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Treatment of resonances in the scattering of a heavy positron by H2 that are due to interaction with
vibrationally excited quasibound states
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For a positron with wave number k, the rate of annihilation when scattered by an atom or molecule is
proportional to Zeff (k), the effective number of electrons in the target that are available to the positron for
annihilation. There is currently great interest in the very large positron annihilation rates, and hence values
of Zeff (k), that have been observed in low-energy positron scattering by some molecules. These are observed
experimentally to occur at energies just below the energies of excited vibrational states of the molecule concerned.
This has been explained by Gribakin [Phys. Rev. A 61, 022720 (2000)] and Gribakin and Lee [Phys. Rev. Lett.
97, 193201 (2006)] as being due to Feshbach resonances involving excited quasibound vibrational states. These
treatments make skilful use of approximate methods. It is of interest to determine how the expression obtained
for the resonant contribution to Zeff (k) from a quasibound state using a very accurate method is related to the
expressions obtained in the previously mentioned articles. In view of this, in this article I carry out a detailed
ab initio theoretical treatment of positron scattering by H2 using the Kohn variational method. H2 is the simplest
molecule, which makes it easier to take into account all the interactions involved. However, a positron does not
form a bound state with H2. To investigate resonant behavior in Zeff (k), I increase the mass mp of the positron
so that it forms a weakly bound state with H2. This gives rise to excited quasibound vibrational states. The
expression I obtain for the resonant contribution to Zeff (k) has some similarity with the expressions obtained by
Gribakin and Lee. This gives some support to their explanation of the very large values of Zeff (k). However,
they make no explicit mention of corrections to the Born-Oppenheimer (BO) approximation. These play a key
role in my treatment as they couple the quasibound states to the continuum. I am able to show how the BO
corrections are taken into account implicitly in calculating the expressions obtained by Gribakin and Lee. The
most important difference between my treatment and their treatments is that in my treatment Zeff (k) may be
infinite at the resonant energy, whereas in the other treatments it is likely to be large, but can never be infinite.
Further investigation is necessary to determine the origin of this infinity in my treatment. My treatment could be
applied to positron scattering by molecules such as methyl halides in which very high Zeff (k) values are observed,
though using the Kohn variational method would be considerably more complicated than in the case of H2.
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I. INTRODUCTION

One of the interesting processes that can take place when
a positron is scattered by an atom or a molecule is positron
annihilation. The positron annihilation rate, λ, for an incident
positron with wave number, k, is given by

λ = πr2
0 cDZeff(k), (1)

where r0 is the classical radius of the electron, D is the density
of target atoms or molecules in the vicinity of the positron, and
Zeff(k) is the effective number of electrons in the target that
are available to the positron for annihilation.

There is currently great interest in the very large positron
annihilation rates, and hence values of Zeff(k), that have been
observed in low-energy positron scattering by some molecules.
These are observed experimentally to occur just below excited
vibrational states of the molecule concerned [1]. This has been
explained by Gribakin and Lee [2,3] to be due to Feshbach
resonances involving excited quasibound vibrational states.

Gribakin [2] calculates a scattering wave function made up
of a component that describes the scattering of a positron by
a molecule in its ground state and a second component that
describes positron capture into quasibound positron-molecule
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states. From this he goes on to obtain expressions for the
contributions to Zeff(k) from a resonant quasibound state and
from the nonresonant part of the scattering wave function.

In a later article, Gribakin and Lee [3] use the Breit-Wigner
formula directly to calculate Zeff(k) in the vicinity of a
resonance and make approximations based on the assumption
that the quasibound vibrational state involved is very diffuse.
With suitable choice of the energy of the quasibound state, the
Gribakin and Lee method gives good agreement for the very
large observed Zeff(k) values obtained for positron scattering
by, for example, CH3F, CH3Cl, and CH3Br.

The treatments in [2] and [3] make skilful use of approxi-
mate methods. This entails using the Born-Oppenheimer (BO)
approximation without any explicit investigation of the effects
of including corrections to this approximation. It is of interest
to determine how the expression obtained for the resonant
contribution to Zeff(k) from a quasibound state using a very
accurate method is related to the expressions obtained in [2]
and [3].

In view of this, in this article I carry out a detailed ab initio
treatment of positron scattering by the hydrogen molecule
(H2) using the Kohn variational method. H2 is the simplest
molecule, which makes it easier to take into account all the
interactions involved. However, a positron does not form a
bound state with H2. To investigate resonant behavior in
Zeff(k), I increase the mass mp of the positron so that it forms

1050-2947/2010/82(4)/042702(11) 042702-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.61.022720
http://dx.doi.org/10.1103/PhysRevLett.97.193201
http://dx.doi.org/10.1103/PhysRevLett.97.193201
http://dx.doi.org/10.1103/PhysRevA.82.042702


E. A. G. ARMOUR PHYSICAL REVIEW A 82, 042702 (2010)

a weakly bound state with H2. I find that, as a consequence
of this, there are quasibound vibrational states within the
continuum that are eigenfunctions of the Hamiltonian for the
system within the BO approximation. These states give rise to
Feshbach resonances.

I find some agreement with the results obtained in [2] and
[3]. This gives some support to their explanation of the very
large values of Zeff(k). In my treatment, I take the corrections
to the BO approximation explicitly into account. They play a
key role in coupling the quasibound vibrational states to the
continuum. I am able to show that these corrections are taken
into account implicitly in [2] and [3].

The most important difference between my treatment and
the treatments in [2] and [3] is that Zeff(k) may be infinite
at the resonant energy in my treatment, whereas in the other
treatments it is likely to be large, but can never be infinite.

I have carried out my treatment for a very simple system,
namely, positron-H2 with the positron mass increased so that
a weakly bound positron-H2 state is formed. However, the
principles involved are the same if my treatment is applied to
a molecule that can bind a positron. The main difference is the
increase in complexity.

II. INVESTIGATION OF QUASIBOUND STATES

The system to be considered is a positron of mass mp and
an H2 molecule. The units are hartree atomic units.

The nonrelativistic Hamiltonian, Ĥ , for this system with
respect to an inertial frame, is

Ĥ = − 1

2M
∇2

RA
− 1

2M
∇2

RB
− 1

2mp

∇2
1 − 1

2
∇2

2
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+ 1
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− 1

rA2
− 1
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− 1

rA3

− 1
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+ 1

R
− 1

r12
− 1

r13
+ 1

r23
, (2)

where A and B are the nuclei; particle 1 is the positron and
particles 2 and 3 are the electrons; RA and RB are the position
vectors of nuclei A and B, respectively; ri is the position vector
of particle i; rij is the distance between particles i and j ; R
is the position vector of nucleus B with respect to nucleus A;
and M is the mass of the proton.

It is of interest to investigate what kind of solutions we
obtain for the Schrödinger equation for this system if we make
the BO approximation. The Hamiltonian, Ĥlep, for the leptons
is

Ĥlep = − 1

2mp
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2
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2 − 1

2
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+ 1
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− 1
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− 1
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− 1
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− 1
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+ 1
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+ 1

R
. (3)

The coordinates are with respect to molecule-fixed axes with
origin midway between the nuclei and the z axis along the
internuclear axis from A to B. The nuclei are taken to be
fixed. For details of the relationship between molecule-fixed
coordinates and nonrotating coordinates, see, for example,
Armour and Jonsell [4].

The Schrödinger equation for the leptons with the nuclei
fixed is

Ĥlep�lep,m(r1,r2,r3; R) = Em(R)�lep,m(r1,r2,r3; R). (4)

We can adjust the value of mp of the positron so that the
leptons have a weakly bound state. It is to be expected that as
mp is increased a bound state will first appear at R ≈ 3.4a0,
as Zhang et al. [5] have recently shown that there is a virtual
state at this R value. This is far into the classically forbidden
region for the ground vibrational state. I assume, at this stage,
that mp is adjusted so that a weakly bound state exists for all
R values for which the associated vibrational wave function
differs appreciably from zero. Note that the range of R values
for which this condition is assumed to be satisfied increases
with the energy associated with the vibrational wave function.

In principle, we can solve (4) exactly to obtain both
the bound-state wave function corresponding to all such R

values and also a continuum wave function corresponding to
a positron with incident energy Ep. In the case of the weakly
bound state, Em(R) will have a value slightly below the value,
Emol(R), that would be obtained if the positron were not in the
system. In the case of the continuum state,

Em(R) = Emol(R) + Ep ∀R. (5)

Approximations to wave functions for such states have been
calculated with mp = 1 for a given R value, in most cases
the H2 equilibrium value, 1.4a0, using the Kohn variational
method [6,7].

If we proceed to the next stage of the BO approximation, we
take the wave function for the system, including the nuclei, to
be �lep,m(r1,r2,r3; R)χmn(R), where χmn(R) is a vibrational-
rotational wave function.

If we separate out the center-of-mass motion, neglecting the
reduced mass and mass polarization corrections to the kinetic
energy of the leptons that result from the fact that the nuclei
do not have infinite mass, the Schrödinger equation for the
internal motion of the system has the form(

− 1

2µM

∇2
R + Ĥlep

)
� = E�, (6)

where µM is the reduced mass of the nuclei. If we let � =
�lep,m(r1,r2,r3; R)χmn(R), this becomes(

− 1

2µM

∇2
R + Ĥlep

)
�lep,mχmn = E�lep,mχmn. (7)

The lepton coordinates to be kept fixed when carrying out
the partial differentiations in ∇2

R are coordinates with respect
to nonrotating axes with origin at the center of mass of the
nuclei. The leptonic coordinates used in �lep,m(r1,r2,r3; R)
are taken to have the same origin, but they are with respect
to molecule-fixed axes with z axis along the internuclear axis
from A to B. For a given lepton, the two sets of coordinates are
related by a proper, orthogonal transformation involving the
spherical polar angles of R with respect to the nonrotating axes.

If this change of constant variables in the partial dif-
ferentiations in ∇2

R is taken into account using the chain
rule, centrifugal and Coriolis terms involving the leptonic
coordinates are obtained in addition to ∇2

R with the molecule-
fixed coordinates kept constant in the partial differentiation [4].
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Note that only the centrifugal and Coriolis terms that operate
solely on the leptonic coordinates will be nonzero if the
nuclei are in their ground rotational state. Note also that if
an R dependence is introduced into the leptonic coordinates,
additional terms result as a consequence of this dependence.
This is the case, if, for example, prolate spheroidal coordinates
are used [6,7]. These terms represent coupling between the
vibrational motion of the nuclei and the motion of the leptons.

In the BO approximation, the preceding centrifugal, Corio-
lis, and vibrational coupling terms are neglected and (7) takes
the form

− 1

2µM

(∇2
R�lep,m

)
χmn − 1

µM

(∇R�lep,m ·∇Rχmn)

− 1

2µM

�lep,m∇2
Rχmn + Em(R)�lep,mχmn = Emn�lep,mχmn,

(8)

where in the partial differentiations with respect to the
coordinates of R, the molecule-fixed coordinates are kept
constant.

In the BO approximation, the further step is taken of
neglecting the terms involving ∇2

R�lep,m and ∇R�lep,m as they
are much smaller than the term involving ∇2

Rχmn for values of
R close to the equilibrium value for H2, which is 1.4a0. See,
for example, Bransden and Joachain [8].

If we divide both sides of the resulting equation by
�lep,m(r1,r2,r3; R), we obtain

− 1

2µM

∇2
Rχmn + Em(R)χmn = Emnχmn. (9)

I denote the bound state by m = 0. Its energy E0(R) gives
rise to a nuclear potential that is slightly more attractive than
Emol(R), the nuclear potential for the H2 molecule in the
absence of the positron. Thus, if we are considering the ground
vibrational state, which I denote by n = 0, E00 will be slightly
below the energy of H2+ the positron at rest at infinity. Thus,
in the BO approximation this will correspond to a bound state.
This can be seen from the fact that �lep,0(r1,r2,r3; R)χ00(R)
satisfies the Schrödinger equation (5) with E00 as described if
the BO approximation is made in evaluating

− 1

2µM

∇2
R�lep,0χ00.

However, the states {�lep,0(r1,r2,r3; R)χ0n(R)} (n > 0)
also satisfy the Schrödinger equation (6) in this approxima-
tion. These will have energies E0n (n > 0) that are in the
continuum corresponding to continuum states with energy
E10, where m = 1 denotes a continuum state. The states
{�lep,0(r1,r2,r3; R)χ0n(R)} (n > 0) are bound lepton states but
with associated vibrational states {χ0n(R)} (n > 0) other than
the ground state. They will be slightly lower in energy than
the corresponding ground electronic, vibrational states of the
target.

These states can have a range of values of the total angular
momentum. For simplicity, I only consider those for which
this is zero.

The states do not couple to the continuum in the BO
approximation. However, if we go beyond the BO approx-
imation, such states couple to the continuum and become

quasibound. It is to be expected that this coupling will
bring about resonances in positron-H2 scattering for incident
positron energies, Ep, such that

Ep + Etarget ≈ E0n. (10)

III. INVESTIGATION OF RESONANCES USING
THE KOHN METHOD

I investigate the effect of such resonances on Zeff(k) using
the Kohn variational method. To do this I take the Hamiltonian
to be in the center-of-mass frame; that is,

Ĥc.m. = − 1

2µM

∇2
R + Ĥlep. (11)

I have neglected the reduced mass and mass polarization
corrections to the kinetic energy of the leptons as this
is the usual practice in calculations of both atomic and
molecular scattering (see, for example, [9]). The reduced mass
corrections would be easy to include but including the mass
polarization corrections would be more complicated. All other
corrections to the BO approximation are included.

I assume that the lowest quasibound state corresponding to
n = 0 remains bound when the BO corrections are included.
Note that this state will be just below the energy of the system
when the incident positron energy is zero and will thus give rise
to a resonance at this energy. I assume that there are Nr higher-
energy quasibound states corresponding to n = 1,2, . . . ,Nr .

It is convenient to adjust the labeling of the quasibound
states so that the quasibound state whose resonant properties
are to be investigated has n = 1. This can be done without loss
of generality. For simplicity, I take this quasibound state to be
the lowest in energy.

In order to highlight the role of the quasibound states
in bringing about resonant behavior, it is convenient in the
Kohn calculation to split the Hilbert space, �, of possi-
ble basis functions up into two disjoint subspaces, � and
�⊥. � has as basis the Nr orthonormal quasibound states
{�lep,0(r1,r2,r3; R)χ0i(R)}Nr

i=1, where the common leptonic
part of the wave function is taken to be normalized for all
values of R.

�⊥ is the subspace of all possible basis functions that
are orthogonal to the Nr quasibound states. This is to be
thought of as including continuum functions, though strictly
speaking they are not contained in �. The projection operators
P̂�⊥ and P̂� , associated with �⊥ and �, respectively, are
similar to the projection operators P̂ and Q̂ in the case
of Feshbach’s treatment of isolated resonances in nuclear
reactions [10]. The role of projection operators in calculations
on electron-molecule scattering is considered by Domcke [11].

The Kohn trial function, �trial(r1,r2,r3,R; k), is taken to be
of the form

�trial(r1,r2,r3,R; k)
= �0a(r1,r2,r3,R; k) + a11�0b(r1,r2,r3,R; k)

+ a21�0c(r1,r2,r3,R; k) +
N∑

i=1

ciφi(r1,r2,r3,R)

+
Nr∑
i=1

di�lep,0(r1,r2,r3; R)χ0i(R), (12)
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where

�0a(r1,r2,r3,R; k) ∼r1→∞ �target(r2,r3,R)
1√
4π

sin kr1

kr1
,

(13)

�0b(r1,r2,r3,R; k) ∼r1→∞ �target(r2,r3,R)
1√
4π

cos kr1

kr1
,

(14)

�0c(r1,r2,r3,R; k)

∼r1→∞ �target(r2,r3,R)

√
5

4π

cos(kr1 − π )

kr1
P2(cos θ̄1), (15)

and �target(r2,r3,R) is the normalized target wave
function.

All the basis functions in �trial(k) are taken to be real. In
addition, all of them, except the Nr quasibound states, are
taken to be in �⊥ and the short-range correlation functions
{φi}Ni=1 are taken to be orthonormal. It is assumed that
the trial function can fit the exact scattering wave function
very accurately. k is the momentum of the incident positron
which is taken to be in the z direction with respect to the
nonrotating axes. �target(r2,r3,R) is the ground-state electronic
and vibrational-rotational target H2 wave function. The spin
wave function is a singlet. As the Hamiltonian Ĥc.m. does not
involve spin, this wave function can be omitted. However, to
satisfy the Pauli exclusion principle, the ground-state wave
function and the scattering wave function must be symmetric
with respect to interchange of the electrons. The origin of
the coordinates of the positron, particle 1, is taken to be
at the center of mass of the nuclei. The polar angle θ̄1 is
with respect to the molecule-fixed coordinates which are free
to rotate. It would be possible to use continuum functions
expressed in terms of prolate spheroidal coordinates, as in
[6,7]. However, they are more complicated and, as pointed out
earlier, introduce coupling with the vibrational motion of the
nuclei.

The continuum function containing P2(cos θ̄1) represents
mixing of partial waves in the molecule-fixed frame. Such
mixing tends to zero as k tends to zero, but increases as k

increases. The extent of mixing is very small at the k values I
consider. If necessary at higher energies, continuum functions
containing higher Legendre polynomials with even index could
be included in the trial function. Those with an odd index are
excluded by the gerade symmetry of the partial wave with zero
angular momentum.

Inclusion of continuum functions containing Pl(cos θ̄1),
where l = 2,4, . . . , does not violate conservation of angular
momentum as

Pl(cos θ̄1) = 4π

2l + 1

∑
m

Ylm(θ1,φ1)Y ∗
lm(θ,φ), (16)

where Ylm is a spherical harmonic, θ1 and φ1 are the spherical
polar angles of the positron with respect to the nonrotating
coordinates, and θ and φ are the corresponding angles of R.
For a given l value, the right-hand side of (16) corresponds
to the combination, in the nonrotating frame, of positron and
nuclear states, each of angular momentum l, that is a scalar

and thus has zero overall angular momentum (see, for example,
[12]).

To set up the equations of the Kohn variational method that
determine the coefficients {a11,a21,c1, . . . ,cN ,dNr

, . . . ,d1} in
the trial function for a scattering state of energy E =
Ep + Etarget, we must calculate matrix elements of Ĥc.m. − E

between the basis functions in the trial function (see, for
example, [9]). The Kohn equations are of the form

Ax = −b, (17)

where A is the matrix representation of F̂ = Ĥc.m. − E over
the basis functions �0b, �0c, φ1, . . . ,φN , �lep,0χ0Nr

, . . . ,

�lep,0χ01, labeled in that order, as this is advantageous for
proving the results obtained:

x = [a11a21c1 · · · cNdNr
· · · d1]
 (18)

and

b = [〈�0b|F̂ |�0a〉〈�0c|F̂ |�0a〉〈φ1|F̂ |�0a〉 · · · 〈φN |F̂ |�0a〉
× 〈

�lep,0χ0Nr

∣∣F̂ |�0a〉 · · · 〈�lep,0χ01|F̂ |�0a〉
]


. (19)

Note that as F̂ is Hermitian and all the basis functions are real,
A is a real, symmetric matrix. This property is unaffected by
the inclusion of two continuum functions in A.

If Ĥc.m. − E operates on a quasibound state, we obtain

(Ĥc.m. − E)|�lep,0χ0i〉 = (E0i − E)|�lep,0χoi〉 + 1

µM

|ζi〉

+ 1

µM

|ωi〉 i ∈ (1,2, . . . ,Nr ), (20)

where |ζi〉ε�⊥ and |ωi〉ε�. These kets result from the operation
on {�lep,0(r1,r2,r3; R)χ0i(R)} of the terms in Ĥc.m. that
represent corrections to the BO approximation. Such terms
are all proportional to 1/µM , where µM is the reduced mass
of the nuclei. To draw attention to this, I have inserted a factor
of 1/µM in front of these kets on the right-hand side of (20).

Using the Hermiticity of F̂ and the properties of the kets
{|ζi〉} and {|ωi〉} (i = 1, . . . ,Nr ), matrix elements involving
�lep,0χ0i and a basis function contained in �⊥ reduce to a
form containing ζi . Thus, in the case of φ1, for example,

〈φ1|F̂ |�lep,0χ0i〉 = 1

µM

〈φ1|ζi〉. (21)

In the case of a basis function contained in �, ζi on the right-
hand side is replaced with ωi .

The column vector b takes the form

b =
[
〈�0b|F̂ |�0a〉〈�0c|F̂ |�0a〉〈φ1|F̂ |�0a〉 · · · 〈φN |F̂ |�0a〉

× 1

µM

〈
ζNr

∣∣�0a

〉 · · · 1

µM

〈ζ1|�0a〉
]


. (22)

As stated earlier, the index of the quasibound states has been
adjusted so that the state with i = 1 is the state whose resonant
properties are to be investigated. The coefficient, d1, of this
state in the trial function, �trial(k), can be calculated using
Cramer’s rule. Assuming that A is nonsingular,

d1 = det(AC,p)

det(A)
(p = N + Nr + 2), (23)
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where AC,p is the matrix obtained by replacing the
(N + Nr + 2)th, that is, the last, column of A with the column
vector −b.

If we expand det(AC,p) and det(A) on the last column of
each determinant, we obtain

d1 = − 〈�0b|F̂ |�0a〉A′
1p + · · · + 〈�lep,0χ01|F̂ |�0a〉A′

pp

1
µM

〈�0b|ζ1〉A′
1p + · · · + (

E01 − E + 1
µM

〈�lep,0χ01|ω1〉
)
A′

pp

, (24)

where A′
ip is the cofactor of the element in the ith row and pth

column of det(A).
Multiplying the numerator and denominator of the right-

hand side of (24) by µM/A′
pp, we obtain

d1 = − µM (〈�nr |F̂ |�0a〉 + 〈�lep,0χ01|F̂ |�0a〉)
〈�nr |ζ1 + ω1〉+ µM

(
E01 − E + 1

µM
〈�lep,0χ01|ω1〉

) ,

(25)

where

�nr = g1�0b + g2�0c +
N+2∑
i=3

giφi +
p−1∑

i=N+3

gi�lep,0χ0j

(26)
(j = i − N − 1)

and

gi = A′
ip

A′
pp

(A′
pp �= 0). (27)

It is shown in the Appendix that the coefficients {gi}p−1
i=1

are such that 〈�nr + �lep,0χ01|Ĥc.m. − E|�nr + �lep,0χ01〉 is
stationary for variations of these coefficients. This gives a
physical interpretation to this wave function.

We can see that the denominator in the expression for d1 in
(25) is zero if

E = E01 + 1

µM

(〈�lep,0χ01|ω1〉 + 〈�nr |ζ1 + ω1〉). (28)

�nr depends on E. Thus, (28) is an equation for E. It is to
be expected that the term containing �nr will be small in the
vicinity of the resonance on account of the above stationary
condition, as �lep,0χ01 will almost be an eigenfunctionin this
region. It is thus probable that there will be a value of E, Eres,
not far from E01 + 1

µm
〈�lep,0χ01|ω1〉 at which (28) is satisfied,

making d1 infinite. In any event, d1 will be large when E is
close to this value.

The second and third terms on the right-hand side of this
equation are level shifts. The first of these terms represents the
first-order contribution to the energy of the quasibound state
with i = 1, due to the corrections to the BO approximation.

Note that it would be possible to include the corrections
within � to all orders by diagonalizing the matrix represen-
tation of Ĥc.m. over the quasibound states, {�lep,0χ0i}Nr

i=1. The
resulting quasibound states, {�lep,0�jfijχ0j }Nr

i=1, where {fij }
are the coefficients determined by the diagonalization, are

such that

(Ĥc.m. − E)

∣∣∣∣∣�lep,0

Nr∑
j=1

fijχ0j

〉

= (Ē0i − E)

∣∣∣∣∣�lep,0

Nr∑
j=1

fijχ0j

〉
+ 1

µM

|ζ̄i〉, (29)

where |ζ̄i〉 ∈ �⊥.
If the preceding analysis is repeated using the new quasi-

bound states, terms corresponding to those in (24) that contain
ωi (i = 1, . . . ,Nr ) are zero and the corresponding coefficient,
d̄1, is infinite when E satisfies the equation

E = Ē01 + 1

µM

(〈�̄nr |ζ̄1〉), (30)

where Ē01 contains the corrections to the BO approximation
within � to all orders and �̄nr is similar to �nr but is evaluated
using the new quasibound states.

IV. RESONANT BEHAVIOR OF Zeff (k)

Zeff(k) can be obtained from the trial function, �trial(k), by
using the relation

Zeff(k) = |B|2〈�trial(k)|
3∑

i=2

δ(r1 − ri)|�trial(k)〉, (31)

where δ(r1 − ri) is the Dirac δ function and B is a normal-
ization constant such that the zero angular momentum partial
wave has the appropriate coefficient for an incident positron
beam with density of one particle per unit volume.

Thus, using (12) and the fact that �trial(k) is real, Zeff(k)
can be expressed in the form

Zeff = |B|2
[
d2

1 〈�lep,0χ01|
3∑

i=2

δ(r1 − ri)|�lep,0χ01〉

+ 2 d1〈�trial,nr (k)|
3∑

i=2

δ(r1 − ri)|�lep,0χ01〉

+ 〈
�trial,nr (k)|

3∑
i=2

δ(r1 − ri)|�trial,nr (k)
〉]

, (32)

where

�trial,nr(k)=�0a(k) + a11�0b(k) + a21�0c(k)

+
N∑

i=1

ciφi(r1,r2,r3,R) +
Nr∑
i=2

di�lep,0χ0i . (33)
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The first term on the right-hand side of (32) represents the
contribution to Zeff(k) purely from the resonant quasibound
state �lep,0(r1,r2,r3; R)χ01(R).

We can obtain a useful approximate form for the factor d1

in this term. The matrix elements in the numerator of Eq. (25)
for d1 are made up of elements of the form

〈η|F̂ |�0a〉 = 〈η|Ĥc.m. − E|�0a〉,
where η is a basis function in the trial function not equal to
�0a . �0a would have the asymptotic form given in (13) for all
r1 if it were not for the requirement that �0a ∈ �⊥; that is, it
is orthogonal to all the quasibound states.

As the energy Em(R) associated with the weakly bound
state is only slightly below Emol(R), the value for the H2

molecule, the vibrational wave functions of the quasibound
states will not differ much from those of the H2 molecule
in its electronic ground state, calculated using the BO
approximation. They will thus be approximately orthogonal
to all the H2 vibrational wave functions, except the one that
has an energy just above the energy of the quasibound state
under consideration.

The exact target wave function, �target(r2,r3,R), is made
up of a superposition of H2 BO states with much the largest
component, �target(r2,r3; R)χ0(R), where �target(r2,r3; R) is
the target electronic wave function in the BO approximation
and χ0(R) is the associated ground-state vibrational wave
function.

It follows from all this that

�0a(r1,r2,r3,R) ≈ �target(r2,r3,R)
1√
4π

sin kr1

kr1

≈ �target(r2,r3; R)χ0(R)
1√
4π

sin kr1

kr1
, (34)

and hence that

(Ĥc.m. − E)�0a(r1,r2,r3,R)

≈ (Ĥc.m. − E)�target(r2,r3,R)
1√
4π

sin kr1

kr1

= Vp�target(r2,r3,R)
1√
4π

sin kr1

kr1
, (35)

where

Vp = 1

rA1
+ 1

rB1
− 1

r12
− 1

r13
(36)

is the potential between the positron and the particles in H2.
We can deduce from this that

〈η|F̂ |�0a〉 ≈ 〈η|Vp|�0a〉. (37)

Note that this relation holds even if

η = �lep,0χ0i , (38)

and in this case

〈η|F̂ |�0a〉 = 1

µM

〈ζi |�0a〉, (39)

where 1
µM

ζi is the component in �⊥ resulting from the

operation on �lep,0χ0i of the terms in Ĥc.m. that are corrections
to the BO approximation.

It follows from the preceding that

d1 ≈ − µM (〈�nr |Vp|�0a〉+ 〈�lep,0χ01|Vp|�0a〉)
〈�nr |ζ1 + ω1〉+ µM

(
E01 − E + 1

µM
〈�lep,0χ01|ω1〉

) .

(40)

At zero incident positron energy, (E01 − E) ≈ 0.019 a.u. as
the quasibound state with n = 1 has been chosen to be the
lowest in energy. Also, the much larger masses of the nuclei
as compared with the electrons make µM = 918. The level
shift term in 1

µM
in the coefficient of the term in µM can be

neglected as it will be small in comparison with (E01 − E).
Thus, at zero incident energy,

µM

(
E01 − E + 1

µM

〈�lep,0χ01|ω1〉
)

≈ 17.5. (41)

However, if E = Eres and thus satisfies (28), the denominators
of (25) and (40) will be zero, making d1 infinite. As can be
seen from (32), the resonant contribution to Zeff(k) contains
d2

1 as a factor. Thus, it will also be infinite at this E

value.
We can obtain some information about the structure of the

resonance from the dependence of the resonant contribution to
Zeff(k) on d2

1 . In [3], the width of the resonant contribution
follows immediately from the Breit-Wigner formula. The
situation in my treatment is more complicated as d2

1 does
not have this form. However, it follows from the form of
the denominator in the expressions for d1 in (25) and (40)
that the resonant contribution will behave approximately as
(Eres − E)−2 in the vicinity of the resonance. Equation (41)
gives an indication how the denominator in (40) varies with
energy in the region below the resonance.

The second term in (32) depends linearly on d1 and thus will
also be infinite when E = Eres. However, the dominant infinity
will be in the first term considered earlier as it is dependent on
d2

1 . The second term represents contributions from the cross
terms between �lep,0χ01 and the other functions in �trial(k).
This can be seen if we expand the matrix element in this term
as follows:

〈�trial,nr(k)|
3∑

i=2

δ(r1 − ri)|�lep,0χ01〉

= 〈�0a(k)|
3∑

i=2

δ(r1 − ri)|�lep,0χ01〉

+ a11〈�0b(k)|
3∑

i=2

δ(r1 − ri)|�lep,0χ01〉

+ a21〈�0c(k)|
3∑

i=2

δ(r1 − ri)|�lep,0χ01〉

+
N∑

j=1

cj 〈φj |
3∑

i=2

δ(r1 − ri)|�lep,0χ01〉

+
Nr∑
j=2

dj 〈�lep,0χ0j |
3∑

i=2

δ(r1 − ri)|�lep,0χ01〉. (42)
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The δ function operates only on the leptonic coordinates.
Thus, as

〈χ0i(R)|χ0j (R)〉 = δij , (43)

the terms in (42) that involve only the quasibound states would
all be zero if

Zeff,lep(R) = 〈�lep,0|
3∑

i=2

δ(r1 − ri)|�lep,0〉r, (44)

where 〈 〉r denotes integration over the leptonic coordinates,
were constant for all R values for which χ01(R) differs
appreciably from zero. Note that Zeff,lep(R) is the value, for a
given R, of Zeff(k) calculated using the leptonic bound-state
wave function.

The dominant vibrational component of �0b,�0c and
most of the short-range correlation functions {φi}Ni=1 will
be χ0, the H2 ground-state vibrational wave function in the
BO approximation. As χ0 is almost orthogonal to χ01, the
matrix elements in (42) that involve �0b,�0c, or a φi that
contains a large component of χ0, or any other χj that
is almost orthogonal to χ01, will be very small if the
associated δ-function leptonic wave function does not vary
with R.

The third term on the right-hand side of (32) does not
involve �lep,0χ01 and is thus not influenced by the resonant
condition. We can interpret its contribution to Zeff(k) as being
from nonresonant scattering.

V. COMPARISON WITH ANOTHER TREATMENT

It is of interest to compare my treatment with that of
Gribakin and Lee [2,3]. Their treatment can be applied to
any molecule. If the treatment in [2] is applied to positron
scattering by H2, the scattering wave function is made up of a
wave function that describes the scattering of a positron by H2

in its ground state and a second wave function that describes
positron capture into quasibound positron-molecule states. See
Eq. (5) in his article. This wave function can be used to derive
an expression for Zeff(k) which is in some ways similar in
form to the expression (32) that I obtained earlier. See Eq. (8)
in this article.

Gribakin’s treatment differs from mine in that he places
all of the quasibound states on the same footing, whereas I
consider the case when the resonant condition (28) is met
for the lowest quasibound state. Thus, in my treatment, the
remaining quasibound states are included in the part of the
scattering wave function that describes nonresonant scattering.
It would be straightforward to extend my treatment to calculate
similar expressions to that obtained for d1 for di (i �= 1),
though account would have to be taken, where necessary,
of open channels involving excited vibrational states of the
target H2.

Thus, the appropriate comparison with the first term in (32),
which is the resonant contribution to Zeff(k) in my treatment,
is with the diagonal element corresponding to the lowest
quasibound state with zero total angular momentum in the
last term in Eq. (8) in [2]. In keeping with my notation, I take
this state to have ν = 1.

The resonant contribution to Zeff(k), as expressed in terms
of this diagonal element, is similar to that obtained by Gribakin
and Lee [3] by a direct application of the Breit-Wigner formula.
In view of this, I think that it is sufficient to compare my results
with those in [3].

The resonant contribution is approximately equal to

π
k
ρepg1�

e
1

(ε − E1 − ε0)2 + �2
1

4

,

where ρep is the average electron density at the positron in the
resonant quasibound state, ε is the incident positron energy,
E1 is the vibrational excitation energy, ε0 is the positron
bound-state energy < 0, and g1 is the degeneracy of the
resonant state, which equals 1 in this case. �1 is the sum
of the annihilation width (�a

1 ) and the capture or elastic width
(�e

1).
�e

1 = |G|2〈�1|Vp|�(0)
k 〉|2, where G is a constant, �1 is

the wave function of the resonant quasibound state, and
�

(0)
k is the nonresonant scattering wave function in the Born

approximation.
In my treatment, the resonant contribution is given approx-

imately by

|B|2
[

µM (〈�nr + �lep,0χ01|Vp|�0a〉)
〈�nr |ζ1 + ω1〉+ µM

(
E01 − E + 1

µM
〈�lep,0χ01|ω1〉

)
]2

×〈�lep,0χ01|
3∑

i=2

δ(r1 − ri)|�lep,0χ01〉.

�lep,0χ01 corresponds to �1. Using (34), �0a can be taken
to be the s-wave component of �

(0)
k , normalized with respect

to the spherical polar angles.
If we compare the two preceding expressions for the reso-

nant contribution to Zeff(k), we can see that the denominator
in the Gribakin and Lee expression is always positive, whereas
in my expression it may be zero. Thus, an important difference
between the two treatments is that the resonant contribution
may be very large in the Gribakin and Lee treatment but
it can never be infinite, whereas in my treatment it may be
infinite. A further difference between the denominators is that
Gribakin and Lee include the annihilation width, �a

1 in �1,
in addition to the capture width, �e

1. In my treatment, Zeff(k),
which corresponds physically to the normalized probability per
unit volume that the positron is located at a target electron, is
calculated without inclusion of the annihilation channel in the
Kohn calculation. I comment further on this in the Conclusion.

In other respects, however, there are similarities between
the two treatments. The factor ρep in the numerator of the
resonant contribution in the Gribakin and Lee treatment is
the average electron density at the positron in the resonant
quasibound state. This is closely related to the δ-function
matrix element in my expression and in [2] that has the
physical interpretation described previously with the system
in the resonant quasibound state.

In addition, the capture width, �e
1, which occurs in this

numerator, is similar to the matrix element squared

[〈�nr + �lep,0χ01|Vp|�0a〉]2
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in the numerator of the resonant contribution in my treatment.
In this case, the capture is into a resonant state that contains
not only the quasibound, resonant state, �lep,0χ01 but also �nr .
The stationary condition this resonant state satisfies will make
it nearly an eigenfunction of Ĥc.m. as we are assuming that
the basis set used in the Kohn calculation is very flexible. As
pointed out earlier, when the energy E is close to the resonant
value, �nr will be small as �lep,0χ01 itself will be almost an
eigenfunction.

If we use (34) for �0a , and the fact that

χ01(R) ≈ χ1(R), (45)

where χ1(R) is the first excited vibrational-state wave function
for H2 and then, for the s wave in the vicinity of the resonance
the matrix element 〈�nr + �lep,0χ01|Vp|�0a〉 in the numerator
of my expression for the resonant contribution to Zeff(k)
will be approximately proportional to 〈�1|Vp|�(0)

k 〉 in [3].
Thus, except very close to the E value, Eres, that makes the
resonant contribution to Zeff(k) infinite in my treatment, the
two resonant contributions should show similar behavior with
varying E.

Approximations based on the assumption that the weakly
bound quasibound states are very diffuse constitute a key fea-
ture of the Gribakin and Lee treatment. Using this assumption,
they expand Vp in a multipole expansion about the origin. We
can do this in the matrix element 〈�lep,0χ01|Vp|�0a〉 For the
methyl halide target molecules considered in [3], the leading
term in the contribution to 〈�1|Vp|�(0)

k 〉 is the dipole moment
term. In the case of H2, the leading term is the quadrupole
moment term as H2 does not have a permanent dipole moment.

However, if the charges on the nuclei A and B were changed
to 1 + �Z and 1 − �Z, respectively, where 0 < �Z < 0.3
(say), the resulting molecule would have a permanent dipole
moment and the leading term in the multipole expansion
would be the dipole moment term. Alternatively, my treatment
could be applied to positron scattering by a heteronuclear
diatomic molecule such as CO that has a permanent dipole
moment. Retaining only the dipole moment term would now
give essentially the same result for the s wave as in Eq. (6)
in [3].

Changing the charges on the nuclei in this way would make
the vibrational states of the molecule infrared active. See,
for example, Atkins and Friedman [13]. This establishes a
link with the Gribakin and Lee treatment of the large Zeff(k)
values observed in positron scattering by the methyl halides,
CH3F,CH3Cl, and CH3Br, in which the positron capture width
plays a key role. Large Zeff(k) values are associated with
capture into quasibound states that are very weakly bound
and correspond to infrared-active vibrational levels.

A further difference between the two treatments is that the
results in [2] and [3] are obtained without explicitly mentioning
corrections to the BO approximation, whereas they are fully
taken into account in my treatment. However, the derivation
of the approximate expression for d1 in (40) from the result
in (25) obtained from the Kohn equations links Vp with the
corrections to the BO approximation, showing that they are
implicitly taken into account in [2] and [3].

These BO corrections feature explicitly in the first matrix
element in the denominator of my expression for the resonant

contribution to Zeff(k) in my treatment. The BO correction
terms and Vp are approximately equivalent in this matrix
element if the potential effectively only contributes at long
range so that the dominant interaction is with �0b and �0c in
�nr which have asymptotic forms as in (14) and (15).

Finally, the treatments in [2] and [3] make clever use of
approximate methods for evaluating the resonant contribution
to Zeff(k), whereas very accurate results can be obtained using
the Kohn method by using a basis set that can fit the exact
scattering wave function very accurately, as is assumed to be
the case in my treatment.

VI. CONCLUSION

I have applied the Kohn method to the calculation of Zeff(k)
for positron hydrogen molecule scattering. Particular attention
is paid to the contribution from resonant scattering. The mass
of the positron is increased so that it forms a weakly bound
state with H2 with its nuclei fixed for all R values for which the
associated vibrational wave functions in the BO approximation
differ appreciably from zero.

The state associated with the ground vibrational wave func-
tion is a bound state in the BO approximation and is assumed to
remain bound when corrections to this approximation are taken
into account. There exist other states that are bound states in
the continuum in the BO approximation. When corrections to
the BO approximation are taken into account, these states cou-
ple with each other and the continuum. As shown earlier, the
coupling between the bound states can be taken into account
directly, if desired, by diagonalizing the matrix representation
of Ĥc.m. with respect to these states. The coupling to the
continuum causes the states to become quasibound. They give
rise to vibrational Feshbach resonances [3] at energies just
below excited vibrational states of H2.

The BO approximation is a very good approximation.
That is why it is so widely used in theoretical treatments
of systems involving molecules. It is because it is such a
good approximation that the quasibound states are nearly
eigenfunctions of Ĥc.m.. In a time-dependent treatment, they
would be very long-lived states.

However, at a more fundamental level it is important to
bear in mind that the system being considered is five particles
interacting through Coulomb forces. As we are working at very
low energies, we can apply nonrelativistic quantum mechanics.
To carry out a full treatment, we need to know what new terms
have to be taken into consideration if no approximations are
made in treating the system. This brings in the corrections to
the BO approximation. They are clearly important as they bring
about the coupling of the quasibound states to the continuum.
For this reason, I have taken a full account of these corrections
in my treatment.

I consider the simplest case of scattering involving states
of zero angular momentum with resonant behavior due to
interaction with the lowest quasibound state. In a manner
similar to Feshbach [10], I divide the Kohn basis functions
into two disjoint subspaces, � and �⊥, where � has as basis
the quasibound states and �⊥ contains all the other functions
in the Kohn trial function. I then apply Cramer’s rule to the
resulting Kohn equations to obtain the coefficient, d1, of the
resonant quasibound state in the scattering wave function.
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A further application of Cramer’s rule makes it possible to
show that the wave function �nr , that features in the expression
(25) for d1, is such that

〈�nr + �lep,0χ01|Ĥc.m. − E|�nr + �lep,0χ01〉
is stationary with respect to variations of the parameters
{gi}p−1

i=1 in �nr . As pointed out earlier, this gives a physical
meaning to the wave function �nr + �lep,0χ01.

The expression (25) for d1 is exact for the Kohn basis set
used in the calculation. The basis functions can be chosen to
represent the exact wave function very accurately and thus d1

can be made very accurate. This makes possible the ab initio
derivation of a very accurate expression for the contribution to
Zeff(k) from a resonant quasibound state.

�0a has the asymptotic form given in relation (13). This
form is an eigenfunction of Ĥc.m. − Vp, where Vp is given in
(36) and is the potential between the target and the positron.
It corresponds to a free s-wave positron and the target H2

molecule. �0a will differ from this asymptotic form as it is
contained in �⊥ and is thus orthogonal to all the quasibound
states. However, the accuracy of the BO approximation and
the fact that the positron is weakly bound mean that, to a good
approximation, �0a can be taken to be equal to this asymptotic
form. This gives the approximate relation for d1 in (40).

This relation results from the fact that in the particular case
of coupling of a free-particle positron plus target state to a
quasibound state, the coupling can, to a good approximation,
be regarded as being brought about by Vp. It makes possible a
link between my treatment and that of Gribakin and Lee [2,3]
as it introduces into the numerator of the approximate form
(40) for d1 the matrix element 〈�lep,0χ01|Vp|�0a〉 that is
similar to the capture width that is a key feature of their
treatment. This shows that they take corrections to the BO
approximation into account implicitly, whereas my treatment
takes them into account explicitly. The preceding matrix
element can be evaluated approximately using the method in
[3]. The vibrational mode in the quasibound state can be made
infrared-active, as in [3], by changing the charges on the nuclei
to 1 + �Z and 1 − �Z, respectively, where 0 < �Z < 0.3
(say). There is also the alternative option of considering
this matrix element in positron scattering by a heteronuclear
diatomic molecule such as CO that has a permanent dipole
moment and thus has infrared-active vibrational modes. This
gives some support to the Gribakin and Lee explanation of
the very high Zeff(k) values that are observed in positron
scattering by, for example, methyl halides, as being due to
Feshbach resonances involving quasibound states associated
with infrared-active vibrational modes.

However, in my treatment Vp couples �0a to the state �nr +
�lep,0χ0Nr

, though the component �nr is likely to be small in
the vicinity of the resonance. This wave function also appears
in the first term in the denominator of (40), which represents
coupling between it and the resonant quasibound state resulting
from corrections to the BO approximation. This term differs
from the corresponding term in the Gribakin and Lee treatment,
but it may be possible to establish some relationship between
them using the approximate methods used in [3].

The most important difference between my treatment and
the treatments in [2] and [3] is that in my treatment Zeff(k) may

be infinite, whereas this is not possible in the other treatments.
The infinite value results from a rigorous application of the
Kohn variational method. However, the calculation of the
positron annihilation rate, λ, using Zeff(k) is carried out
using first-order perturbation theory, as it is assumed that
the interaction involved is very weak [14]. It may be that
this assumption breaks down in the vicinity of a resonance,
resulting in the infinite value. If so, it might be necessary to
include the annihilation channel explicitly in the trial function
and calculate the annihilation cross section, and hence the
annihilation rate, directly from the asymptotic form of the wave
function. Further investigation is required. However, the
infinity in Zeff(k) would not occur if �0b and �0c were complex
functions. The significance of this also needs to be investigated.
Note that the associated infinite value of d1 will give rise to
resonant behavior in the phase shift as the expectation value
of Ĥc.m. − E over the trial function occurs in the expression
for the tangent of the phase shift in the Kohn method. This can
most simply be seen if we neglect mixing of partial waves in
the molecule-fixed frame [9].

It is possible that difficulties could arise in solving (17) or
(A7) due to ill conditioning of the matrix A or Ā. These could
be taken into account using the generalized Kohn method. A
detailed, mathematical treatment of the results obtained using
the generalized Kohn method is given in [15].

The same scattering wave function would be obtained if
the square-integrable basis functions in the trial function were
subjected to any nonsingular, linear transformation. Thus the
overall value calculated for Zeff(k) would remain the same, but
it would not, in general, be possible to highlight the resonant
contribution from a given quasibound state.

I have assumed in my treatment that the weakly bound state
that I introduce by increasing the mass mp of the positron is
bound for all R values for which the associated vibrational
wave function differs appreciably from zero. If this is not the
case for a subset of these R values, it might be possible to
use an eigendifferential with a narrow energy span above the
continuum threshold to represent the leptonic wave function
at these R values (see, for example, Messiah [16]).

My treatment could be straightforwardly applied to the
scattering of higher partial waves and also to resonances
involving higher-energy quasibound states. Treatment of such
resonances would require inclusion of open channels involving
excited vibrational states of H2 that are lower in energy
than the quasibound state responsible for the resonance
under consideration. My treatment could also be applied to
resonances due to quasibound states that do not owe their
existence to the accuracy of the BO approximation.

Finally, I have considered scattering of a positron by H2 as
this is the simplest molecular target. The mass of the positron
is increased so that it forms a weakly bound state with H2.
The simplicity of the target makes it easier to identify the
various corrections to the BO approximation and apply the
Kohn variational method to calculate the resonant contribution
to Zeff(k) from a given quasibound state. There is no reason,
in principle, why my treatment cannot be extended to target
molecules such as methyl halides whose very high Zeff(k)
values can be explained if these molecules can form weakly
bound states with a positron [3]. However, such calculations
would necessarily be considerably more complicated.
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APPENDIX

Aij denotes the element in the ith row and j th
column of the matrix A. The cofactor A′

ip in (24) is given
by

A′
ip = (−1)i+p

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A11 A12 · · · · · · A1p−1

A21 A22 · · · · · · A2p−1

...
...

...

Ai−11 Ai−12 · · · · · · Ai−1p−1

Ai+11 Ai+12 · · · · · · Ai+1p−1

...
...

...

Ap−11 Ap−12 · · · · · · Ap−1p−1

Ap1 Ap2 · · · · · · Ap p−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(i < p = N + Nr + 2) (A1)

= (−1)i+p+p−1−i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A11 A12 · · · · · · A1p−1

A21 A22 · · · · · · A2p−1

...
...

...

Ai−11 Ai−12 · · · · · · Ai+1p−1

Ap1 Ap2 · · · · · · Ap p−1

Ai+11 Ai+12 · · · · · · Ai+1p−1

...
...

...

Ap−11 Ap−12 · · · · · · Ap−1,p−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(i < p). (A2)

Using the fact that the determinant of a matrix equals the determinant of its transpose and A is a real, symmetric matrix, A′
ip

can be expressed in the form

A′
ip = −

∣∣∣∣∣∣∣∣∣∣

A11 A12 · · · A1i−1 A1p A1i+1 · · · A1p−1

A21 A22 · · · A2i−1 A2p A2i+1 · · · A2p−1

...
...

...
...

...
...

Ap−11 Ap−12 · · · Ap−1i−1 Ap−1p Ap−1i+1 · · · Ap−1p−1

∣∣∣∣∣∣∣∣∣∣
(i < p). (A3)

Also, if i = p

A′
pp =

∣∣∣∣∣∣∣∣∣∣

A11 A12 · · · A1p−1

A21 A22 · · · A2p−1

...
...

...

Ap−11 Ap−12 · · · Ap−1p−1

∣∣∣∣∣∣∣∣∣∣
. (A4)

The wave function �nr is of the form

�nr = g1�0b + g2�0c + g3φ1 + · · · + gN+2φN

+
p−1∑

i=N+3

gi�lep,0χ0j (j = i − N − 1), (A5)

where

gi = A′
ip

A′
pp

(i < p). (A6)

We can see from (A3), (A4), and (A6) that it follows from
Cramer’s rule that the coefficients {gi}p−1

i=1 satisfy the linear,
inhomogeneous equations

Āg = −h, (A7)

where Ā is the matrix with elements Aij (i,j < p) and

h = [A1pA2p · · · Ap−1p]
 (A8)

= 1

µM

[〈�0b|ζ1〉〈�0c|ζ1〉〈φ1|ζ1〉 · · · 〈φN |ζ1〉

〈ωNr
|�lep,0χ01〉 · · · 〈ω2|�lep,0χ01〉

]

.

These are the equations that determine the coefficients {gi}p−1
i=1

such that

〈�nr + �lep,0χ01|Ĥc.m. − E|�nr + �lep,0χ01〉
is stationary with respect to variations of these coefficients.
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