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A method for solving the time-dependent two-center Dirac equation is developed. The time-dependent Dirac
wave function is represented as a sum of atomiclike Dirac-Sturm orbitals, localized at the ions. The atomic
orbitals are generated by solving numerically the one-center Dirac and Dirac-Sturm equations by means of a
finite-difference approach with the Coulomb potential taken as the sum of the exact reference-nucleus potential and
of the other nucleus within the monopole approximation. An original procedure for calculating the two-center
integrals with these orbitals is proposed. As a first test of the approach developed here, calculations of the
charge-transfer and ionization cross sections for the H(1s)-proton collisions at proton energies from 1 to 100 keV
are performed. The obtained results are compared with related experimental and other theoretical data. To
investigate the role of the relativistic effects, the charge-transfer cross sections in collisions of Ne9+(1s)-Ne10+

(at energies from 0.1 to 10 MeV/u) and U91+(1s)-U92+ (at energies from 6 to 10 MeV/u) are calculated for both
relativistic and nonrelativistic cases.
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I. INTRODUCTION

Since the pioneering works [1–3], where the oscillatory
behavior of the resonance charge-transfer probability for low-
energy collisions was predicted, numerous publications have
been devoted to the theoretical investigations of the charge
transfer, excitations, and ionization in the H(1s)-H+ collisions
(see, e.g., reviews [4–6]). Nonrelativistic two-center finite
basis set calculations have been carried out in Refs. [7–13].
Nonrelativistic three-dimensional lattice methods in position
as well as in momentum space have been applied for solving
the time-dependent Schrödinger equation in Refs. [14–18].
Within the nonrelativistic approach, the probabilities and
cross-sections for a homonuclear collision A(Z−1)+(1s)-AZ+

for the nuclear charge Z > 1 can be easily obtained by
scaling to the H(1s)-H+ collision. In the straight-line trajectory
approximation, the cross section σ (Z,v) scales exactly as
σ (Z,v) = σ (1,v/Z)/Z2 [4,19], where v is the projectile
velocity. This scaling law, however, is not valid within the
relativistic theory.

Collisions involving highly charged ions allow for sensitive
tests of relativistic and quantum electrodynamics effects in
scattering processes [20–22]. The study of such scenarios
could provide also a unique tool to probe quantum electro-
dynamics (QED) in supercritical external Coulomb fields, if
the total charge of the colliding ions Z = ZA + ZB is larger
than the critical value Zc � 173 (see, e.g., Refs. [23–26] and
references therein). In the presence of such strong fields the
energy of the one-electron 1σ+ state of the quasimolecule
can reach the negative-energy Dirac continuum, when the
internuclear distance R between target ion A and projectile ion
B approaches the critical value Rc. For distances R less than
Rc the ground-state level dives into the negative-continuum

spectrum. In the U91+(1s)-U92+ collision the critical radius
for the point nucleus case was found to be Rc = 36.8 fm [27].

To date, various approaches were developed to treat the
problem of heavy-ion collisions [28]. In Refs. [29–36], the
two- and three-dimensional numerical lattice methods were
employed to solve the time-dependent Dirac equation at high
energies. In Refs. [37–40], high-energy relativistic collisions
of heavy ions were considered using the basis set approach,
in which the time-dependent wave function was expanded
in terms of the atomic eigenstates of the projectile and
the target. For internuclear distances smaller than about
1000 fm, some effects can also be evaluated within the
so-called monopole approximation, which accounts only for
the spherically symmetric part of the two-center potential
(see, e.g., Refs. [41–43]). The atomic processes such as
excitation, ionization, and charge transfer in relativistic atomic
collisions involving heavy and highly charged projectile ions
with energies ranging from 100 MeV/u upward were studied
in Refs. [20,34,36,44–46] and references therein.

In the present work, we develop a method for solving the
stationary and time-dependent two-center Dirac equation. The
wave functions are expanded in terms of Dirac and Dirac-
Sturm basis functions, which are central-field four-component
Dirac bispinors centered at the ions. The radial parts of
these orbitals are obtained by solving numerically the finite-
difference radial one-center Dirac and Dirac-Sturm equations.
In nonrelativistic calculations for atoms and molecules, the
so-called Coulomb-Sturmian basis set was introduced in
Ref. [47]. The Hartree-Fock calculations of atoms with this
basis were considered by many authors (see, e.g., Ref. [48]).
The relativistic Coulomb-Sturmian basis was employed in
Refs. [49–52]. In the present article we use a non-Coulomb
relativistic Sturm basis set, which is obtained by solving
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numerically the Dirac-Sturm equations with a special choice
of the weight function, as was proposed in Refs. [53,54].
This allows us to include any central-field potential in the
radial equations for the large and small components of
the basis functions. In particular, the Coulomb potential of the
other ion can be included in the radial equations within the
monopole approximation. The basis set constructed in this
way is described in detail in Sec. II B.

Efficient evaluations of two-center integrals with the basis
functions employed will require special tools. In the non-
relativistic case, a special symmetrical procedure for such
calculations, based on the Löwdin reexpansion [55], was
developed in Refs. [56,57]. In Sec. II C, we generalize this
procedure to the relativistic case.

Within our approach, we use two basis sets of different size,
in the following referred to as Basis 1 (medium) and Basis 2
(extended), respectively. The medium size Basis 1 is used for
solving both the stationary and time-dependent Dirac equation.
The extended Basis 2, due to high requirements to computer
resources, is employed only in calculations of the stationary
states of quasimolecules. The specific choice of these basis
sets will be described in Sec. III A.

To test the quality of the two-center expansion described
previously, we perform relativistic calculations for the ground-
state energy of the molecular ion H2

+ and the one-electron
quasimolecule Th2

179+ at the “chemical” distance R = 2/Z (in
a.u.) and compare the results with high-precision calculations
presented in Refs. [58,59]. Treating the ground-state energy
as a function of the internuclear distance R, we determine the
critical radii Rc for a number of one-electron quasimolecules,
including the system U2

183+. Most calculations of the critical
distances Rc presented in the literature were performed either
for the pointlike nuclei [27,60,61] or with rather crude esti-
mates of the nuclear-size effects [62–64]. We calculate the crit-
ical distances for both pointlike and extended nuclear charge
density distributions using the same basis-set expansion. The
results obtained here, as well as a comparison with calculations
performed by other authors, are presented in Sec. III B.

For the collision energies under consideration, the electron
dynamics has to be described quantum mechanically while
the ion motion can be treated classically as the motion of
point charges. Solving Newton’s equations yields the classical
Rutherford trajectories [25] of the projectile and target ions.
In this article, in the collision of a neutral hydrogen atom
with the proton, we used the straight-line trajectory with
constant velocity for the projectile, while the target is at rest.
The collision of highly charged ions with a bare nucleus
was considered as a motion of the projectile and target along
nonlinear Rutherford trajectories. The straight-line trajectory
was also used in the nonrelativistic limit for comparison with
scaling law data. In our calculations we used the rest coordinate
system with respect to the initial position of the target.

The Born-Oppenheimer approximation is used to separate
the motion of the electron and the nuclei. The magnetic
interaction between the electron and the moving ions is
neglected, because of low velocity of the projectile with
respect to the target. The time-dependent Dirac equation for
the electron is solved using the two-center basis-set expansion.
The expansion coefficients can be defined employing, for
example, the Crank-Nicholson propagation scheme [65] or

the split-operator method [66]. These methods preserve the
norm of the time-dependent wave function at each time step,
since the Crank-Nicholson operator and the split-operator are
unitary. However, in this work we use the direct evolution
(exponential) operator method, which is more stable compared
to the others. To obtain the matrix representation of the expo-
nential operator in the finite basis set, one has to diagonalize the
generalized Hamiltonian matrix at each time step. Since our
basis set is not too large, the diagonalization procedure is not
too time consuming. The amplitudes of the charge transfer to
different bound states of the projectile ion are calculated non-
perturbatively by projecting the time-dependent wave function
onto the moving (“traveling”) Dirac orbitals of the projectile.

In Sec. III C we present the results of the relativistic
calculations of the charge-transfer probabilities and cross
sections for the H(1s)-H+, Ne9+(1s)-Ne10+, Xe53+(1s)-Xe54+,
and U91+(1s)-U92+ low-energy collisions. All the calculations
are performed in the laboratory frame S, that is defined to be
at rest with respect to the initial target position. The H(1s)-H+
collision is considered in Sec. III C 1. Since the relativistic
effects in this collision are negligible, the results of our calcu-
lations can be compared with nonrelativistic data obtained
by other authors (Sec. III C 1). The role of the relativistic
effects is investigated in Secs. III C 2, III C 3, and III C 4,
where the relativistic and nonrelativistic calculations of the
charge-transfer probabilities and cross sections are performed
for higher-Z ions.

II. THEORY

A. Two-center Dirac equation in the finite basis set

1. Two-center expansion

Within the Born-Oppenheimer approximation, the motion
of the electron is considered as a motion in the field of the two
nuclei being at given positions (the stationary case) or moving
along the classical trajectories (the nonstationary case). Let RA

and RB denote the positions of the target (A) and projectile (B)
nuclei, respectively. The time-dependent �(r,t) and stationary
ψ(r) wave functions are the solutions of the time-dependent
and stationary Dirac equations, respectively. In atomic units
(h̄ = m = e = 1), these equations are given by

i
∂�(r,t)

∂t
= ĥD�(r,t), ĥDψn(r) = εnψn(r). (1)

Here εn is the energy of the stationary state and the ĥD is the
two-center Dirac Hamiltonian defined by

ĥD = c(α · p) + βc2 + VAB(r), (2)

where c is the speed of light, α and β are the Dirac matrices,
and

VAB(r) = V A
nucl(rA) + V B

nucl(rB),

rA = r − RA, (3)

rB = r − RB,

Vnucl(r) =
{−Z/r for the point nucleus,∫

d3r ′ ρnucl(r ′)
|r−r ′| for the extended nucleus.

(4)
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The nuclear charge density ρnucl(r) is defined by the nuclear
model. In this article, we use the Fermi model for the nuclear
charge-density distribution.

Here and in what follows we consider only the electric
part of the classical electromagnetic interaction between
the electron and the moving nuclei, neglecting the mag-
netic interaction [e/cA(r)], which is small for low-energy
collisions.

The two-center expansion of the stationary wave function
ψn(r) and the time-dependent wave function �(r,t) can be
written in the form

ψn(r) =
∑

α=A,B

∑
a

cn
αaϕα,a(r − Rα),

(5)
�(r,t) =

∑
α=A,B

∑
a

Cαa(t)ϕα,a(r − Rα(t)),

where index α = A,B labels the centers, index a enumerates
basis functions at the given center, and ϕα,a(r − Rα) is
the central-field bispinor, centered at point α. (In what
follows, the shorthand notation |i〉 = |ϕi〉 ≡ |ϕα,a〉 for state
vectors, respectively, i ≡ α, a is also used.) The coefficients
cn
aα of the expansion (5) for the stationary wave function

ψn(r) can be obtained from the generalized eigenvalue
equation, ∑

k

Hjkc
n
k = εn

∑
k

Sjkc
n
k , (6)

where indices j and k enumerate the basis functions of
both centers, and the matrix elements of H and S are
given by

Hjk = 〈j |ĥD|k〉, Sjk = 〈j |k〉. (7)

The expansion coefficients Caα(t) of the time-dependent wave
function �(r,t) can be obtained by solving the linear system
of first-order differential equations,

i
∑

k

Sjk

dCk(t)

dt
=

∑
k

(Hjk − Tjk)Ck(t). (8)

The matrix elements of T are given by

Tjk = i〈j | ∂

∂t
|k〉 = T ∗

kj + i
∂

∂t
Sjk. (9)

Obviously, the matrix T is non-Hermitian if the overlapping
matrix S depends on time.

The functions ϕα,a depend on time due to two reasons. First,
the basis functions centered at the target and projectile nuclei
move together with the nuclei. Second, the basis functions
depend parametrically on the distance between the nuclei,
since their radial parts are obtained from the radial equations,
where for each center the potential of the other nucleus
is included in the so-called monopole approximation (see
Sec. II B). Therefore, the time derivative of the basis function

x
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b
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v
0
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FIG. 1. The hyperbolic Rutherford trajectory (b is the impact
parameter, R0 is the minimal distance between target A and
projectile B, v0 is the initial projectile velocity). The coordinate
system St = (x,y,z) is defined with respect to the moving target
ion.

can be divided into two parts:

〈j | ∂

∂t
|k〉 = dR

dt

〈
ϕj

∣∣∣∣∂ϕk

∂R

〉
− vαk

· 〈ϕj |∇|ϕk〉, (10)

where vα = d Rα/dt is the velocity of the ion α.

2. Trajectories of nuclear motion

For simplicity let us consider here (only in this subsection)
the coordinate system defined with respect to the moving target
ion. In the ion-ion collisions the internuclear distance vector
R = RB − RA, respectively its length R = |R|, the target
velocity (vA), and the projectile velocity (vB) are dependent on
time. This dependence is defined by the trajectories of the nu-
clear motion. In low-energy collisions the nuclear trajectories
can be obtained by solving classical nonrelativistic Newton’s
equations of motion. In the case of point charges, this solution
is a well-known Rutherford hyperbola (see Fig. 1), which can
be given in the parametric representation by the equations
[25]

R = a(ε cosh ξ + 1),
(11)

t = a

v 0
(ε sinh ξ + ξ ),

where ξ ∈ (−∞,∞),

a = ZAZBe2

Mrv
2
0

, ε =
(

1 + b2

a2

)1/2

, (12)

v0 is the initial velocity of the projectile, b is the impact
parameter, and Mr is the reduced ion mass. In the coordinate
system St = (x,y,z), which is shown in Fig. 1, the X and
Z components of the internuclear distance vector R are
given by

Z = R cos θ,

X = R sin θ,
where θ = 2 arctan

[ √
ε2 − 1[tanh(ξ/2) + 1]

(ε + 1) − (ε − 1)tanh(ξ/2)

]
. (13)
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The angle θ is related to the scattering angle �∞ by �∞ =
π − θ (t = ∞).

It should be noted that, in fact, in our calculations we used
a fixed coordinate system with respect to the initial position of
the target. In contrast to the moving target frame, this system
is an inertial one.

3. Matrix form of the time-dependent Dirac equation

In this work the two-center basis set ϕj is not orthonormal.
Let us consider the transformation of the basis set ϕj to the
orthonormal basis ϕL

j by a matrix L−1:

ϕL
j =

∑
k

L−1
kj ϕk, ϕj =

∑
k

Lkjϕ
L
k . (14)

Then the positive-definite matrix S can be represented as the
product of L+ and L:

S = L+L,

SL
jk = 〈

ϕL
j

∣∣ϕL
k

〉 = 〈ϕj |L−1+
SL−1|ϕj 〉= (L−1+

SL−1)jk = δj,k.

(15)

If the matrix L is an upper-triangle matrix, then the de-
composition (15) is so-called Cholesky factorization [67].
The expansion of the time-dependent wave function over the
orthonormal basis ϕL

j is given by

�(r,t) =
∑

α=A,B

∑
a

CL
α,a(t)ϕL

α,a(r − Rα(t),t), (16)

where CL = LC.
With respect to the basis ϕL

j , the time-dependent Dirac
equation can be equivalently expressed in the matrix (differ-
ential) equation

i
dCL(t)

dt
= MCL(t), (17)

where M = HL − T L, the Hermitian Hamiltonian matrix HL

is

HL
ij = 〈ϕi |Ĥ |ϕj 〉 = (L−1+

HL−1)ij , (18)

and the matrix T L is defined by

T L
ij = 〈

ϕL
i

∣∣T̂ ∣∣ϕL
j

〉 = (L−1+
T L−1)ij + i

(
L

dL−1

dt

)
ij

=
[
L−1+

(
T − iL

+ dL

dt

)
L−1

]
ij

. (19)

It should be noted that the matrix T L is Hermitian, in contrast
to the matrix T defined by Eq. (9). Therefore, the matrix M is
also Hermitian.

The time-dependent matrix equation (17) can be considered
as a linear system of coupled first-order differential equations
for the expansion coefficients CL over the entire range of time
t ∈ (−∞,∞). We assume that at the initial moment of time
(t → −∞) the electron is bound in the 1s state of the target,
while the projectile is a bare nucleus. Then the wave function
�(r,t) at t → −∞ is given by

�(r,t)|t→−∞ = ψ1s(r). (20)

If the Dirac 1s target wave function ψ1s(r) is included in the
basis set, the initial conditions for the expansion coefficients
can be written as

CL
j (t)|t→−∞ = Cj (t)|t→−∞ = δj,1s . (21)

Equation (17) is solved numerically, using the approximate
evolution operator

CL(t + �t) = e−iMt CL(t) + O(�3t), (22)

where Hermitian matrix M is chosen as

M = M(t + �t/2). (23)

Since the approximate evolution operator U (t) = exp (−iMt)
is unitary, the time-dependent wave function preserves the
norm at each time step:

〈�(r,t)|�(r,t)〉 =
∑

j

∣∣CL
j (t)

∣∣2 = 1. (24)

The matrix e−iMt is calculated at each time step using the
eigendecomposition of matrix M ,

M = V �V +, � = V +MV, (25)

where � is a diagonal matrix and columns of matrix V are the
eigenvectors of M . Then one obtains

e−iMt = V e−i�tV +. (26)

The time grid points ti are chosen as ti = a/v0(ε sinh ξi + ξi),
where the parameter ξ is discretized over a uniform grid. The
corresponding grid points Ri can be obtained using Eq. (11).

B. Basis functions

In our approach the basis set contains Dirac and Dirac-
Sturm orbitals. The Dirac-Sturm orbitals can be considered as
pseudostates, which should be included in the basis to take into
account the contribution of the positive- and negative-energy
Dirac continuum. Both types of basis functions ϕαa are central
field Dirac bispinors centered at the position of either ion Rα

(α = A,B),

ϕnκm(r) =

⎛
⎜⎝

Pnκ (r)

r
χκm(�,σ )

i
Qnκ (r)

r
χ−κm(�,σ )

⎞
⎟⎠ , (27)

where Pnκ (r) and Qnκ (r) are large and small radial com-
ponents, respectively, and κ = (−1)l+j+1/2(j + 1/2) is the
relativistic angular quantum number. The large and small radial
orbital components are obtained by solving numerically the
Dirac or Dirac-Sturm equations in the central field potential
V (r). The radial Dirac equation for the radial components of
the Dirac orbitals ϕnκm is given by

c

(
− d

dr
+ κ

r

)
Qnκ (r) + (V (r) + c2)Pnκ (r) = εnκPnκ (r),

(28)

c

(
d

dr
+ κ

r

)
Pnκ (r) + (V (r) − c2)Qnκ (r) = εnκQnκ (r).

The radial components of the Dirac-Sturm orbitals ϕnκm which
we denote by P nκ (r) and Qnκ (r), are the solutions of the
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generalized Dirac-Sturm eigenvalue equation:

c

(
− d

dr
+ κ

r

)
Qnκ (r) + (

V (r) + c2 − εn0κ

)
P nκ (r) = λnκWκ (r)P nκ (r),

(29)

c

(
d

dr
+ κ

r

)
P nκ (r) + (

V (r) − c2 − εn0κ

)
Qnκ (r) = λnκWκ (r)Qnκ (r).

Here λnκ can be considered as the eigenvalue of the Dirac-
Sturm operator and Wκ (r) is a constant-sign weight function.
The energy εn0κ is fixed in the Dirac-Sturm equation. If
W (r) → 0 at r → ∞, all Sturmian functions have the same
asymptotic behavior at r → ∞. It is clear that for λnκ = 0
the Sturmian function ϕnκm coincides with the reference Dirac
orbital ϕnκm which has the radial parts Pn0κ (r) and Qn0κ (r).
The widely known choice of the weight function is W (r) =
1/r , which leads to the well known “charge quantization”
Z∗

nκ = Z + λnκ . For a Coulomb potential V (r) = −Z/r , the
main advantage of this choice is that the Coulomb-Sturmian
orbitals can be given in an analytical form. This is not the case,
however, for a non-Coulomb potential V (r). In the relativistic
case the choice W (r) = 1/r is not very successful, because
of the incorrect behavior of the Coulomb-Sturmian orbitals at
r → 0. For this reason the standard form of the equation has
to be modified [50,68,69].

In our calculations we use the following weight function:

Wκ (r) = −1 − exp[−(ακr)2]

(ακr)2
. (30)

In contrast to 1/r , this weight function is regular at the origin. It
is well-known that the Sturmian operator is Hermitian and does
not contain continuous spectra, in contrast to the Dirac opera-
tor. Therefore, the set of the Sturmian eigenfunctions forms a
discrete and complete basis set of one-electron wave functions.

The central-field potential V (r) in Eqs. (28) and (29)
is arbitrary, and, therefore, it can be chosen to provide
most appropriate Dirac and Dirac-Sturm basis orbitals. At
small internuclear distances the wave function of the electron
experiences the strong Coulomb field of both nuclei. To leading
order this effect is taken into account by inclusion of the
Coulomb potential of the second ion in the total one center
potential V (r) within the so-called monopole approximation.
For instance, the total central-field potential V A(r) of the center
A is given by

V A(r) = V A
nucl(r) + V B

mon(r), (31)

where V A
nucl(r) is the Coulomb potential of the nucleus A and

V B
mon(r) is the spherically symmetric part of the reexpansion

of the potential V B
nucl(r − RB) with respect to the center A

V B
mon(r) = 1

4π

∫
d�AV B

nucl(r − RB). (32)

Note that RB then is equal to the internuclear distance vector.
For the point nucleus the potential V B

mon(r) is given by

V B
mon(r) =

{−ZB

r
, r � R,

−ZB

R
, r < R.

(33)

C. Two-center integrals

The one-center matrix elements of matrices H and S

[Eq. (7)] are easily reduced to radial integrals [70], which are
calculated by numerical integration over a semilogarithmic
radial grid [71].

1. Modified Löwdin reexpansion procedure

The two-center matrix elements are evaluated using a
symmetrical reexpansion procedure as proposed in Refs. [56,
57]. The reexpansion procedure is based on the technique
developed by Löwdin [55]. We assume that in the local
coordinate frame the z axis is directed along the internuclear
axis A-B (see Fig. 2). The following geometrical relations take
place:

rA = r − RA, rB = r − RB, R = RB − RA,

cos θA = r2
A + R2 − r2

B

2RrA

, cos θB = r2
A − R2 − r2

B

2RrB

.
(34)

Let the indices a and b enumerate basis functions centered
at the points A and B, respectively. The standard Löwdin
reexpansion of the nonrelativistic central-field function Fb(rB)
centered at the point B in terms of the spherical harmonics
Ylm(rA) centered at the point A can be written in the form
[55,72]

Fb(rB) = fb(rB)

rB

Ylbmb
(θB,ϕ)

= 1

rA

∞∑
l=0

αlmb
(fb,lb|rA)Ylmb

(θA,ϕ), (35)

A

r
Br

A

R B

V
A

V
B

Z

r
A

= r
B

θ
A

θ
B

S

FIG. 2. Integration regions VA and VB .
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where αlmb
(fb,lb|rA) is a so-called Löwdin α function defined

by
αlmb

(fb,lb|rA)

= Klbmb
Klmb

R

∫ |rA+R|

|rA−R|
fb(r)P |mb|

lb

(
r2
A − R2 − r2

2rR

)

×P
|mb |
l

(
r2
A + R2 − r2

2rAR

)
dr. (36)

Here P
|m|
l is the standard associated Legendre polynomial and

Klm is the normalization constant

Klm =
√

2l + 1

2

(l − |m|)!
(l + |m|)! . (37)

Similarly, the function Fa(rA) centered at point A can be
expanded in spherical harmonics Ylm(θB,ϕ) centered at the
point B.

When the logarithmic or semilogarithmic grid is used, the
radial grid step increases with increasing radius rA. Therefore,
the Löwdin reexpansion procedure becomes unstable and
poorly convergent for the values of radius rA in the region near
rA = R, especially for the oscillating and strongly localized
atomiclike wave functions. In addition, the Löwdin procedure
is not symmetric with respect to the centers A and B.

To improve the convergence we modified the standard
Löwdin reexpansion procedure by dividing the range of the
integration into two regions VA and VB as shown in Fig. 2.
The region VA contains ion A and the region VB contains
ion B. The dividing of the integration area into two parts can
be done, for example, by a plane passing through the center
of the segment (AB). We apply the reexpansion procedure
only to the “tails” of the wave functions occurring in a given
region. To describe this procedure, we introduce the stepwise
functions �A(r) and �B(r) by

�A(r) =
{

1, r ∈ VA,

0, r ∈ VB,
�B(r) =

{
0, r ∈ VA,

1, r ∈ VB,
(38)

and rewrite the product of the functions centered at the
different points in the following way:

Fa(rA)Fb(rB)

= Fa(rA)[Fb(rB)�A(r)] + [Fa(rA)�B(r)]Fb(rB). (39)

The reexpansion of the function tail Fb(rB)�A(r) centered at
B onto center A has the form

Fb(rB)�A(r) = fb(rB)

rB

Ylbmb
(θB,ϕ)�A(r)

= 1

rA

∑
l

αlmb
(fb,lb|rA)Ylmb

(θA,ϕ), (40)

where

αlmb
(fb,lb|rA)

= Klbmb
Klmb

R

∫ |rA+R|

rA
>

fb(r)P |mb|
lb

(
r2
A − R2 − r2

2rR

)

×P
|mb |
l

(
r2
A + R2 − r2

2rAR

)
dr (41)

and rA
> = max{rA,|rA − R|}.

In the relativistic case the spin-angular part χκm of the large
and small components of the central-field wave function is the
Pauli spinor [73]:

χκµ(r,σ ) = χljµ(r,σ ) =
∑
m,ms

C
jµ

lm, 1
2 ,ms

Ylm(r)�ms
(σ ), (42)

where C
jµ

lm, 1
2 ,ms

are the Clebsch-Gordan coefficients [74] and

�ms
(σ ) is a spin function.

The symmetric reexpansion of the relativistic wave function
tails onto centers A and B can be written in the form(

Pb(rB )
rB

χκbµb
(rB)

i Qb(rB )
rB

χ−κbµb
(rB)

)
�A(r) =

∑
κ

⎛
⎝pκµb

(b|rA)

rA
χκµb

(rA)

i
q−κµb

(b|rA)

rA
χ−κµb

(rA)

⎞
⎠
(43)

and(
Pa (rA)

rA
χκaµa

(rA)

i Qa (rA)
rA

χ−κaµa
(rA)

)
�B(r)

=
∑

κ

(−1)la−l

⎛
⎝ pκµa

(a|rB )
rB

χκµa
(rB)

i
q−κµa

(a|rB )
rB

χ−κµa
(rB)

⎞
⎠ . (44)

The p and q functions, which are the relativistic analogs of
the modified Löwdin α functions, are defined by

pκµb
(b|rA) =

∑
mb,ms

C
jbµb

lbmb,
1
2 ms

C
jµb

lmb,
1
2 ms

αlmb
(Pb,lb|rA),

(45)
qκµb

(b|rA) =
∑

mb,ms

C
jbµb

lbmb,
1
2 ms

C
jµb

lmb,
1
2 ms

αlmb
(Qblb|rA),

where l = l − sgn(κ). The functions αlmb
(Pb,lb|rA) and

αlmb
(Qb,lb|rA) are defined by Eq. (41), where the function

fb(r) has to be replaced by the functions Pb(r) and Qb(r),
respectively. The functions pκµa

(a|rB) and qκµa
(a|rB) are

defined similarly to Eq. (45), where indices A and b should be
replaced by B and a, respectively. Then the product of the two
central-field big components centered at the different points
(A and B) can be represented as the sum of two one-center
products:

Pa(rA)

rA

χκaµa
(rA)

Pb(rB)

rB

χκbµb
(rB)

= Pa(rA)

rA

χκaµa
(rA)

[∑
κ

pκµb
(b|rA)

rA

χκµb
(rA)

]
+ Pb(rB)

rB

×χκbµb
(rB)

[∑
κ

(−1)la−l
pκµa

(a|rB)

rB

χκµa
(rB)

]
. (46)

A similar expansion can be written for the product of the small
components.

In this article the two-center overlap integrals S
(0)
ab and

matrix elements H
(0)
ab and G

(0)
ab of the Hamiltonian and gradient

operators, respectively, are calculated using the symmetric
reexpansion (46). Here and in what follows superscript (0)
implies that the integral is considered in the local coordinate
frame, where the z axis is directed along the internuclear axis
A-B. The details of the calculation of the two-center integrals
in the local coordinate system are presented in Appendix A.
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2. Transformation of the two-center matrix elements
to the laboratory frame

As indicated earlier, the laboratory frame S is defined to
be at rest with respect to the initial target position. Then,
the two-center matrix elements evaluated with respect to
the local reference frame S ′ = (x ′,y ′,z′) (see Fig. 1) have
to be transformed to the laboratory frame S = (x,y,z). The
corresponding two-center integrals can be obtained from S

(0)
ab ,

H
(0)
ab , and G

(0)
ab by rotating the coordinate system around the

y axis for angle −θ (Fig. 1). For the overlap integrals Sab and
the two-center Dirac-Hamiltonian matrix elements Hab in the
laboratory frame, S we obtain

Sa,b = Snaκaµa ;nbκbµb
=

∑
µ

dja

µaµ
(θ )djb

µbµ

∗
(θ )S(0)

naκaµ;nbκbµ
,

Ha,b = Hnaκaµa ;nbκbµb
=

∑
µ

dja

µaµ
(θ )djb

µbµ

∗
(θ )H (0)

naκaµ;nbκbµ
,

(47)

where d
j

µ′µ(θ ) are real Wigner’s D functions [74]. The

transformation of the gradient matrix elements G
(0)
ab (q) to the

laboratory frame S is given by

Gab(q) = Gnaκaµa ;nbκbµb
(q)

=
∑

µ′
a ,µ

′
b,q

d
ja

µaµ′
a
(θ )djb

µbµ
′
b
(θ )d1

q′q(θ )G(0)
naκaµ′

a ;nbκbµ
′
b
(q).

(48)

D. Charge-transfer probabilities and cross sections

1. Transition amplitudes

The transition amplitude for electron capture to an ion state
αn is given by

Tαn(t) = 〈ψαn(r,t)|�(r,t)〉, t → ∞. (49)

As mentioned earlier, the index α = A,B labels different
centers (target and projectile ions) and ψαn(r,t) denote the
wave functions of the free-moving ion α. After the collision
(t → ∞), the wave functions ψαn(r,t) of the free-moving ion
α are given by

ψαn(r,t) = e−iEαnt sα(r)ψ0
αn(r − Rα), (50)

where ψ0
αn(r) are the stationary Dirac wave functions of ion α

at the rest and sα(r) is the translation factor. For low-energy
collisions the translation factor and the energy Eαn of the
moving ion can be taken in the nonrelativistic approximation

sα(r) = exp(ivα · r), Eαn = εαn + v2
α

/
2. (51)

In general, the plane-wave translation factor is introduced
in the basis functions [77] to provide the correct asymptotic
behavior at the large internuclear distance R and to improve the
convergence of the time-dependent wave function expansion.
We did not include the translation factor sα(r) in the basis
functions because of the computational complexity of the
two-center integral calculations. However, at asymptotic time
t → ∞ we can project basis functions ϕαn onto the space
spanned by the basis of the moving (“traveling”) orbitals

sαϕαn. The projected functions form a nonorthonormal basis.
We can orthogonalize this basis using the symmetric Löwdin
orthogonalization procedure [78], which possesses a remark-
able feature: the Löwdin basis is least distorted from the
original one in the least-squares sense [79]. As a result, for
the large internuclear distance we can obtain the expansion of
the time-dependent wave function �(r,t) over the basis of the
traveling orbitals (for details, see Appendix B),

�(r,t) �
∑
α,n

Cαn(t)eivα ·rϕαn(r),

(52)
Cαn(t) =

∑
n′

Kαn,αn′Cαn′ (t).

The matrix K is defined by

K = KN−1/2, N = (K+K),
(53)

Kα′n′,αn = δα,α′ 〈ϕαn′ |e−ivα ·r |ϕαn〉.
Since the matrix K is unitary, the set of coefficients Cαn(t) is
normalized to unity:∑

α,n

|Cαn(t)|2 =
∑
α,n

|Cαn(t)|2 = 1, t → ∞. (54)

It should be noted that the error introduced by the expansion
(52) is equal to zero, if the basis ϕαn is complete.

For the transition amplitude Tαn(t) we obtain (t → ∞)

Tαn(t) = 〈ψαn(r,t)|�(r,t)〉 =
∑
n′

Cαn′(t)eiEαnt
〈
ψ0

αn

∣∣ϕαn′
〉
.

(55)

The stationary Dirac wave functions ψ0
αn, including wave

functions of the positive and negative energy spectra, form
a complete basis set. Therefore,∑

α,n

|Tαn|2 =
∑
α,n

|Cαn(t)|2 = 1. (56)

The effectiveness of the projection procedure described in this
section (see also Appendix B) can be demonstrated by a simple
example of the collision of one-electron ions with bare nuclei
[A(Z−1)+(1s)-AZ+] for the large impact parameters. Let us
consider a very short basis (ϕA,1s ,ϕB,1s), which contains only
one 1s function at each center. We suppose that the basis
functions of the different centers do not overlap for large values
of the impact parameter b and that b is not large enough to
neglect the Coulomb interaction between the different ions. In
this case the trivial solution of Eqs. (8) and (17) gives us only
one nonzero coefficient |CA,1s | = 1. Then, the time-dependent
wave function �(r,t) has a wrong behavior and leads to the
nonvanishing probability of the direct excitation and ionization
channels, especially for large values of the target velocities.
If we use the projected basis and the expansion (52), we also
obtain one nonzero coefficient |CA,1s | = 1, but the correct
behavior of the wave function �(r,t), which is described by
one traveling 1s orbital of ion A.

2. Transition probabilities

Transition probabilities Wαn(t) are defined by

Wαn(t) = |Tαn(t)|2. (57)
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The probability Wαn(t), defined by Eqs. (57) and (55), has an
oscillatory behavior at t → ∞, because the basis functions
ϕα,n are not the solutions of the hydrogenlike Dirac equation
and the basis set is truncated. We can remove the oscillatory
component of the probability Wαn(t) for the large time
(t → ∞) in the same way, as was done in Refs. [7,8].

At asymptotic time (t → ∞) the coefficients CL
j (t) coin-

cide with the coefficients Cj (t). Therefore, the coefficients
Cj (t) are the solutions of Eq. (17):

i
dC(t)

dt
= M(t)C(t). (58)

Then for the coefficients Cj (t) we obtain the equation

i
dC(t)

dt
= KM(t)K

+
C(t). (59)

Using the diagonalization procedure for the Hermitian matrix
KMK

+
, we can decompose

KMK
+ = V �V +, (60)

where � is a diagonal matrix with eigenvalues �kk = ωk and
V is a unitary matrix.

We introduce new coefficients B(t) by

Bk(t) = [ei�tV +C(t)]k = eiωkt
∑

j

V ∗
jkCj (t),

(61)∑
k

|Bk(t)|2 = 1.

These coefficients have well defined limits at t → ∞. The
amplitudes Tαn(t), defined by Eq. (55), expressed in terms of
the coefficients B(t) read

Tj (t) =
∑
k,l

ei(Ej −ωk )tVlkBk(t)
〈
ψ0

j

∣∣ϕl

〉
. (62)

The for the probabilities Wj (t) we obtain

Wj (t) = |Tj (t)|2 =
∑

k

|Bk(t)|2
∣∣∣∣∣
∑

l

Vlk

〈
ψ0

j

∣∣ϕl

〉∣∣∣∣∣
2

+ (oscillating term). (63)

Disregarding the oscillating term [8], we can introduce
probabilities W ′

j (t) defined as

W ′
j (t) =

∑
k

|Bk(t)|2
∣∣∣∣∣
∑

l

Vlk

〈
ψ0

j

∣∣ϕl〉
∣∣∣∣∣
2

. (64)

Since hydrogenlike Dirac wave functions ψ0
α,n of each center α

(including the positive and negative Dirac continuum spectra)
form a complete basis set, we get∑

j∈α

|W ′
j (t)|2 =

∑
k

|Bk(t)|2
∑

l

|Vkl|2 =
∑

k

|Bk(t)|2 = 1.

(65)

The coefficients Bk(t) and the matrix elements have well-
defined limits for t → ∞; therefore, also the limit

Pα,n = lim
t→∞ W ′

αn(t) (66)

exists. The direct (Pd), charge transfer (Pct), and ionization
(Pion) probabilities are given by

Pd =
∑′

n

PA,n, Pct =
∑′

n

PB,n,

(67)
Pion = 1 −

∑′

α,n

Pαn = 1 − Pd − Pct,

where the prime at the sum symbol indicates that the
summation runs over the discrete bound states of the ion α.

The cross sections for charge-transfer (σct) and ionization
(σion) processes are then obtained as usual by integrating the
probabilities over the impact parameter b:

σct = 2π

∫ ∞

0
dbbPct(b), σion = 2π

∫ ∞

0
dbbPion(b). (68)

3. Z scaling

It is well-known that in the nonrelativistic theory the
scale transformation r ′ = Zr and R′ = ZR allows one to
transform the wave functions ψ(r) and the energies ε of
a homonuclear one-electron quasimolecule in the Coulomb
field of a nuclear point charge Z > 1 to the wave functions
ψ ′(r) = Z−3/2ψ(Zr) and energies ε′ = ε/Z2 of the H2

+
molecule. The same scale transformation can be considered
in nonrelativistic homonuclear collisions.

The time-dependent Schrödinger equation describing
A(Z−1)+-AZ+ collision is given by(
−1

2
� + Z

|r − RA(t)| + Z

|r − RB(t)|
)

�(r,t) = i
∂

∂t
�(r,t).

(69)

If in Eq. (69) we set r ′ = Zr , t ′ = Z2t , and R′
α(t ′) = ZRα(t),

we obtain the time-dependent Schrödinger equation for the
H+-H collision [4,19]:(
−1

2
�′ + 1

|r ′ − R′
A(t ′)| + 1

|r ′ − R′
B(t ′)|

)
�(r ′,t ′)

= i
∂

∂t ′
�(r ′,t ′). (70)

It should be noted that the scaling R′ = ZR(t) holds exactly
for a straight-line trajectory. In this case the impact parameter
b, the velocity vα , and projectile energy E are transformed by

b′ = Zb, v′
α = vα/Z, E′ = E/Z2. (71)

It follows that in symmetric collision systems involving
nuclei of charge Z, the probability Pα,n(Z,b,E) and the cross
section σα,n(Z,E) for any process under consideration can
be obtained from the probability Pα,n(1,b′,E′) and the cross
section σα,n(1,E′) for the same process in the H(1s)-H+ system
by means of the relations

Pα,n(Z,b,E) = Pα,n(1,bZ,E/Z2),
(72)

σα,n(Z,E) = 1

Z2
σα,n(1,E/Z2).
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It should be noted that this scaling law is not valid in a
relativistic treatment of collisions.

III. RESULTS

A. The choice of the basis

In our relativistic calculations, we used two Dirac-Sturm
bases of different size. Both bases include functions of the
positive-energy Dirac spectrum and Sturm orbitals corre-
sponding to the negative-energy Dirac spectrum. It should be
noted that the constructed bases satisfy the dual kinetic balance
conditions [80] and do not contain so-called “spurious” states
[81].

The positive-energy functions of the first basis (Basis 1) on
each center in the standard nonrelativistic notations of atomic
shells are given by 1s-3s, 2p, 3p, 3d, 4s-6s, 4p-6p, 4d-6d,
4f ,5f . Here the overline symbol (nl) is used to indicate the
Dirac-Sturm (pseudostate) basis functions. The total number of
positive-energy orbitals of both centers is 220 and the total size
of Basis 1, including negative-energy orbitals, is 440. Basis 1 is
used for expanding both stationary and time-dependent wave
functions.

The basis size can be increased in the calculations of the
stationary states of quasimolecules. Positive-energy functions
of the second basis (Basis 2) is constructed from 26 atomic
shells: 1s, 2s-8s, 2p-8p, 3d-8d 4f -6f 5g, 6g. In Basis 2, the
total number of orbitals of both ions, including the negative-
energy spectrum, is equal to 784. This basis is used only in the
calculations of the stationary quasimolecular states.

B. Stationary ground states of some homonuclear
quasimolecules

1. Energies of the ground state of some homonuclear
quasimolecules

In Table I we present the results of our relativistic
calculations of the 1σg state energy of the H2

+, Th2
179+,

and U2
183+ quasimolecules for the so-called chemical distance

R = 2/Z a.u.. Since the quasimolecule Th2
179+ was consid-

ered as a reference system for testing relativistic effects, it
was calculated in a number of articles using high-precision
large-scale methods (see, e.g., Refs. [59,82–84]). As one can
seen from Table I, there is a good agreement of our data
with very accurate values obtained in Refs. [58,59]. The
relative precision of our results for the quasimolecules H2

+ and
Th2

179+ is increased by an order of magnitude when Basis 1
is replaced with Basis 2.

10 100 1000
R [fm ]

E

1s (monopole approxmation)
1σ  (two-center basis)

Energies E (in relativistic units) U
91+

-U
92+

mc²

-mc²

0

Rc(1s)=25.5 fm
Rc(1σ)=34.7 fm

Rc(1s) Rc(1σ)

FIG. 3. The 1σg state energy of the U2 quasimolecule as a function
of the internuclear distance R on a logarithmic scale.

In Fig. 3 we display the energy of the 1σg state of the U2
183+

quasimolecule as a function of the internuclear distance R

on a logarithmic scale. In this figure the solid line indicates
the energy E(R) calculated using the two-center Dirac-Sturm
Basis 2. The dashed line represents the results of the one-center
calculations in the monopole approximation. As one can see
from Fig. 3, in the two-center basis the 1σg electron “dives”
into the negative-energy Dirac continuum at a critical distance
Rc = 34.7 fm. The critical distance deduced within our type
of monopole approximation amounts to Rc = 25.5 fm, which
is too far from the exact value. It should be noted that in our
one-center monopole approximation the basis was centered at
the position of the nucleus (A or B) but not at the center
of mass located at half of the internuclear distance R, as
was done in Refs. [41,62,85]. The monopole approximation
used in Ref. [41] is more suitable for the short-distance
regime and yields Rc = 35 fm for the value of the critical
distance.

2. Critical distance

In Table II we present our results for the critical distance
Rc in the homonuclear one-electron quasimolecular system
A

(2Z−1)+
2 obtained from our relativistic two-center calculations

(Basis 2) and compare them with the corresponding values
obtained by other authors. There exists a discrepancy of about
5%–10% between the critical distance data for the point nuclei
[27,41,60,61,86,87]. Our results for this case are in a very good

TABLE I. Relativistic energies (a.u.) of the 1σg state of quasimolecules for the point-charge nuclei and R = 2/Z a.u..

H2
+ (Z = 1) Th2

179+ (Z = 90) U2
183+ (Z = 92)

ε1σ+ Rel. error ε1σ+ Rel. error ε1σ+

Basis 1 −1.102 624 8 1.5 × 10−5 −9504.573 1.9 × 10−5 −9965.190
Basis 2 −1.102 640 5 1.0 × 10−6 −9504.732 2.5 × 10−6 −9965.307
Others −1.102 641 6a −9504.756b

aReference [58].
bReference [59].
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TABLE II. Critical distances Rc (fm) for homonuclear one-
electron quasimolecules A

(2Z−1)+
2 .

Point nucleus Extended nucleus

Z This work Others 〈R2
n〉1/2 (fm) This work Others

88 24.27 24.24a 5.5705 19.91 19.4c

90 30.96 30.96a 5.7210 27.05 26.5c

92 38.43 38.42a 5.8569 34.72 34.3c

36.8b 34.7d

94 46.58 46.57a 5.794 43.16 42.6c

96 55.38 55.37a 5.816 52.09 51.6c

98 64.79 64.79a 5.844 61.63 61.0c

61.1d

aReference [60].
bReference [27].
cReference [63].
dReference [62].

agreement with the results of Ref. [60]. In our calculations for
extended nuclei, the finite nuclear size was taken into account
using the Fermi model of the nuclear charge distribution (for
details, see, e.g., Ref. [88]). The root-mean-square nuclear
charge radii 〈R2

n〉1/2 were taken from Refs. [89] (for Z = 88),
[90] (for Z = 90), [91] (for Z = 92), and [92] (for Z = 94,
96,98). In contrast to the point nucleus case, which was
frequently considered, only a very small number of works
account for the finite nuclear size effect. We can systematically
compare our results only with the data obtained in Ref. [63].
The discrepancy between our data and those from Ref. [63]
is considerably larger for the extended nuclei than for the
pointlike nuclei. A possible reason for that could consist of a
rather crude estimate of the nuclear size effect in Ref. [63].
It should also be noted that in the work [63] other values of
the nuclear radii, namely, 〈R2

n〉1/2 = √
3/5 1.2 (2.6 Z)1/3 were

used. Our calculations showed, however, that the usage of the
nuclear radii from Ref. [63] changes the values of Rc by not
more than 0.02 fm.

C. Charge-transfer probabilities and cross sections

1. H(1s)-H+ collisions

Figure 4 depicts the charge-transfer probabilities Pct(b)
for the H(1s)-H+ collision as functions of the impact
parameter b for the projectile energies of 2 and 5 keV,
respectively. The results of our relativistic calculations for
2 keV (solid line) and 5 keV (dashed line) are found to
be very close to nonrelativistic calculations based on the
two-center atomic-orbital (AO) expansion [5,93]. This is not
surprising, since the relativistic effects are negligible for the
H(1s)-H+ collision. Our calculations were performed for the
projectile moving on a straight-line trajectory which corre-
sponds to full screening of the target nuclear charge by the 1s

electron.
As was demonstrated in Ref. [5], the two-center AO

expansion data are in a very good agreement with results
obtained by a direct numerical solution of the nonrelativistic
Schrödinger equation [14]. In the review [5], the two-center
AO expansion data [93] are also compared with the results
[94,95], obtained by the expansion with respect to the

0 1 2 3 4 5 6
b (a.u.)

0

0.2

0.4

0.6

0.8

1

P
ct

(b
)

E = 2 keV
E = 5 keV

FIG. 4. Charge-transfer probabilities Pct(b) for the H(1s)-H+

collision as functions of the impact parameter b. Our results for
the projectile energies 2 keV (solid line) and 5 keV (dashed line) are
compared to the related results from the AO-expansion calculations
[5,93] (symbols “+” and “×”).

“nonmoving” Hylleraas basis functions. It should be noted
that the Hylleraas expansion data are similar to the results of
Refs. [14,93] and to our results in trend but differ in both phase
and magnitude.

In Table III we present the total charge-transfer cross
sections σct in H(1s)-H+ collisions for a wide range of
projectile energies (from 0.5 to 100 keV) and compare them
with nonrelativistic large-scale calculations of a recent article
[13], which can be considered as an extension of the pioneering
works [8,96], where the analytical Sturmian basis set expan-
sion was used. We also give the cross-section values, deduced
from the experimental results [97]. The relative uncertainties
of the recommended and interpolated experimental data are
about 5%–10%. As one can see from Table III, our results are

TABLE III. Charge-transfer cross section σct for the H(1s)-H+

collision, in units of 10−17 cm2.

Projectile energy σct(E) σct(E) σct(E)
E (keV) This work Winter [13] Expt.a

0.5 199.6
0.7 186.9
1.0 172.4 173.0 171
2.0 144.9 144
4.0 117.5 118.1 115b

5.0 107.8 110
10.0 81.3 77.5
15.0 63.5 67.41 55.6b

20.0 48.9 44.5
25.0 36.2 39.45 35.3b

30.0 26.6 27.6b

40.0 15.3 16.5b

50.0 9.1 10.04 9.9
60.0 5.6 5.9b

70.0 3.5 3.6b

80.0 2.3 2.3b

100.0 1.1 1.11 1.1

aRecommended values [97] deduced from the experimental data.
bInterpolated values obtained using an analytical fitting function [97].
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FIG. 5. Ionization cross section σion(E) for the H(1s)-H+ colli-
sion as a function of the projectile energy E. The solid line is obtained
by the interpolation of our results indicated by circles, the dashed
line is obtained by the interpolation of data from Ref. [13], and the
triangles indicate the experimental data from Refs. [98,99].

in a good agreement with the theoretical data of Ref. [13] and
with the experimental data.

The ionization cross sections, computed in this work
according to Eqs. (67) and (68), are displayed in Fig. 5. Our
results are in a good agreement with the experimental data
within the range of the proton energy from 20 to 80 keV. At
energies less than 15 keV we observe a significant relative
deviation of our results from the experimental data. This is
probably due to the fact that the absolute uncertainty of our
data is approximately the same in the whole region of the
energies [about (1–3)×10−17 cm2], while at low energies the
ionization cross section tends to zero. This leads to a large
relative error in the low-energy region.

In contrast to our results, the theoretical data of Ref. [13],
which are shown in Fig. 5 by squares, are in a good agreement
with the experimental data in the low-energy region (less than
25 keV) and differ significantly (at least by 25%) from the
experimental data for energies larger than 40 keV. The reason
of this discrepancy is unclear to us.

2. Ne9+(1s)-Ne10+ collisions

To study the role of the relativistic effects in the homonu-
clear collisions and to test our approach we calculated
the charge transfer cross sections for the Ne9+(1s)-Ne10+
collisions with the standard value of the speed of light
(c = 137.036 a.u.) and in the nonrelativistic limit (c → ∞)
by multiplying the standard value of the speed of light by the
factor 1000. The obtained values are presented in Table IV. It
should be noted that the projectile energy values are divided
by Z2 (Z is the nuclear charge) and the values of the charge-
transfer cross section σct are multiplied by the factor Z2.
This was done in order to compare the Ne9+(1s)-Ne10+ cross-
section data with the H(1s)-H+ results in accordance with the
scaling law (72). As one can see from the table, the relativistic
effects, which decrease the values of the charge-transfer cross
section, are rather small and can be estimated as 0.5–0.8 (αZ)2,
where α is the fine-structure constant. In Table IV, we also
compare our scaled nonrelativistic Ne9+(1s)-Ne10+ data with

TABLE IV. Charge-transfer cross section σct(E) (10−17 cm2) as a
function of the projectile energy E for Ne9+(1s)-Ne10+ (Z = 10) and
H(1s)-H+ collisions.

Ne9+(1s)-Ne10+ H(1s)-H+ Ne9+(1s)-Ne10+

E/Z2 σct(E)Z2 σct(E)Z2 σct(E) σct(E)Z2

(keV/u) Rel.a Nonrel.b Born approximationc

1.0 171.6 172.2 172.4 188.4
2.0 144.3 144.8 144.9 150.7
4.0 117.1 117.5 117.5 114.8
5.0 107.3 107.7 107.8 107.3
10.0 80.8 81.3 81.3 76.2
15.0 63.0 63.5 63.5 57.6
20.0 48.5 48.9 48.9 48.2
25.0 35.9 36.2 36.2 38.1
30.0 26.4 26.7 26.6 30.1
40.0 15.1 15.3 15.3 19.9
50.0 9.0 9.1 9.1 13.7
60.0 5.6 5.6 5.6 9.1
70.0 3.5 3.5 3.5 5.4
80.0 2.3 2.3 2.3 3.6
100.0 1.1 1.1 1.1 2.0

aRelativistic calculations.
bNonrelativistic limit (c → ∞).
cBorn approximation [100].

the H(1s)-H+ results. It should be noted that our calculations
for the Ne9+(1s)-Ne10+ collision were performed for the
Rutherford trajectory (see Sec. II A 2). This is probably the
reason for a very small discrepancy between the data presented
in the third and fourth columns of Table IV.

It is also of interest to compare our results with the
calculations performed within the plane-wave Born (PWB)
approximation. The results of such a calculation for the
Ne9+(1s)-Ne10+ collision [100] are presented in the fifth
column of Table IV. The details of the modified PWB method
can be found in Ref. [101]. It is seen from the table that
the PWB data are in a reasonable agreement with the more
elaborated calculation.

3. Xe53+(1s)-Xe54+ collisions

The relativistic effect for the Xe53+(1s)-Xe54+ collisions is
considerably larger than for the Ne9+(1s)-Ne10+ collisions.
The computed relativistic (solid line) and nonrelativistic
(dashed line) charge transfer probabilities Pct(b) as functions
of the impact parameter b for the projectile energy of
5.9 MeV/u are displayed in Fig. 6. The oscillatory behavior of
both curves is the same but the nonrelativistic curve is shifted
toward higher impact parameters.

In Table V we present the relativistic and nonrelativistic
values of the charge-transfer cross section for the Xe53+(1s)-
Xe54+ collision scaled to Z = 1. As can be seen from the
table, the relativistic effect increases from 10% to 40% with
increasing the projectile energy.

4. U91+(1s)-U92+ collisions

The calculations of the charge-transfer probabilities
and cross sections for the U91+(1s)-U92+ collisions were
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FIG. 6. The charge-transfer probability Pct(b) for Xe53+(1s)-
Xe54+ collision as a function of the impact parameter b. The solid
line interpolates the relativistic values (squares) and the dashed line
corresponds to the nonrelativistic limit. In both cases, the projectile
energy is E = 5.9 MeV/u.

performed for extended nuclei. The Fermi model of the
nuclear charge distribution with Rnucl = 5.8569 fm was used as
in [91].

The computed relativistic (squares) and nonrelativistic
values (circles) for the charge-transfer probabilities Pct(b)
together with the interpolating curves are displayed in Fig. 7.
It is seen from the figure that the nonrelativistic and relativistic
probabilities significantly differ. The nonrelativistic curve
(dashed line) is shifted toward higher impact parameters
compared to the relativistic one (solid line).

The same curves as in Fig. 7 but in the small impact
parameter region (0–200 fm) are shown in Fig. 8. This
figure demonstrates the difference between the relativistic
and nonrelativistic charge-transfer probabilities in the critical
and supercritical regions of the impact parameter b. In
Fig. 8, the vertical dashed line indicates the critical impact
parameter bc = 27.5 fm. For b = bc the 1σg ground-state
level of the U2

193+ quasimolecule reaches the negative-energy
Dirac continuum. It should be noted that for the non-straight-
line (Rutherford) trajectory the value of the critical impact
parameter bc is less than the critical distance Rc presented in
Table II. For values of b smaller than bc, the 1σg level dives
into the negative-energy continuum.

In Table VI we present the results of our relativistic
(third column) and nonrelativistic (fourth column) calculations

TABLE V. Charge-transfer cross section σct(E) (10−17 cm2) as a
function of the projectile energy E for Xe9+(1s)-Xe10+ and H(1s)-H+

collisions.

Xe53+(1s)-Xe54+ (Z = 54) H(1s)-H+ (Z = 1)

E/Z2 E σct(E)Z2 σct(E)Z2 σct(E)
(keV/u) (MeV/u) Rel.a Nonrel.b

1.234 57 3.6 148.3 163.3 165.0
2.023 32 5.9 129.4 143.0 144.9
3.429 36 10.0 109.1 123.8 124.8
34.2936 100.0 13.3 20.6 20.7

aRelativistic calculations.
bNonrelativistic limit (c → ∞).
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FIG. 7. Charge-transfer probability Pct(b) for the U91+(1s)-U92+

collision as a function of the impact parameter b. The solid line
interpolates the relativistic values (squares) and the dashed line
corresponds to the nonrelativistic limit. In both cases, the projectile
energy is E = 6.0 MeV/u.

of the total charge-transfer cross section σct(E), scaled to
Z = 1, for the U91+(1s)-U92+ collision at different projectile
energies E. The values of σct(E) were obtained for target
and projectile ions moving on the Rutherford trajectories. As
one can see from the table, the relativistic effect amounts
to about 30% of the nonrelativistic value of σct. In the fifth
column of Table VI, we also present our results obtained for
for the projectile ion moving along a straight-line trajectory
(in this case the target ion is assumed to be at rest). As one
can see from the table, the difference between the results
obtained for the straight-line trajectory and the Rutherford
one is very small. The nonrelativistic values of the charge-
transfer cross section for the U91+(1s)-U92+ collision, scaled
to Z = 1, are also compared with the cross section σct(E)
for the H(1s)-H+ collision, presented in the sixth column of
Table VI.
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FIG. 8. Charge-transfer probability Pct(b) for the U91+(1s)-U92+

collision as a function of the impact parameter b in the small b

region. The value b = bc corresponds to the diving of the 1σg level
into the negative-energy Dirac continuum. The solid line interpolates
the relativistic values while the dashed line corresponds to the
nonrelativistic limit.
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TABLE VI. Charge-transfer cross section σct(E) (10−17 cm2) as a function of the projectile energy E for the
U91+(1s)-U92+ and H(1s)-H+ collisions.

U91+(1s)-U92+ H(1s)-H+

Energy Energy σctZ
2 σctZ

2 σctZ
2 σct

E/Z2 (keV/u) E (MeV/u) Rel. Nonrel. Nonrel. str. line

0.708 89 6.0 135.3 184.2 185.0 186.4
0.767 96 6.5 132.7 181.3 182.0 183.1
0.827 03 7.0 130.3 178.2 179.1 180.1
1.181 47 10.0 117.1 165.8 166.7 167.6

IV. CONCLUSION

In this article we presented a method for relativistic calcula-
tions of one-electron two-center quasimolecular system in both
stationary and time-dependent regimes. The method is suitable
for a wide range of internuclear distances including the critical
regime, when the ground state of the quasimolecule can dive
into the negative-energy Dirac continuum. Using this method
we calculated the energies of the H2, Th2

179+, and U2
183+

quasimolecules, the critical distances for some homonuclear
quasimolecules A+(2Z−1) (Z = 88,90,92,94,96,98), and
the charge transfer probabilities, charge transfer, and
ionization cross sections in H(1s)-H+, Ne9+(1s)-Ne10+,
Xe53+(1s)-Xe54+, and U91+(1s)-U92+ low-energy collisions.

The results of our calculations of the charge-transfer
probabilities and cross sections for the H(1s)-H+ collision
are in a good agreement with experimental data and with
theoretical results obtained by other authors. The influence
of the relativistic effects on the charge-transfer probabilities
and cross sections for the Ne9+(1s)-Ne10+, Xe53+(1s)-Xe54+,
and U91+(1s)-U92+ collisions is investigated. We demonstrated
that the relativistic and nonrelativistic charge-transfer proba-
bilities as functions of the impact parameter exhibit the same
oscillatory behavior at low energies, but the relativistic curves
are shifted toward lower impact parameters compared to the
nonrelativistic ones. In the case of the U91+(1s)-U92+ collision,
the relativistic effects reduce the values of the cross section by
about 30%.

In further investigations we intend to study in more detail
the effect of the diving of the 1σg level of the U2

183+
quasimolecule into the negative-energy Dirac spectrum and
the influence of this effect on the values of the charge-transfer
probability. With this goal, we are going to develop an
approach which would allow us to compare the calculated
probabilities with and without the diving of the ground state
into the negative-energy continuum. We also plan to extend our
method to collisions involving many-electron ions and neutral
atoms. This will allow us to study the 1s-1s charge transfer
in low-energy heavy ion-atom collisions. Such experiments,

which were successfully performed for low-Z collisions many
years ago [102–105], are presently under preparation for
high-Z collisions at GSI.
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APPENDIX A: TWO-CENTER MATRIX ELEMENTS

1. Two-center overlap integrals

Let us consider the two-center overlap integrals S
(0)
ab . We

remind the reader that superscript (0) means that the integral
is considered in the local coordinate frame, where the z axis is
directed along internuclear axis A-B. The integral S

(0)
ab can be

divided into two parts,

S
(0)
ab = 〈a| b〉 = 〈a| b〉A + 〈a| b〉B, (A1)

where the notations 〈 〉A and 〈 〉B imply the integration
over the regions VA and VB , respectively (see Fig. 2).
Using the reexpansions of the large and small components
onto the center A (in the region VA) and onto the center B (in
the region VB), we obtain

〈a|b〉A = δµa,µb

∫ ∞

0
dr

[
Pa(r)pκaµa

(b|r) + Qa(r)qκaµa
(b|r)

]
,

(A2)

〈a|b〉B = (−1)lb−la δµa,µb

∫ ∞

0
dr

[
Pb(r)pκbµa

(a|r) + Qb(r)qκbµa
(a|r)

]
.
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The matrix elements of the nuclear binding potentials, V A
nucl(rA)

and V B
nucl(rB), and of the mass operator βmc2 are evaluated

similarly as the overlap integral.

2. Two-center gradient matrix elements

As in case of the overlap integral, the region of integration
for the gradient matrix element G

(0)
ab (q) is divided into two

parts:

G
(0)
ab (q) = 〈a|∇q | b〉 = 〈a|∇q |b〉A + 〈a|∇q |b〉B. (A3)

Here index q = 1,0, − 1 enumerates covariant spherical coor-
dinates. Using the Gauss theorem [75] for the integration over
region A, we obtain

G
(0)
ab (q) = −〈b|∇q |a〉A + 〈a|∇q |b〉B + δq,0〈a|b〉S, (A4)

where 〈a|b〉S is the surface integral over the region S (see
Fig. 2). The volume integrals over regions A and B are given
by

〈b|∇q |a〉A =
∑′

κ

g1q(jµb,jaµa)
∫ ∞

0
dr

[
pκµb

(b|r)D̂κ,κa

×Pa(r) + qκµb
(b|r)D̂−κ,−κa

Qa(r)
]
,

〈a|∇q |b〉B =
∑′

κ

(−1)la−lg1q(jµa,jbµb)
∫ ∞

0
dr

[
pκµa

(a|r)

× D̂κ,κb
Pb(r) + qκµa

(a|r)D̂−κ,−κb
Qb(r)

]
,

(A5)

where the prime at the sum symbol indicates that the
summation is restricted to odd values of la + l and lb + l,
and the operator Dκ,κ ′ is defined by

Dκ,κ ′ = d

dr
+ κ ′(κ ′ + 1) − κ(κ + 1)

2r
. (A6)

The coefficients gkq(jµ,j ′µ′) are the relativistic analogs of
the Gaunt coefficients [76]

gkq(jµ,j ′µ′) =
√

(2j + 1)(2j ′ + 1)

2k + 1
(−1)

1
2 +µ′

×Ck0
j− 1

2 ,j ′ 1
2
C

kq

jµ,j ′−µ′ . (A7)

The relativistic Gaunt coefficient is nonzero only if l + l′ + k

is even.
The surface integral is given by

〈a|b〉S = δµa,µb

1

2

[∑
m,ms

C
jaµa

lam, 1
2 ms

C
jbµa

lbm, 1
2 ms

∫ ∞

R/2
dr

1

r
Pa(r)

×Pb(r)Ulalbm(R/2r)
∑
m,ms

C
jaµa

lam, 1
2 ms

C
jbµa

lbm, 1
2 ms

×
∫ ∞

R/2
dr

1

r
Qa(r)Qb(r)Ulalbm

(R/2r)

]
, (A8)

where

Ulalbm(x) = (−1)lb−m
√

(2la + 1)(2lb + 1)

×Kla |m|Klb|m|P
|m|
la

(x)P |m|
lb

(x). (A9)

3. Two-center (α · p) matrix elements

The two-center (α · p) matrix elements A
(0)
ab can be divided

into three parts, similar to the gradient matrix elements G
(0)
ab (q)

in Eq. (A4),

A
(0)
ab = 〈a|α · p| b〉

= 〈b|α · p|a〉A + 〈a|α · p|b〉B + 1

i
〈a|α0|b〉S, (A10)

where the volume integrals 〈b|α · p|a〉A and 〈b|α · p|a〉A are
given by

〈b|α · p|a〉A = δµa,µb

∫ ∞

0
dr

[(
−dQa

dr
+ κaQa

r

)

× pκaµa
(b|r) +

(
dPa

dr
+ κaPa

r

)
qκaµa

(b|r)

]
,

〈a|α · p|b〉B = (−1)la−lb δµa,µb

∫ ∞

0
dr

[(
−dQb

dr
+ κbQb

r

)

× pκbµa
(a|r) +

(
dPb

dr
+ κbPb

r

)
qκbµa

(a|r)

]
.

(A11)

The last term in Eq. (A10) is the surface integral, which is
given by

1

i
〈a|α0|b〉S = δµa,µb

∑
m,ms

msC
jaµa

lam, 1
2 ms

C
jbµa

lbm, 1
2 ms

×
∫ ∞

R/2
dr

1

r
Qa(r)Pb(r)Ulalbm

(R/2r)

+ δµa,µb

∑
m,ms

msC
jaµa

lam, 1
2 ms

C
jbµa

lbm, 1
2 ms

×
∫ ∞

R/2
dr

1

r
Pa(r)Qb(r)Ulalbm

(R/2r). (A12)

APPENDIX B: PROJECTION ONTO THE SPACE OF THE
TRAVELING ORBITALS

As is mentioned in Sec. II D, the finite basis expansion

�(r,t) =
∑
α,n

Cαn(t)ϕαn(r) (B1)

over the set of functions ϕα,n(r) does not provide the correct
asymptotic behavior (t → ∞) of the time-dependent wave
function �(r,t). However, we can project the basis functions
ϕαn onto the space spanned by the orthonormal basis of the
traveling orbitals sαϕαn. The projected basis functions ϕ

(p)
αn (r)

for the plane-wave translation factor sα(r) = exp(ivα · r) are
given by

ϕ(p)
αn (r) =

∑
n′

Kαn′,αne
ivα ·rϕαn′ (r), (B2)

where the coefficients Kα′n′,αn are defined as

Kα′n′,αn = δα,α′ 〈ϕαn′ |e−ivα ·r |ϕαn〉. (B3)
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The projected ϕ
(p)
αn (r) basis set is not orthonormal, since the

finite basis ϕαn is incomplete and the matrix K is nonunitary.
In particular, ∑

n′
|Kαn′,αn|2 < 1. (B4)

We can use the Löwdin orthogonalization procedure [78] to
obtain the orthogonal basis set ϕαn(r), which is closest to
the original nonorthogonal basis ϕ

(p)
αn (r) in the least-squares

sense,

ϕαn =
∑
n′

(N−1/2)αn′,αnϕ
(p)
αn′ (r), (B5)

where the overlap matrix N is given by

Nαn,αn′ = 〈
ϕ(p)

αn

∣∣ϕ(p)
αn′

〉
, N = K+K. (B6)

Then we replace the original basis ϕαn with the orthonormal
basis ϕnα in the time-dependent wave function expansion (B1).
As a result, we obtain the expansion of the wave function
�(r,t) over the basis of the traveling orbitals

�(r,t) �
∑
α,n

Cαn(t)ϕαn(r) =
∑
α,n

Cαn(t)eivα ·rϕαn(r), (B7)

where the coefficients Cαn are defined by

Cαn(t) =
∑
n′

Kαn,αn′Cαn′ (t), K = KN−1/2. (B8)

Here matrix N−1/2 plays a role of the normalization factor. The
renormalized matrix K is unitary and the set of new coefficients
Cαn(t) is normalized to unity (t → ∞):∑

α,n

|Cαn(t)|2 =
∑
α,n

|Cαn(t)|2 = 1. (B9)
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