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Convergent close-coupling calculations of positron scattering on metastable helium
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The convergent close-coupling method has been applied to positron scattering on a helium atom in the 2 3S

metastable state. For this system the positronium (Ps) formation channel is open even at zero scattering energy
making the inclusion of the Ps channels especially important. Spin algebra is presented for the general case of
arbitrary spins. A proof is given of the often-used assumption about the relationship between the amplitudes for
ortho-positronium and para-positronium formation. The cross sections for scattering from 2 3S are shown to be
significantly larger than those obtained for the ground state.
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I. INTRODUCTION

There has been continuous interest in positron scattering
from atoms and molecules over the past few decades. Being the
simplest and most available antimatter particle, the positrons
have been widely used as an alternative projectile for atomic
scattering and in antimatter-matter interaction studies.

The theoretical studies of positron scattering on atoms and
molecules are challenging because of the two-center nature
of the problem. The effect of the second center associated
with positronium (Ps) formation manifests itself from low
to medium scattering energies, even below the Ps-formation
threshold region. However, at energies below the Ps threshold
it is still possible to get an accurate solution without including
Ps-formation channels by using sufficiently high angular
momentum states of a target as was shown in [1] in the
case of positron scattering on the ground state of helium.
But when the Ps-formation threshold is zero or negative
then the importance of Ps channels significantly increases
at low energies and in this situation single-center expansion
calculations will be no longer accurate.

For many targets the Ps-formation channel is open start-
ing from zero collision energy. Positron scattering on the
2 3S metastable state of helium is an example of such a
system where the Ps threshold is negative (−2.06 eV).
This system has not been yet studied either theoretically or
experimentally at low energies. To the best of our knowledge,
only a few theoretical calculations [2–4] have been reported
at higher energies where the Ps-formation contribution is
negligible. More recently Hanssen et al. [5] studied Ps
formation in positron-metastable-He collisions at above 50-eV
incident energies by including the Ps(1s) state in their
expansions.

Recently, we reported two-center convergent close-
coupling (CCC) results of positron scattering on the ground
state of helium [6,7] where good agreement between the theory
and experimental data has been achieved. In this work we apply
this formalism to positron scattering on metastable helium. As
yet, no experimental studies have been conducted for positron-
metastable helium scattering. The motivation for this study is
mainly based on the following. First, we would like to check
the applicability of the two-center CCC approach to a system
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with a negative Ps threshold. Second, the recent experimental
achievements on electron scattering from metastable helium
[8], in a group that also has a positron beam, may suggest
that in the future there might be experimental data to test our
calculations. Moreover, there are still unresolved differences
between theory and experiment on electron scattering from
metastable states of He [9,10]. Alternative studies using
positrons instead of electrons may, therefore, shed more light
on the reasons for such discrepancies.

II. FORMALISM

Consider scattering of positron on helium. In the nonrel-
ativistic approach to the problem, the Hamiltonian for this
system is written as

H = H0 + 2

r0
− 2

r1
− 2

r2
+ 1

|r1 − r2|
− 1

|r0 − r1| − 1

|r0 − r2| , (1)

or, equivalently, in another set of the Jacobi coordinates,

H = H0 + 2∣∣R + 1
2ρ

∣∣ − 2∣∣R − 1
2ρ

∣∣ − 2

r2
+ 1∣∣R − 1
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∣∣
− 1

ρ
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2ρ − r2
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where

H0 = − 1
2∇2

0 − 1
2∇2

1 − 1
2∇2

2 ≡ −∇2
ρ − 1

4∇2
R − 1

2∇2
2

is the free Hamiltonian of three particles and r0, r1, and
r2 denote the positions of the positron, electrons 1 and 2,
respectively, while R = (r0 + r1)/2 is the position of the
Ps center of mass (c.m.) relative to the helium nucleus and
ρ = r0 − r1 is the relative coordinate of the positron and
electron 1. For scattering processes and collision energies of
our interest we can simply neglect spin-orbit interactions. The
Hamiltonian (1) conserves two-electron spin s, total spin S of
three particles (two electron and positron), and its projection
M. The two systems of coordinates (r0,r1,r2) and (R,ρ,r2)
are shown in Fig. 1. We emphasize that since there are two
electrons which can form Ps, there are two corresponding sets
of Jacobi coordinates. When necessary we will refer to them
explicitly as (R1,ρ1,r2) and (R2,ρ2,r1). Figure 1 shows one of
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them, where Ps is formed by electron 1; the second is obtained
by exchanging electrons 1 and 2.

The total scattering wave function �SM for the system
satisfies the Schrödinger equation,

(H − E)�SM (x0,x1,x2) = 0, (3)

where E is a total energy and x0,x1, and x2 are all the
coordinates of the particles including spin ones.

For positron scattering from atoms the system has two
centers, one associated with the target atom and the other
with Ps. In addition, positronium can be formed in both para
(p-Ps) and ortho (o-Ps) states depending on spin projections
of electron and positron which form Ps. The two-center
convergent close-coupling approach to positron-He scattering
is based on the expansion of the the total wave function �SM

in terms of states of all asymptotic channels, that is,

�SM ≈ (1 − P12)

⎧⎨
⎩

NHe∑
α

∑
sα

Fα,sα
(r0)ψα,sα

(r1,r2)χsαSM(0,(1,2)) +
NPs∑
β

∑
sβ

[Gβ,sβ
(R1)φi(r2)]ψβ(ρ1)χsβSM((0,1),2)

⎫⎬
⎭ , (4)

where the first term corresponds to expansion in terms of
the helium wave functions ψα,sα

with expansion coefficients
Fα,sα

. The second term corresponds to expansion in terms
of the positronium states ψβ with coefficients Gβ,sβ

. These
coefficients, in turn, depend on spins sα and sβ of He and Ps,
respectively. However, since the total spin of the system is
conserved during scattering and positron cannot change the
target spin the coefficients Fα,sα

and Gβ,sβ
do not depend on

S (this is in contrast to the electron scattering). The NHe and
NPs are the numbers of the atomic and Ps states, respectively.
Indices α and β denote the full set of quantum numbers (except
spins) of the helium atom and Ps, respectively, and run over all
the generated pseudostates. The singlet and triplet He states
have sα = 0 and sα = 1, respectively. The second term allows
for both electrons to form positronium and the sum over sβ

takes into account positronium formation in para (sβ = 0) and
ortho (sβ = 1) states. The residual ion of He+ is described by
φi . The antisymmetrization over two-electron permutations is
included by the operator (1 − P12), where P12 is a permutation
operator which interchanges the electrons 1 and 2. The spin
functions are defined as

χsαSM(0,(1,2)) =
∑

µ0 ,µα

CSM
1
2 µ0 sαµα

χ 1
2 µ0

(0)χsαµα
(1,2), (5)

electron 1
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FIG. 1. Coordinate system for positron-helium scattering.

for the e+ + He channel, and

χsβSM((0,1),2) =
∑

µ2 ,µβ

CSM
1
2 µ2 sβµβ

χsβµβ
(0,1)χ 1

2 µ2
(2) (6)

for the Ps + He+ channel. Inner brackets indicate the bound
particles.

As mentioned earlier positron scattering does not change
the spin state of two electrons. Consequently, if the target is
in the initial state with spin s then only the states with two-
electron spin sα = s can be excited. Therefore, by projecting
(4) onto the initial spin state of the target χsSM(0,(1,2)) we
can extract a particular part of the total wave function (4) for
a given spin state of the target,

�sS(r0,r1,r2) = 〈χsSM(0,(1,2)) | �SM〉. (7)

In order to find the overlap on the right-hand side of Eq. (7) we
perform spin algebra somewhat similar to the electron-helium
scattering case presented in [11]. Using Eqs. (5) and (6) and
the fact that spin functions χsSM form a complete set we get
the following relations:

χsαSM(0,(2,1))

=
∑
s ′

χs ′SM(0,(1,2))〈χs ′SM(0,(1,2))|χsαSM(0,(2,1))〉

= (−1)sα+1χsαSM(0,(1,2)), (8)

χsβSM(0,(1,2))

=
∑
s ′

χs ′SM(0,(1,2))〈χs ′SM(0,(1,2))|χsβSM(0,(1,2))〉

=
∑
s ′

csβs ′Sχs ′SM(0,(1,2)), (9)

and using the previous two relations we also obtain

χsβSM(0,(1,2)) = ∑
s ′ (−1)s

′+1csβs ′Sχs ′SM(0,(1,2)), (10)

where the overlap coefficients are given by the 6j symbol

csβs ′S = (−1)S− 1
2
√

(2sβ + 1)(2s ′ + 1)

{
1
2

1
2 sβ

S 1
2 s ′

}
. (11)
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Now we can rewrite the expansion (4), by explicitly writing
the result of the (1 − P12) operator and using the recoupling
coefficients (11) we get:

�SM ≈
NHe∑
α

∑
sα

Fα,sα
(r0)

{
ψα,sα

(r1,r2)

+ (−1)sψα,sα
(r2,r1)

}
χsαSM(0,(1,2))

+
NPs∑
β

∑
sβ s ′

csβs ′S
{
Gβ,sβ

(R1)ψβ(ρ1)φi(r2)

+ (−1)s
′
Gβ,sβ

(R2)ψβ(ρ2)φi(r1)
}
χs ′SM(0,(1,2)).

(12)

By projecting according to Eq. (7) we get the spatial part of
the total wave function:

�sS(r0,r1,r2)

≈
NHe∑
α

δsα,sFα,sα
(r0)

{
ψα,sα

(r1,r2) + (−1)sψα,sα
(r2,r1)

}

+
∑
sβ

csβsS

NPs∑
β

{
Gβ,sβ

(R1)ψβ(ρ1)φi(r2)

+ (−1)sGβ,sβ
(R2)ψβ(ρ2)φi(r1)

}
. (13)

The Ps spin sβ can be 0 or 1; writing the sum over sβ explicitly
we finally obtain

�sS ≈
NHe∑
α

δsα,sFα,sα
(r0)

{
ψα,sα

(r1,r2) + (−1)sψα,sα
(r2,r1)

}

+
NPs∑
β

{
G̃

(s)
β (R1)ψβ(ρ1)φβ(r2)

+ (−1)sG̃(s)
β (R2)ψβ(ρ2)φβ(r1)

}
, (14)

where we introduced

G̃
(s)
β (R) = c0sSGβ,0(R) + c1sSGβ,1(R). (15)

Let us consider now particular cases. For positron scattering
from the ground state of helium, that is, when s = 0 and S = 1

2 ,
we get

c00 1
2

= −1/2 and c10 1
2

=
√

3

2
. (16)

Therefore, according to Eq. (15) the corresponding expansion
coefficient takes the form,

G̃
(0)
β (R) = −1

2
Gβ,0(R) +

√
3

2
Gβ,1(R), (17)

which agrees with the result derived in [7]. For positron
scattering on the metastable states of helium with s = 1 there
are two different couplings with the incoming positron’s spin
resulting in S = 1

2 and S = 3
2 . When S = 1

2 we have

c01 1
2

=
√

3

2
and c11 1

2
= 1

2
. (18)

Therefore,

G̃
(1)
β (R) =

√
3

2
Gβ,0(R) + 1

2
Gβ,1(R). (19)

If the spins couple to give S = 3
2 , then

c01 3
2

= 0 and c11 3
2

= 1, (20)

leading to

G̃
(1)
β (R) = Gβ,1(R). (21)

Finally, since Eqs. (19) and (21) represent the same
amplitude we conclude that

Gβ,1 =
√

3Gβ,0. (22)

This relationship is often assumed and used in the literature,
however, to our best knowledge, it has not been derived.

The procedures for constructing He and Ps states and for
solving the scattering equations were given in Ref. [7]. The
transition matrix elements are obtained in the same way as
in [7] with account of different symmetry in the radial part of
the total wave function (14).

III. RESULTS

Based on our previous results for positron scattering from
hydrogen [12] and helium [13], we know that smooth and
pseudoresonance-free cross sections can be obtained if both
centers are treated on equal footing, for example, by taking the
same number (Nl = N0 − l, l � lmax) of Laguerre-basis states
for both centers.

We present here calculations with the following basis sizes
from both the atomic and the Ps centers:

(a) N0 = 15,lmax = 0,
(b) N0 = 15,lmax = 1,
(c) N0 = 15,lmax = 2,
(d) N0 = 15,lmax = 3,
(e) N0 = 17,lmax = 1.
With other targets, close-coupling calculations with pseu-

dostates on a target center and only a few eigenstates on Ps may
produce unphysical resonance features in the cross sections.
To check whether this occurs with a metastable helium target
as well we also performed calculations with the basis c for He
and only the three lowest eigenstates (1s, 2s, and 2p) of Ps,
results of which we denote as CC(41,3).

Results of the first four bases (a–d) will illustrate the
convergence over increasing lmax. The convergence over

TABLE I. Ionization energies of lowest triplet states of He in eV.

State FC model Experiment

2 3S 4.742 4.767
2 3P 3.573 3.622
3 3S 1.864 1.868
3 3P 1.566 1.580
3 3D 1.512 1.513
4 3S 0.944 0.993
4 3P 0.792 0.879
4 3D 0.791 0.851
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FIG. 2. (Color online) e+-He(2 3S) total cross sections. The
calculations are described in the text.

increasing N0 can be seen by comparing the results of bases e
and b.

For simplicity, all bases are generated with the Laguerre
fall-off parameter set to λ = 2 for He, and λ = 0.5 for Ps.
We used a frozen-core (FC) configuration interaction model
to construct the triplet-state He wave functions. The lowest
excited states are described sufficiently well within this model.
Table I shows the lowest ionization energies of metastable
He used in our calculations and compared to experimental
values [14].

As seen from Table I, the lowest triplet states of He are
sufficiently well described, and thus represent true eigenstates.
Higher lying states diverge from true eigenstates and are
referred to as pseudostates. By increasing the basis size, Nl , the
number of true eigenstates can be increased to a given accuracy.
The Ps states generated with the previously mentioned bases
give a nearly exact ground and the lowest excited states of Ps.

Figure 2 shows the grand total cross sections calculated
with different bases.

In addition to calculations with the two-center bases
mentioned previously we also give convergent single-center
results which were obtained with the basis of size N0 = 14 and
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FIG. 3. (Color online) e+-He(2 3S) total Ps-formation cross sec-
tions. The calculations are described in the text.
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FIG. 4. (Color online) e+-He(2 3S) total breakup cross sections.
The calculations are described in the text.

lmax = 8. These are referred to as CCC1. As seen from Fig. 2
the single-center expansion approach though converged, can
yield accurate results only at above 10 eV. At lower energies
the approach cannot be relied upon. Results of CC(41,3)
are almost indistinguishable from the fully convergent ones,
except around 2 eV where there is a narrow pseudoresonance.
Results of different bases a–e show that the convergence is
achieved in both N0 and lmax. The most interesting feature
with increasing lmax is the sudden change of the results from
basis a, which is the s-wave model, to basis b with lmax = 1.
The reason for this is the big contribution of 2 3P excitation
which is neglected in the s-wave calculations. As we can see,
basis b, which only has s and p states, is quite sufficient to get
the total scattering cross sections within 10% accuracy. The
convergence is achieved with basis c, which has 14 3S, 14 3P ,
and 13 3D states. Adding F states (basis d), changes the results
by no more than 1%.

Ps-formation cross sections are given in Fig. 3. The single-
center model does not provide Ps-formation cross sections.
Adding only three Ps states as in CC(41,3) exhibits pseudores-
onance features, which indicate the necessity of treating both
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FIG. 5. (Color online) Elastic He(2 3S) and He(2 3P ) excitation
cross sections calculated using basis c (lmax = 2); see text.
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FIG. 6. (Color online) Ps(2s,2p) excitation cross sections calcu-
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centers with extended bases. Note that a similar pseudoreso-
nance was obtained in positron scattering on the ground state
[6]. Results of the s wave (basis a) underestimate around the
peak and are not smooth around the Ps(2s) excitation threshold
at 3.04 eV. Basis b seems sufficient to obtain reasonably
convergent total Ps-formation cross sections. However, it still
shows some instability around the Ps(n = 2) excitation thresh-
old and overestimates the convergent results at high energies.
As in the case of the total cross section, basis c is sufficient to
get convergent Ps-formation cross sections. The convergent
total Ps-formation cross sections have a shallow and very
narrow local minima at the Ps(n=2) excitation threshold. This
minima appears as a result of a sharply decreasing Ps(1s) cross
section and fast-rising Ps(2s) and Ps(2p) cross sections.

Figure 4 shows the total breakup cross section calculated
as a sum of the cross sections for excitation of positive-
energy pseudostates of He and electron capture into the Ps
pseudocontinuum. As we go down to the ionization threshold
region these two contributions approach each other confirming
similar behavior observed in [15] for the positron-hydrogen
scattering case. The CC(41,3) results are almost half the
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FIG. 7. (Color online) Angle differential cross section. The
theoretical calculations are due to Verma and Srivastava [4] and
present results are described in the text.

convergent results of the bases c and d. Interestingly, the bases
a and b results are close to each other suggesting p states
play little role in the total breakup process. Adding d states
is significant, however, and has changed the results by around
20%. Adding even larger orbital momentum states (basis e)
has not had a noticeable effect.

As can be seen from the results for the total, Ps-formation
and breakup cross sections, basis c (including the s, p, and d
states) is sufficient in l for convergent results. Therefore, in
the cross sections that are presented further, we give only the
results of basis c, unless otherwise stated.

The elastic He(2 3S) and first excitation He(2 3P ) cross
sections are given in Fig. 5. As seen from the figure, the
elastic cross section reaches its maximum at 1 eV and then
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FIG. 8. (Color online) Comparison of (a) grand total, (b) total
Ps-formation, and (c) total breakup cross sections for e+ + He(1 3S)
and e+ + He(2 3S) scattering as a function of excess energy above the
Ps threshold.

042705-5



UTAMURATOV, KADYROV, FURSA, BRAY, AND STELBOVICS PHYSICAL REVIEW A 82, 042705 (2010)

drops fast and stays stable starting from 20 eV. Excitation
to 2 3P reaches its maximum around 6 eV and then slowly
decreases. If we compare this figure with Fig. 2 we see that
at higher energies the main contribution to total scattering
comes from 2 3P excitation. Convergence in this channel
requires inclusion of very high partial waves. We overcome
this by implementing the Born subtraction method, using
which we can get sufficiently accurate results by performing
full close-coupling calculations only up to 20 partial waves.
Recently, Murtagh et al. [16] have reported Ps formation in
excited states in the positron scattering from the ground state
of He, which are in good agreement with our calculations [7].
We present the corresponding results for He(2 3S) in Fig. 6.
We note that Ps(2p) excitation is more than two times higher
than for Ps(2s) excitation. This is unlike the positron-He(11S)
case, where they have comparable magnitudes.

Lastly, we compare with the calculations of Verma and
Srivastava [4] for angular differential cross sections (DCS) for
n3S and n 3P states, where n = 2,3, obtained by a distorted-
wave approximation. Figure 7 shows DCS of 2 3S → n 3P

transitions at final positron energy of 20 eV (which corre-
sponds to 21.2 and 23.2 eV scattering energy for 2 3P and 3 3P ,
respectively). At this relatively high energy the contribution of
Ps formation is negligible and the two-center results for atomic
excitation become much the same as the single center ones.
We can see qualitative agreement between our results and
the calculations of Verma and Srivastava [4]. Our results for
2 3S → 2 3P are a bit lower than the results of [4] above 20◦.
In the case of 2 3S → 3 3P both methods predict a minimum at
around 10◦–15◦.

Comparison of the integrated cross sections for positron
scattering from He(2 3S) and He(11S) is given in Fig. 8. Relative
magnitudes of cross sections vary substantially depending

on the processes. The breakup cross section of He(2 3S) is
around 10 times higher than for He(1 1S) at its peak, while
for Ps formation this difference is around 50 times. The total
scattering cross section of He(2 3S) is almost 100 times larger
than for He(1 1S). The large relative ratio of cross section in
the case of He(2 3S) to He(1 1S) shows the importance of the
studies from excited states.

IV. CONCLUSION

Positron scattering from metastable He(2 3S) has been theo-
retically studied at low energies. The results show that presence
of excited states in the experimental target gas chamber may
significantly enhance the cross sections demonstrating the
importance of this process in understanding positron scattering
from helium. Therefore, we hope that the present work will
generate interest in the considered collision system from both
experimentalists and other theorists.

Convergent results for total, Ps-formation and breakup
cross sections have been obtained with high accuracy of
convergence. Our studies also confirm the applicability of
two-center convergent close-coupling method to systems with
zero Ps-formation threshold. The main conclusions of previous
two-center CCC studies apply to the e+ + He(2 3S) system,
too, namely the necessity of using a similar number of
pseudostates from both centers to avoid unphysical resonances.
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