 + σ )

�(iα − l)
(ik + λ)−(2l+2+σ )(−2ik)iα−l−2.

For large values of r , the term associated to C4 goes to zero
faster than those related to C1 and C2 because of the power
1/r2+2l . Moreover, when �(λ) > 0, the exponential decrease
eliminates the term associated to C3. Thus, in this case, the
asymptotic behavior of hP

l,σ (r) reduces to

hP
l,σ (r) −→ −2µal,σ (C1r

−iαeikr + C2r
iαe−ikr), (27)

showing a linear combination of incoming and outgoing waves.

III. APPLICATIONS

In this section we shall investigate several physical situa-
tions involving different types of sources �0(r).

A. Simple source

We take σ = s with s = 0,1, . . . , and shall consider, sep-
arately, the cases of positive (respectively, negative) energies
E, which correspond to an expected oscillating (respectively,
exponentially decreasing) asymptotic behavior. For integer
values of σ , the squared moduli in C1 reduce to 1; hence, if λ is
real, we have C1 = C∗

2 . Below we shall consider that �(λ) > 0,
so the asymptotic form is given by (27). For convenience we
set

2F1

(
s + 1,2l + 2 + s

iα + l + 2 + s

∣∣∣∣; 1

2

(
1 + λ

ik

))
= |2F1|ei�. (28)

1. Positive energies

Consider the simple case of the radial source given by (9),
i.e., al,se

−λrrl+s , where λ is real and positive and l general.
After some manipulations, the asymptotic form (27) of the
particular solution can be written as

hP
l,s(r) −→ Nsource cos[�C(l + s + 2) + δ(l,s,λ)]. (29)

with

δ(l,s,λ) = σC(l + s + 1) − �(l,s,λ), (30a)

Nsource = −2µal,σ

(1)s(2l + 2)s
(2l + 2)2s+2

|2F1|
NC(l + s + 1)

. (30b)

where the functions NC(l), �C(l), and σC(l) are defined by
(12), (14), and (15), respectively.

In (29), the phase �C(l + s + 2) appears shifted when
compared to �C(l) because of the presence of the power rs

in the source. In addition, the first contribution to the phase
shift δ(l,s,λ), is the Coulomb phase σC(l + s + 1) with a
modified l, again due to the presence of rs in the source. The
second contribution, −�(l,s,λ), depends not only on s but
also on the λ parameter related to the exponential decay of the
source.

While the prefactor Nsource depends on the source itself
through al,σ , λ, and s, we could introduce some normalization
in such a way that the solution hl,s(r) behaves at large
values of the coordinates as a pure cosine function with unit
amplitude. The regular v

Reg
l (r) and irregular v

Irreg
l (r) solution

of the homogeneous equation are real functions. According
to Eq. (29), for real values of al,σ , i.e., a real source, the
particular solution hP

l,σ (r) is also real. This is a priori not at all
obvious.

In Fig. 1 we plot hP
l,s(r) as a function r , for positive

energy E = 1, z1z2 = −1, µ = 1, al,s = 1, λ = 1, l = 0, and
for s = 0,1. The asymptotic limit of the solution, Eq. (29),
was included in the plot for comparison. The first thing to
be noted is that the solution hP

l,s(r) is indeed a real definite
function. In addition, it is regular at the origin and has an
oscillatory behavior similar to v

Reg
l (r) aside from a phase shift.

The fact that the function is real and its maxima are bounded
illustrates the cosine asymptotic behavior (29). Since for λ > 0
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FIG. 1. (Color online) The particular solution hP
l,s(r) (solid lines

and open circles) and its asymptotic form (solid lines and diamonds)
are plotted as a function of r for l = 0, z1z2 = −1, µ = 1, al,s = 1
and for positive energy E = 1; (a) s = 0 and (b) s = 1.

the source decreases exponentially for large r , we expect
the solution to possess the Coulomb-like asymptotic behavior
related to the homogeneous equation, i.e., the behaviors (13a)
and (13b).

It is interesting to notice that even in the case s = 0, a
phase shift with respect to the corresponding Coulomb phase
σC(l) appears. We can understand the physics of the problem
assuming that there are two contributions to the flux of particles
described by the wave function: one is an external stationary
flux, while the other is the one generated by the source. Indeed,
asymptotically, the wave function can be written as a cosine
function [see Eq. (29)] with the Coulombic phase �C shifted
by the quantity δ(l,s,λ) which takes into account the difference

between the contributions to the whole flux. Playing with the
parameters λ, k, and s, the phase shift δ(l,s,λ) can be adjusted
to the one of the external flux, i.e., reduced to the Coulomb
phase shift σC(l). With such a choice, no contribution from the
source would be observed at large distances, and hP

l,s(r) would
behave exactly as the second solution of the homogeneous
functions v

Irreg
l (r) of (10). Thus, a kind of Ramsauer-Townsend

effect [3] associated to the source would be observed.

2. Negative energies

For negative energies E, and in the case of an attractive
potential z1z2 < 0, we expect the solution hP

l,s(r) to have
an exponentially decreasing behavior at large values of the
coordinate r . One way of getting this behavior is obtained
through a rotation to the complex plane of the momentum;
indeed, replacing k by iκ with κ > 0, the exponential factor
eikr of (24) is transformed into e−κr . This analytic continuation
also leads to iα = z1z2µ

κ
and E = −κ2/2µ.

Before considering the particular solution hP
l,s(r), let us

have a look at the regular v
Reg

l (r) and the irregular v
Irreg
l (r)

solutions. It can be easily verified that both functions diverge
exponentially at large distances for general values of the
parameter κ . The problem can be avoided, as done generally in
quantum mechanics (e.g., hydrogen atom) [10], by choosing
particular values of κ:

κ = −z1z2µ

n
; n = l + 1 + nr (nr = 0,1,2, . . .), (31)

where n is a quantum number. In this case, the 1F1 and the
U functions of (11a) and (11b) reduce to polynomials, and
the regular and irregular solutions are well behaved at large
distances.

The above choice of κ does not guarantee that the particular
solution hP

l,s(r) is also well behaved. On replacement of k by
iκ in the asymptotic expression (26), we observe that C2 must
vanish in order to have a bound behavior for hP

l,s(r). This
implies

1

�
(

z1z2µ

κ
+ l + 2 + s

)
× 2F1

(
s + 1,2l + 2 + s
z1z2µ

κ
+ l + 2 + s

∣∣∣∣; 1

2

(
1 − λ

κ

))
= 0. (32)

Consider first κ = κN values such that z1z2µ

κN
+ l + 2 + s =

−N where N is a non-negative integer, expression (32)
becomes

(
1 − λ

κN

)N+1

2F̃1

(
s + 1 + N + 1,2l + 2 + s + N + 1

N + 2

∣∣∣∣; 1

2

(
1 − λ

κN

))
= 0, (33)
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where 2F̃1 is the regularized 2F1 function. Generally, condition
(33) will be satisfied only for very particular values of λ and
are therefore of limited interest. For the obvious case κN = λ,
only one particular solution exists and is given by

hP
l,s(r) = (−2µ)al,s

e−λrrl+s+2

(s + 1)(2l + 2 + s)

× 2F2

( −N,1

σ + 2,2l + 3 + σ
|; 2λr

)
, (34)

i.e., a decreasing exponential times a polynomial of order l +
s + 2 + N ; N = 0 will give the lowest energy level. Note that,
in this case, the κN values may also correspond to well-behaved
solutions of the homogeneous equation [see Eq. (31)].

For general values of λ, the condition (32) is satisfied for
discrete κ = κM values satisfying

2F1

(
s + 1,2l + 2 + s
z1z2µ

κM
+ l + 2 + s

∣∣∣∣; 1

2

(
1 − λ

κM

))
= 0. (35)

These κM values will depend on λ, s, and l; they cannot be given
in closed form since there are no analytic formulas for the roots
of the Gauss function for general parameters (furthermore, κM

appears not only in the argument but also in the third param-
eter). A given κM value will generally lead to exponentially
divergent homogeneous solutions. Of course, it may happen
that λ coincides with one of the values κN described above. In
that case, one of the negative energy states will correspond to
the solution (34) while all the others will be associated to the
zeros coming from condition (35). In all cases, the particular
solution hP

l,s(r) corresponds to a bound state satisfying Eq. (9),
thus validating the analytic continuation k → iκ .

In Fig. 2, the function 2F1 of condition (35) is shown as a
function of κ for λ = 0.56, s = 0, l = 0, µ = 1, and z1z2 =
−1. We observe the occurrence of nine zeros. However, there
are an infinite number of them due to the fact that there are
infinite branches of the tan-like function in the region 0 to 1
of κ; they accumulate close to κ = 0.

0.1 0.2 0.3 0.4 0.5
-2

-1

0

1

2

2
F

1

κ

FIG. 2. The function of Eq. (35) (which defines the bound states
of the particular solution of the nonhomogeneous equation) is plotted
against κ (open circles). The plot corresponds to l = 0, s = 0, z1z2 =
−1, and µ = 1.
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FIG. 3. (Color online) The function hP
l,s(r) is plotted as a function

of r for l = 0, s = 0, z1z2 = −1, µ = 1, and al,s = 1. The first three
bound states corresponding to κ = 0.6073, 0.3802, and 0.2758 are
presented.

In Fig. 3, we plot the first three bound states of hP
l,s(r)

corresponding to κ = 0.607, 0.380, and 0.275, and with λ =
0.56, s = 0, l = 0, µ = 1, al,s = 1, and z1z2 = −1. As we can
see the number of nodes increases by 1 as happens with the
hydrogen atom.

B. General source

We will now show how to treat the problem of a general
source fl(r) in the nonhomogeneous equation (7). The case of
a simple source studied in the previous section will be used to
build the solution for the general source. Take again the case
of positive energies E.

Consider first the following definition for the function fl(r)

fl,p(r) = 2γ

�(2l + 2)

[
�(1 − p)

�(2l + 2 − p)

]− 1
2

×
∞∑

s=0

(p)s
s!(2l + 2)s

(e−λr (2γ r)s+l),

= 1

�(2l + 2)

[
�(1 − p)

�(2l + 2 − p)

]− 1
2 e−λr

r
(2γ r)l+1

× 1F1

(
p

2l + 2

∣∣∣∣ ; 2γ r

)
, (36)

the coefficients of (5) being chosen in order to construct a
Kummer function. This particular choice is dictated by the
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following considerations. We take γ = λ and choose p as a
negative integer −n, so that the Kummer function reduces to
a polynomial [13]; in this case, the source fl(r) reads

fl,n(r) = 1

r

[√
n!

�(2l + 2 + n)
e−λr (2λr)l+1L(2l+1)

n (2λr)

]

= 1

r
ϕn,l(λ,r), (37)

where L(α)
n (z) are Laguerre polynomials [13]. It is known that

the functions ϕn,l(λ,r) form an orthogonal and complete set of
functions and satisfy the following relations [13]:

∫ ∞

0
ϕn,l(λ,r)

1

r
ϕn′,l(λ,r) dr = δn,n′ , (38a)

∑
n

ϕn,l(λ,r ′)
1

r
ϕn,l(λ,r) = δ(r − r ′). (38b)

Because of these properties, a general function radial Fl(r) of
the source (3), may be expressed through an expansion

Fl(r) = 1

r
fl(r) =

∑
n

dn,lϕn,l(λ,r), (39)

and hence the general source given by (3) as

�0(r) = 1

r

∑
l,m

cl,mdn,lϕn,l(λ,r)Ym
l (θ,ϕ). (40)

Now, from our study in Sec. II, we know the solution of
the nonhomogeneous differential equation (7) with its source
fl,p(r) defined by (36); according to (8) the particular solution
is given by

hP
l,s,p(r) = 1

�(2l + 2)

[
�(1 − p)

�(2l + 2 − p)

]− 1
2

× (2γ )l+1
∞∑

s=0

(p)s
s!(2l + 2)s

(2γ )shP
l,s(r) (41)

and replacing the definition (23) of hP
l,s(r) in terms of �(1), we

obtain

hP
l,s,p(r) =

[
�(1 − p)

�(2l + 2 − p)

]− 1
2 (−2µ)al,s

�(2l + 2)
reikr (2γ r)l+1

∞∑
s=0

(p)s(1)s
s!(2)s(2l + 3)s

(2γ r)s

×�(1)

(
s + 1,1|2l + 2 + s,iα + l + 2 + s

iα + l + 2 + s|2 + s,2l + 3 + s

∣∣∣∣ ; −(ik + λ)r, − 2ikr

)
. (42)

Using the power series definition of �(1) [16] and some properties of Pochhammer symbols, this solution may be also
represented in terms of a three-variable hypergeometric function

hP
l,s,p(r) =

[
�(1 − p)

�(2l + 2 − p)

]− 1
2 (−2µ)al,s

�(2l + 2)
eikr r(2γ r)l+1�

(
1,p|1,2l + 2|iα + l + 2

2l + 2|iα + l + 2|2,2l + 3

∣∣∣∣ ; −(ik + λ)r,−2ikr,2γ r

)
, (43)

where � is the following generalized hypergeometric function defined as

�

(
a1,a2|b1,b2|c1

d1|e1|f1,f2

∣∣∣∣ ; x1,x2,x3

)
=

∞∑
m1=0

∞∑
m2=0

∞∑
m3=0

(a1)m2 (a2)m3 (b1)m1+m3 (b2)m1+m3 (c1)m1+m2+m3

(d1)m3 (e1)m1+m3 (f1)m1+m2+m3 (f2)m1+m2+m3

x
m1
1

m1!

x
m2
2

m2!

x
m3
3

m3!
,

which is convergent for any value of the variables xi ∈ [0,∞).
In summary, according with the previous expressions, the

particular solution of the general nonhomogeneous Eq. (1) is
given by

�P (r) =
∑
l,m

cl,mdn,l

hP
l,s,n(r)

r
Ym

l (θ,ϕ),

where the particular solution hP
l,s,n(r), corresponding to the

source fl,n(r) of Eq. (37), is given by the compact expressions
(42) or (43) with p = −n. This is one of the main results of
this article. It provides the particular solution corresponding
to the emission of particles from any source in presence
of a Coulomb potential. The solutions of the correspond-
ing homogeneous equation can be summed to represent
the general solutions of the nonhomogeneous differential
equation. The function �(r) contains the dynamics of the
problem.

IV. SUMMARY AND CONCLUDING REMARKS

In this article we provide explicit solutions for the non-
homogeneous Schrödinger equation containing a Coulomb
interaction, with different types of nonhomogeneities. The
simplest case, corresponding to a driven term defined by the
product of an exponential e−λr and a power rσ , is studied in
details. The particular solution is expressed in closed form in
terms of the two-variable hypergeometric function �(1) [16].
The use of a series representation in terms of products of
Kummer and Gauss functions separates, term by term, the
coordinate r from the parameter ρ which is related to λ and
the energy appearing in the exponential part of the source; it
is also particularly useful to derive the asymptotic limit of the
wave function for large values of the coordinate r . A complete
discussion about the dynamics of the system contained in
the particular solution was presented for both positive and
negative energies. For sources with real positive values of
λ and non-negative integer s values of σ , the asymptotic
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behavior described by the scattering solution corresponds to a
superposition of incoming and outgoing waves; these can be
expressed as a standing cosine wave function with a nonzero
phase shift between the incoming and outgoing parts. This
phase shift is due not only to the one produced by the Coulomb
potential but also to the phase shift observed between an
external flux of particles and that generated by the source.
The combination of the particular solution with the general
solution of the corresponding homogeneous equation can be
chosen in such a way to attribute to the total wave function
different type of fluxes.

For negative energy, bound states can be constructed for any
value of λ. Through an analytic continuation of the momentum,
imaginary values of k can be found in such a way to enforce the
scattering solution to decrease exponentially at large distances.
In that way particular values of k are obtained leading to
a discretization of the energy. For these energy values the
homogeneous solutions generally diverges at large distances.
There are other possible values of k that allow the existence of
one bound state both for the solutions of the homogenous and
the nonhomogeneous equation, but that state appears only for
very particular λ values.

Very interestingly, we found that for real sources, the par-
ticular solution of the nonhomogeneous Coulomb Schrödinger
equation is real, as are the well-known regular and irregular
solutions of the homogeneous equation. This is true for both
positive and negative energies. The results obtained for positive
energies were used, subsequently, as basic bricks to give closed
form expressions for the solution of Schrödinger equation
with general sources. Given the expansion of the source in
terms of spherical harmonics and Laguerre basis functions,
the solution for a Schrödinger equation can be written as a
sum of three-variable hypergeometric functions.

The study presented here can be applied to the study
of wide variety of physical processes and into the under-
standing and extension of very important methods used for
the description of scattering problems. One such example
is the exterior-complex-scaling method which is widely
used in the description of diverse scattering processes; the
method is based on the solution of a driven Schrödinger
equation. Indeed, within this approach, the wave function
describing the scattering process is separated into two terms.
One of them is an approximate state which satisfies a
wave equation not including all the interactions present in
the full Hamiltonian. The second term, which contains the
information about the dynamics of the collision, satisfies a
driven Schrödinger equation and is expected to provide an
outgoing behavior to the solution. While the complex scaling
method has been known for a long time, it was not been
applied to scattering processes until Rescigno and coworkers
implemented a cut-off strategy for the potential appearing in
the driven term of the nonhomogeneous wave equation [19].
The exact solution of a two-body driven equation involving a
Coulomb interaction and the strategy implemented within the
framework of exterior complex scaling is object of our current
investigations.
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Collisions, Université Paul Verlaine-Metz, is also gratefully
acknowledged.

[1] J. D. Jackson, Classical Electrodynamics (John Wiley & Sons,
New York, 1975).

[2] R. G. Newton, Scattering Theory of Waves and Particles (Dover,
New York, 2002).

[3] C. J. Joachain, Quantum Collision Theory (North-Holland,
Amsterdam, 1983).

[4] T. N. Rescigno, M. Baertschy, W. A. Isaacs, and C. W. McCurdy,
Science 286, 2474 (1999).

[5] C. W. McCurdy, M. Baertschy, and T. N. Rescigno, J. Phys. B
37, R137 (2004).

[6] A. D. Alhaidari, E. J. Heller, H. A. Yamani, and M. S.
Abdelmonem, eds., The J-Matrix Method, Development and
Applications (Springer, Berlin, 2008).

[7] H. A. Yamani and W. P. Reinhardt, Phys. Rev. A 11, 1144 (1975).
[8] J. T. Broad, Phys. Rev. A 31, 1494 (1985).
[9] G. Gasaneo and L. U. Ancarani, Phys. Rev. A 80, 062717

(2009).
[10] B. H. Bransden and C. J. Joachain, Physics of Atoms and

Molecules, 2nd ed. (Prentice Hall, Englewood Cliffs, NJ,
2003).

[11] L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-
Relativistic Theory (Pergamon, Oxford, UK, 1965).

[12] A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,
Higher Trascendental Functions (McGraw-Hill, New York,
1953), Vols. I, II, and III.

[13] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions (Dover, New York, 1972).

[14] A. W. Babister, Transcendental Functions Satisfying Non-
homogeneous Linear Differential Equations (The Macmillan
Company, New York, 1967).

[15] H. Buchholz, The Confluent Hypergeometric Function
(Springer-Verlag, Berlin, 1969).

[16] L. U. Ancarani and G. Gasaneo, J. Math. Phys. 49, 063508
(2008).
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