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Atomic excitations during the nuclear β− decay in light atoms
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Probabilities of various final states are determined numerically for β−-decaying He, Li, and Be atoms. In our
evaluations of the final-state probabilities we have used the highly accurate atomic wave functions constructed
for each few-electron atom or ion. We also discuss an experimental possibility to observe negatively charged ions
which form during the nuclear β+ decays. Corrections on direct interaction between atomic electrons and fast
β electrons or positrons are considered. It is shown that for our results obtained for β± decays in few-electron
atoms with the use of the sudden approximation such corrections are very small (≈α4) and can be neglected.
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I. INTRODUCTION

In this study we consider atomic excitations which arise
during the nuclear β− decay in light few-electron atoms. Our
main goal is to determine numerically the corresponding final-
state probabilities or, in other words, the absolute probabilities
of formation of the final system(s) in certain bound and/or
unbound states which arise after the nuclear β− decay in light
few-electron atoms. A basic theoretical analysis of atomic
excitations during the nuclear β− decay has been performed
in our earlier works [1,2]. In this study we do not repeat all
steps and arguments from those works. Instead, we bring our
attention to some new problems which have not been solved in
earlier studies. Note only that our analysis and computations
of atomic excitations are based on the sudden approximation
[3,4]. In turn, the sudden approximation follows from the
well-known experimental fact that the velocities of the emitted
β− electrons are significantly larger than the usual velocities of
atomic electrons. In many actual cases such velocities are close
to the speed of light in vacuum (i.e., vβ ≈ c). It follows from
here that the emitted β− electron leaves the external shells of
an atom for a time which is approximately τβ ≈ a0/c = ατa =
αh̄/(e4me), where α ≈ 1

137 is the fine-structure constant, h̄ is
the reduced Planck constant, me is the electron mass (at rest),
a0 is the Bohr radius, c is the speed of light in vacuum, and
τa = h̄/(e4me) ≈ 2.418 884 × 10−17 s is the atomic time. For
internal atomic or electron shells, one also finds that τβ � τa ,
since the passing time τβ for β− electrons decreases with the
radius of the electron shell.

The general equation of the β− decay can be written in the
form

Q → (Q + 1)+ + e− + ν, (1)

where Q is the nuclear charge of the incident nucleus,
while e− and ν are the emitted (fast) electron and neutrino,
respectively. The emitted electron is usually very fast and its
Lorentz γ factor (γ = E/mec

2) is bounded between 2 and
15–18. In all actual cases, the nuclear β− decay proceeds
in many-electron atoms or ions, rather than in bare nuclei.
The arising atomic system with the nuclear charge (Q + 1)+
is also a many-electron ion (or atom). Our main goal in
this study is to determine the final-state probabilities for
this newly arising atomic system. Suppose that the incident
atom was in one of its bound states, for example, in the A

state. The final ion is formed in one of its states (bound or
unbound), for example, in the B state. The aim of theoretical
analysis of nuclear β± decays in atomic systems is to evaluate
the corresponding transition amplitude AAB = |〈A | B〉| and
final-state probability pAB = A2

AB = |〈A | B〉|2.
This problem has attracted significant theoretical attention

(see, e.g., Refs. [1,5–7]), since various β−-decaying nuclei
are of great interest in various applications to modern tech-
nology, scientific research, nuclear medicine, and so on. For
instance, the β−-decaying isotope iodine-131 (131I, so-called
radioiodine) is extensively used in nuclear medicine both
diagnostically and therapeutically. Examples of its use in
radiation therapy include the treatment of thyrotoxicosis and
thyroid cancer. Diagnostic tests exploit the mechanism of
absorption of iodine by the normal cells of the thyroid gland.
131I can be used to destroy thyroid cells therapeutically.
Other β−-decaying isotopes of iodine are used (mainly as
radioactive labels) in modern biology, and in physical and
organic chemistry [8].

Another well-known β−-decaying isotope is strontium-90
(90Sr). It finds extensive use in medicine and industry, as a
radioactive source for thickness gauges and for superficial
treatment of some cancers. Controlled amounts of 90Sr can be
used in the treatment of bone cancer. The radioactive decay of
90Sr generates a significant amount of heat. Strontium fluoride
of strontium-90 (90SrF2) is widely used as a heat source
in many remote thermoelectric generators, since it is much
cheaper and less dangerous than the alternative source based on
plutonium-238 (238Pu). 90Sr is also used as a radioactive tracer
in medicine and agriculture. The isotope 90Sr can be found in
significant amounts in spent nuclear fuel, in radioactive waste
from nuclear reactors, and in nuclear fallout from nuclear
tests. It is interesting to note that the fission product yield
of 90Sr sharply depends upon the type of explosive nuclear
(fission) device. A relatively large output of 90Sr in nuclear
fallout is a strong indication that the original nuclear explosive
device was made from uranium-233 (or uranium-235) rather
than from 239Pu. Advanced nuclear explosive devices which
contain substantial amounts of 245Cm and 247Cm and/or 249Cf
and 251Cf produce significantly smaller yields of 90Sr than
analogous devices made from 239Pu. A brief discussion of
different applications of other β−-decaying atoms can be
found, for example, in Ref. [1] (see also Ref. [8]). Note that
for 131I, 90Sr, and for many other β−-decaying isotopes or
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atoms our knowledge about the final (or postdecay) atomic
states is far from complete, since in almost all cases we cannot
determine the final-state probabilities. Currently, for some
of the β−-decaying atoms we can only predict approximate
probabilities to find the final ions or atoms in their ground
state(s). Analogous evaluations of the probability to form
the first excited (bound) states and for the total probability
of electron ionization are very approximate. Probabilities
to form other excited states, including various unbound
states, in the final atomic systems have never been evaluated
(even approximately) for �99.9% of all β−-decaying atoms.
The goal of this and following studies is to correct such
a situation, at least for some light atoms. In general, the
results of experiments, in which the final-state probabilities
for β±-decaying atoms and molecules are measured, can be
considered a very serious quantitative test for the modern
theory of electron density distribution in atoms and molecules.

Formally, the current theory of β− decay in atoms (and
molecules) is self-consistent and it does not include any
unsolved problems. All troubles of the current theoretical
evaluations are mainly related to the relatively low accuracy
of the wave functions used in calculations. For instance,
in [1] we have calculated a large number of probabilities for
the “ground-state to ground-state” transitions. In fact, such
probabilities are now known for all atoms from He up to
Ar [1]. However, analogous calculations of the “ground-state
to excited-states” probabilities are significantly more difficult
to perform, since for many atoms or ions we do not have
sufficiently accurate wave functions of the excited states.
Finally, the computed values of final-state probabilities for
the excited states are not accurate. Furthermore, these values
often oscillate if the number of basis functions increases.

Analogous computations for the β+ decays in atoms are
even more complicated. In particular, it is very hard to
determine the final-state probabilities accurately if a negatively
charged ion is formed as a result of the atomic β+ decay. In
such cases one needs to use highly accurate methods which
are specifically designed for accurate computations of the
negatively charged ions. In this study we have developed
such a method, and this allows us to determine the final-state
probabilities in those cases when negatively charged ions are
formed after the nuclear β+ decays in some few-electron atoms
and ions. The probabilities to form bound negatively charged
ions, which are computed below, have not been determined
in earlier studies. Another interesting problem is the emission
of the fast secondary electrons during nuclear β± decays in
many-electron atoms and molecules.

The present work has the following structure. In the next
section we discuss a few numerical methods which are used to
determine the bound-state wave functions of the incident and
final states in few-electron atoms and ions. Section III contains
a brief discussion of the final-state probabilities computed for
some β−-decaying light atoms. Here we consider the He, Li,
and Be atoms. Our present analysis is extensive and it includes
a few excited states in each of the final ions. In Sec. IV we
determine the ground-state to ground-state and excited-state to
ground-state transition probabilities for the β+ decay in some
light atoms. The final atomic system in this case is a negatively
charged ion. Emission of the fast, secondary electron (or δ

electrons) during the nuclear β± decay in atoms are considered

in Sec. V. The concluding remarks can be found in the last
section.

II. METHOD

Let us assume that we have an N -electron atom which
is described by its bound-state wave function �i , that is,
H0�i = Ei�i , where H0 is the atomic Hamiltonian (see,
e.g., [9]), Ei is the corresponding eigenvalue (or total energy,
for short), and �i is the eigenfunction of the incident bound
state which has a finite norm, that is, | �i |2= 1. Consider now
a sudden change of the Hamiltonian of the atomic system.
By sudden change we mean that the change in the original
Hamiltonian H0 occurs in a time which is very short compared
with the periods of (atomic) transitions from the given state
i to other states. The electron density distribution and the
corresponding wave function cannot change for such a short
time and remain the same as before perturbation. This means
that after such a process we find the new atomic system with
the new Hamiltonian Hf , but with the old electron density
distribution. Such an electron density distribution is described
by the old wave function �i . The new Hamiltonian Hf has a
complete system of eigenfunctions; that is, Hf �

(k)
f = Ek�

(k)
f .

Therefore, at the final stage of the process we have only
states with the wave functions �

(k)
f . The incident wave

function �i is now represented in the form of an expansion
�i = ∑

k Ak�
(k)
f , where the coefficients Ak can be considered

the transition (probability) amplitudes. The corresponding
probabilities pk = |Ak|2 determine the probability to detect
the final system in its state �

(k)
f , if the initial state of the system

was described by the wave function �i . Note that the system
of notations used here corresponds to the case of the discrete
spectra in both the incident and final atomic systems. In
general, the expansion �i = ∑

k Ak�
(k)
f must contain different

parts which represent the discrete and continuous spectra,
respectively.

Thus, to determine the probability amplitudes Ak we need
to compute the overlap integrals between two N -electron wave
functions �i and �

(k)
f functions for different k, that is,

Ak =
∫

�∗
i (r1, . . . ,rN )�(k)

f (r1, . . . ,rN )d3r1 · · · d3rN . (2)

In general, this value is complex, but the corresponding
probabilities pk = |Ak|2 are always real and their values are
bounded between 0 and 1. As follows from Eq. (2), any of
the final states must have the same L and S quantum numbers
as the incident state. Here and in what follows, the notation L

designates the angular (electron) momentum of the atom, while
the notation S denotes the total electron spin. Note that the L

and S quantum numbers are used in the nonrelativistic LS

classification scheme which is appropriate for light atoms and
ions. Briefly, we can say that the angular (electron) momentum
of the atom and its total electron spin are conserved during
the nuclear β− decay. This means that the original problem of
determining the final-state probabilities in the case of β− decay
in atoms is reduced to the construction of highly accurate wave
functions for the incident and final states with the same L and
S quantum numbers. This means the angular momentum L and
total electron spin S are conserved during the nuclear β− decay
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in many-electron atoms. In addition to these two quantum
numbers the spatial parity of the incident wave function is also
conserved.

The conservation of the angular (electron) momentum L

and total electron spin S of the atom during the nuclear β−
decay follows directly from perturbation theory. In fact, these
conservation rules are not fundamental; that is, they are obeyed
only in the lowest-order approximations upon α = e2

h̄c
≈ 1

137 ,
where α is the fine-structure constant. It can be shown that
in higher-order approximations upon α the L and S quantum
numbers are not conserved (see discussion in Sec. V). The
leading correction to the nonrelativistic results (i.e., to the final-
state probabilities) is ≈α2(αQ)2, where Q is the electric nu-
clear charge (in atomic units). In light atoms such a correction
is very small (≈α4) and can be ignored. In heavy atoms with
Q ≈ 100, the overall contribution of this correction is substan-
tially larger, but these atoms are not considered in this work.

A. Variational wave functions

Numerical evaluations of the overlap integral, Eq. (2),
require the knowledge of highly accurate wave functions of
the incident and final atomic systems. To determine such wave
functions for the ground and excited states of different atoms
and ions, in this work we perform extensive calculations of
few-electron atomic systems. Then, by using our accurate
wave functions, we determine the corresponding transition
amplitudes and the final-state probabilities. This is the second
step of our procedure. In this section we discuss the methods
used to construct highly accurate wave functions of few-
electron atoms and ions. In general, the wave functions of
the excited states which have the same symmetry as the
ground state can be found as the solutions of the corresponding
eigenvalue problem.

The energies of the different bound states are calculated by
optimizing the orbital exponents of the corresponding root of
the eigenvalue equation. Furthermore, our wave functions are
simultaneously the eigenfunctions of the angular momentum
and spin operators, L̂2 and Ŝ2, respectively. Therefore, these
eigenfunctions can be used in numerical calculations of various
bound-state properties. The Slater orbitals are the natural basis
for all atomic calculations. In this study we also use the basis
of radial functions constructed from Slater orbitals.

To perform numerical computations of few-electron atoms
and ions in this study we apply the Hylleraas–configuration-
interaction (Hy-CI) method and the configuration-interaction
(CI) method with Slater orbitals. Both these methods are
included in our package of computer codes. The Hy-CI
method, introduced by Sims and Hagstrom [10,11], combines
the use of orbitals with higher angular momentum (as in
the regular CI procedure) and inclusion of the interelectronic
distance rij into the wave function (as for Hylleraas-type trial
wave functions). The Hy-CI and CI wave functions for an
n-electron systems are defined as

� =
N∑

k=1

Ck�k, �k = Ô(L̂2)Âφkχ, (3)

where �k are symmetry-adapted configurations, N is the
number of configurations, and the constants Ck are determined

variationally. The operator Ô(L̂2) projects over the proper
spatial space, so that every configuration is an eigenfunction
of the square of the angular momentum operator L̂2. Â is
the n-particle antisymmetrization operator, and χ is the spin
eigenfunction:

χ = [(αβ − βα) · · · (αβ − βα)α], (4)

where for even electron systems the last α spin function is
omitted. The spatial part of the basis functions are Hartree
products of Slater orbitals:

φk = rν
ij

n∏
i=1

φi(ri,θi,ϕi), (5)

where the power ν takes the value 0 or 1. For ν = 0, the
wave function reduces effectively to a CI wave function. The
basis functions φk are the products of Slater orbitals defined
as follows:

φ(r) = rn−1e−αrYm
l (θ,φ), (6)

where Ym
l (θ,φ) are the spherical harmonics. The phases used

in our definition of Ym
l (θ,φ) correspond to the choice made by

Condon and Shortley [12]:

Ym
l (θ,φ) = (−1)m

[
2l + 1

4π

(l − m)!

(l + m)!

]1/2

P m
l (cos θ )eimφ, (7)

where P m
l (cos θ ) are the associated Legendre functions.

The integrals occurring in our calculation are up to four-
electron integrals in the Hy-CI method and two-electron
integrals in the CI method. Expressions for all these integrals
are given in Refs. [13–15]. The calculation of the overlap
between the wave functions of bound states requires only the
usual two- and three-electron integrals.

Currently, the nonrelativistic total energy of the ground
state of a helium atom is known to very high accuracy (up to
45 decimal digits) [16]. Many excited S, P , D, F, . . . states
in two-electron helium atoms have also been computed to
high numerical accuracy (see, e.g., Refs. [17–19]). The ground
1 1S state of the heliumlike Li+ ion (or ∞Li+ ion) has been
determined to high accuracy [20,21], while the 2 1S, . . . ,7 1S

states in the Li+ ion are known to significantly less accuracy
[22–24]. Highly accurate calculations of the excited S states
in the Li+ ion higher than 7 1S have never been performed.

As a reference calculation in the case of heliumlike two-
electron atoms, we start with a Hy-CI energy of the ∞He
atom −2.903 724 376 99 a.u. This energy was obtained with
the use of 820 configurations and a basis set which included
the s, p, d, and f Slater orbitals [18s,16p,16d,16f ]. This
total energy has uncertainty which is less than 1 × 10−9 a.u.
The “optimal” exponent α = 2.9814 has been obtained by
optimizing 404 configurations constructed with a smaller basis
[11s,11p,11d,11f ]. The best Hy-CI energy obtained with
a single exponent for the ground state of the He atom with
the infinitely heavy nucleus is −2.903 724 377 01 a.u. (974
configurations). All these calculations have been performed
with the use of quadruple precision, or 30 decimal digits per
computer word. Some special measures have been taken to
avoid any linear dependence for this basis set.

The total energies of different bound n 1S states in the Li+
ion are shown in Table I. In calculations of the overlap, which
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TABLE I. The transition amplitudes and final-state probabilities for the nuclear β− decay from the ground 1 1S state of the helium atom
into various (bound) states of the Li+ ion. All calculations for this table have been performed with the use of Hylleraas configuration interaction
wave functions with s, p, d , and f Slater orbitals. The He atom wave function (1 1S state) used in these calculations corresponds to the
energy −2.903 724 376 99(10) a.u. with 820 configurations. Reference energies: nonrelativistic total energy of the helium atom (ground state):
−2.903 724 377 034 119 583 110 34 a.u. (variational) and −2.903 724 377 034 119 583 112 0(7) a.u. (asymptotic) [25]. The best-to-date
nonrelativistic energy for the He atom contains over 45 stable decimal digits, −2.903 724 377 034 119 598 311 159 245 194 404 446 696 925
310 5 a.u. [16].

State of Li+ N Amplitude Probability Energy Li+ (a.u.) Ref. Ener. (a.u.) Ref.

1 1S 820 0.841 794 254(4) 0.708 617 6(3) −7.279 913 407 46 −7.279 913 412 67a [21]
2 1S 820 0.386 502 7(8) 0.149 384(4) −5.040 876 743 8(2) −5.040 876 731 01 [22]
3 1S 820 0.136 30(4) 0.018 579(3) −4.733 755 81(4) −4.733 732 [23]
4 1S 820 0.079 01(5) 0.006 243(3) −4.629 783 49(3) −4.629 778 [24]
5 1S 820 0.053 68(7) 0.002 882(5) −4.582 421 93 −4.582 424 [24]
6 1S 820 0.040 17(2) 0.001 614(2) −4.556 877 65 −4.556 951 [24]
7 1S 820 0.032 87(9) 0.001 081(3) −4.540 877 −4.541 692 [24]
8 1S 820 0.043 20(2) 0.001 866(1) −4.528 507

aThe computed energy is −7.279 913 412 669 305 96 a.u. [21]. The lowest computed energy is −7.279 913 412 669 305 964 919 459 221 006
611 682 a.u. [20].

involve the wave functions of the He atom and Li+ ion, we
have used the wave functions for atom and ion with the same
number of terms. The orbital exponents of different states were
always different. In fact, the orbital exponents of every excited
state have been optimized at several stages and used for the
larger basis (for more detail, see Table II). The optimal values
of exponents are shown in Table II. Every time a new exponent
has been introduced in a series of calculations, a complete
reoptimization has been made. Currently, our best calculations
have been performed with 820 configurations, but the optimal
exponents have been obtained in calculations with a smaller
basis [14s,14p,14d,14f ] (680 Hy-CI configurations). The use
of a single exponent (considering double occupancy of the
orbitals) for all configurations has been sufficient to obtain
highly accurate energies. The total energies obtained in this
study for the 2 1S, 3 1S, and 4 1S states of the Li+ ion are the
lowest values obtained to date.

Note that our resulting wave functions derived after
optimization are not orthogonalized. Therefore, the overlaps
between configurations must be determined. In turn, this
problem is reduced to a numerical calculation of the overlap
integrals. The symmetry-adapted configurations have been
constructed for S symmetry as s(1)s(2), s(1)s(2)r12, p(1)p(2),
p(1)p(2)r12, d(1)d(2)r12, f (1)f (2), and f (1)f (2)r12. Using
the short notation [e.g., p0(1)p0(2) = p0p0, p1(1)p−1(2) =
p1p−1, etc.], we can write the symmetry-adapted configura-
tions pp, dd, and ff in the form

pp = p0p0 − p1p−1 − p−1p1,

dd = d0d0 − d1d−1 − d−1d1 + d2d−2 + d−2d2, (8)
ff = f0f0 − f1f−1 − f−1f1 + f2f−2 + f−2f2

− f−3f3 − f−3f3.

In Table II we also show the convergence of the energy
with respect to several truncated wave-function expansions.
The exponents used in every calculation are given explicitly
for each state. It was observed that for the determination of
higher excited states the diffuse functions are needed and the
wave-function expansions become larger. The total energies of

the first four excited states can be determined to an accuracy
better than ±1 × 10−6 a.u. However, such an accuracy rapidly
decreases for the highly excited states. The value of the
calculated overlap integral, which includes the excited states
of Li+ and the ground state of the He atom, substantially
depends upon the overall accuracy of the calculated energy.
For low-lying states, we have determined the overlaps with
overall accuracy ≈4–5 stable decimal digits. For higher states
such an accuracy decreases, but the absolute values of overlaps
become very small and tend to zero.

In calculations of the Li and Be atoms and corresponding
isoelectronic ions Be+ and Li−, we have used the wave func-
tions constructed with the use of the L-S CI method. In the CI
calculations we have used double precision, which was suffi-
cient for our purposes. It was checked by performing analogous
calculations with quadruple precision. Calculations with
double precision are significantly faster. The method used for
calculations and optimization of the orbital exponents is very
similar to the method used above for two-electron systems.

For the three-electron systems Li and Be+, we use the
full configuration-interaction method. In such cases, therefore,
there are no configurations which have been either selected or
eliminated. We have used a set of s, p, and d Slater orbitals and
two exponents, considering double occupancy of the orbitals.
The exponents are the same for all configurations. We have
optimized the exponents for the smaller basis used (i.e., n = 3
[3s,2p,1d] or n = 4) and employed them in the calculations
with the larger basis sets n = 5,6. Eventually, the exponents
in larger calculations are also optimized. The configurations
are symmetry adapted and are constructed by combining the
two-electron configurations of Eq. (8) with one s orbital. These
configurations are sss, spp, pps, sdd, and dds. The obtained
energies have been determined with ≈1 × 10−3 a.u. accuracy
for the ground and excited states of the Li atom and Be+ ion.
They are shown in Table III. The overlaps between the wave
functions of the ground state of the Li atom and the ground and
excited states of Be+ have been calculated numerically (see
Table III). The values converge adequately and the overlaps
rapidly decrease for higher excited state.
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TABLE II. Convergences for the transition amplitudes, final-state probabilities, and total energies for different n 1S states of the Li+ ion.

State of Li+ N Expt. Energy (a.u.) Ref. Ener. (a.u.) Amplitude Probability

1 1S 365 2.520 933 −7.279 913 387 92 0.841 782 679 5 0.708 598 08
1 1S 631 2.520 933 −7.279 913 407 02 0.841 782 675 8 0.708 598 07
1 1S 820 2.520 933 −7.279 913 407 46 −7.279 913 412 7 0.841 794 254 4 0.708 617 57

2 1S 365 2.310 125 −5.040 876 708 8 0.386 495 74 0.149 378 96
2 1S 631 2.310 125 −5.040 876 743 7 0.386 495 69 0.149 378 92
2 1S 820 2.310 125 −5.040 876 743 8(2) −5.040 876 7 0.386 502 78 0.149 384 40

3 1S 365 1.914 217 −4.733 628 80 0.136 714 0.018 691
3 1S 433 1.914 217 −4.733 711 18 0.136 463 0.018 622
3 1S 631 1.914 217 −4.733 751 12 0.136 323 0.018 584
3 1S 820 1.703 409 −4.733 755 81(4) −4.733 732 0.136 304 0.018 579

4 1S 365 1.821 455 −4.618 380 12 0.096 628 0.009 337
4 1S 433 1.728 693 −4.625 609 11 0.087 485 0.007 654
4 1S 463 1.728 693 −4.627 503 63 0.084 276 0.007 103
4 1S 631 1.728 693 −4.628 588 58 0.082 097 0.006 740
4 1S 722 1.307 501 −4.629 770 02 0.078 972 0.006 237
4 1S 820 0.978 434 −4.629 783 49(3) −4.629 778 0.079 015 0.006 243

5 1S 463 1.544 017 −4.564 019 93 0.078 132 0.006 105
5 1S 548 1.544 017 −4.564 139 29 0.078 035 0.006 089
5 1S 631 1.544 017 −4.570 249 51 0.072 624 0.005 274
5 1S 722 1.307 501 −4.579 562 74 0.060 734 0.003 689
5 1S 792 1.307 501 −4.581 541 66 0.059 914 0.003 590
5 1S 820 0.891 026 −4.582 421 93 −4.582 424 0.053 687 0.002 882

6 1S 548 1.610 647 −4.454 802 11 0.093 882 0.008 814
6 1S 631 1.610 647 −4.478 052 26 0.088 051 0.007 753
6 1S 722 1.399 839 −4.516 489 83 0.075 639 0.005 721
6 1S 792 1.399 839 −4.542 488 52 0.057 221 0.003 274
6 1S 820 0.891 026 −4.555 784 89 0.044 220 0.001 955
6 1S 820 0.691 701 −4.556 877 65 −4.556 951 0.040 172 0.001 614

7 1S 548 1.518 309 −4.343 051 0.096 978 0.009 405
7 1S 631 1.518 309 −4.383 434 0.091 388 0.008 352
7 1S 722 1.307 501 −4.452 212 0.079 887 0.006 382
7 1S 820 0.885 885 −4.529 541 0.049 684 0.002 469
7 1S 820 0.655 102 −4.540 877 −4.541 692 0.032 879 0.001 081

8 1S 631 1.610 647 −4.160 498 0.099 804 0.009 961
8 1S 722 1.399 839 −4.292 650 0.092 109 0.008 484
8 1S 792 1.307 501 −4.405 691 0.077 831 0.006 058
8 1S 820 0.885 885 −4.489 693 0.059 589 0.003 551
8 1S 820 0.564 485 −4.528 507 0.043 202 0.001 866

For four-electron atomic systems, we optimize the or-
bital exponents using a small basis, n = 4 (this means
[4s3p2d1f ]), and use those exponents in larger calculations
with n = 5,6. The configurations are grouped in blocks for
a given n and according to the type (i.e., ssss,sspp,ppss,
spps, . . .). Then the blocks of configurations have been filtered
with a threshold of average single configuration contribution
of ≈1 × 10−3 a.u. All blocks of configurations with small
contribution to the total energy have been eliminated after
being tested. This could not produce any substantial loss in
the total energy. In reality, the corresponding error was �1 ×
10−3 a.u. In addition, all configurations in our calculations
have been ordered according to their orbitals (s, p, d, and f

orbitals), and within these groups by approximately energetic
order.

As the ground state of the Be atom is also an 1S

state, the configurations can be constructed combining the
two-electron symmetry-adapted configurations of Eq. (8).
Resulting configurations are ssss, sspp, spps, ppss, pppp,
ssdd, sdds, ddss, sppd, dpps, sdpp, ppdd, pddp, ddpp,
ssff , ddff , and ffff . A set of two exponents (double
occupancy of the shells) has been used. With this restriction,
the configurations shown above represent all possible cases
that can be formed. Nevertheless, the configurations ddff

and ffff have been eliminated because their contributions
were less than the threshold. An additional configuration
type of S symmetry, sppd, and its permutations, dpps and
sdpp, contribute considerably to the energy calculations on
four-electron systems, but not in three-electron ones, where
they contribute �1 × 10−4 a.u. This configuration is somehow
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TABLE III. Transition amplitudes and final-state probabilities for the nuclear β− decay from the ground 2S state of the Li atom into the
ground and excited n 2S states (n = 1, . . . ,5) of the Be+ ion.

State of Be+ N Amplitude Probability Energy (a.u.) Ref. Ener.a Ref.

1 2S 33 0.766 353 0.587 297 −14.310 171 49 −14.324 763 176 790 43(22) [26]
1 2S 98 0.747 147 0.558 228 −14.318 058 14
1 2S 216 0.758 931 0.575 976 −14.321 184 01
1 2S 403 0.757 726 0.574 148 −14.322 215 55
1 2S est.b 0.757 7(12) 0.574(2)

2 2S 98 0.525 207 0.275 842 −13.916 544 22 −13.922 789 268 544 2 [27]
2 2S 216 0.521 907 0.272 387 −13.918 261 03
2 2S 403 0.522 474 0.272 980 −13.919 197 76
2 2S est. 0.522 4(5) 0.272 9(6)

3 2S 98 0.094 836 0.008 994 −13.790 756 54 −13.798 716 57 [28]
3 2S 216 0.078 840 0.006 216 −13.795 237 09
3 2S 403 0.087 985 0.007 741 −13.795 761 22
3 2S est. 0.088(7) 0.007(5)

4 2S 216 0.047 017 0.002 211 −13.725 530 23 −13.744 630 6 [29]
4 2S 403 0.033 557 0.001 126 −13.735 270 47
4 2S est. 0.03(7) 0.001(5)

5 2S 403 0.017 717 0.000 314 −13.701 527 00 −13.716 286 24 [28]
5 2S est. 0.02(3) 0.000 3(1)

aThe reference energies employed here for the Li ground state wave functions are −7.470 554 44, −7.473 000 00, −7.475 065 44, and
−7.475 819 45 a.u. for n = 3, 4, 5, and 6 wave functions, respectively. The best ground-state energy for neutral Li is −7.478 060 323 910
10(32) a.u. [26].
bThe estimate of uncertainties.

more complex:

sppd = sp0p0d0 + sp1p1d−2 + sp−1p−1d2 + sp1p−1d0

+ sp−1p1d0 − sp1p0d−1 − sp−1p0d1

− sp0p1d−1 − sp0p−1d1. (9)

Table IV contains the probability amplitude and final-state
probability for the β+ decay of the four-electron Be atom into
the four-electron Li− ion. In this case, in numerical calculation
of the overlap, we follow the same method of calculation used
above for two-electron systems. However, for four-electron
atomic systems, no Hy-CI terms have been included. We plan
to include such terms in future studies. Since the computed CI
energies are known to an accuracy of ±1 × 10−3 a.u., then here
we restrict our calculations to the lowest three S states in the
incident Be atom. The calculated ground-state energy of the
Li− ion is −7.498 913 85 a.u. (for 2155 CI configurations), and

TABLE IV. Transition amplitude and final-state probability for
the nuclear β+ decay from the ground 1 1S state of the Be atom into
the ground 1 1S state of the Li− ion.

N Amplitude Probability Energy (a.u.) Ref. Ener. (a.u.)

572 0.465 191 0.216 403 −7.497 066 19 −7.500 582 500a

1001 0.453 986 0.206 103 −7.498 521 37
2155 0.454 427 0.206 504 −7.498 913 85
est.b 0.454 4(5) 0.206 5(4)

aReference [30].
bThe estimate of uncertainties.

it is close to the best-to-date value −7.500 582 50 a.u. [30]
known in the literature for this system. The calculated total
energy of the ground state of the Be atom, −14.665 206
19 a.u., is very close to the best results of recent calculations,
−14.667 356 49 a.u. [31]. This value agrees very well with
the value −14.665 445 00 a.u. calculated by Bunge with
approximately the same basis [32]. As expected, the excited
states of the Be atom can be determined with less accuracy
than the ground state. The calculated total energies together
with the overlaps between wave functions of the ground or
excited states of the Be atom and the ground state of the Li−
ion can be found in Table V.

Finally, the “ground-state to ground-state” transition prob-
ability for the β−-decaying Be atom (to B+ ion) can be found
in Table VI. The reference ground-state energies for the Be
atom are given in Table V. Note that our ground-state energy
of the B+ ion has an overall accuracy which is better than
±1 × 10−3 a.u.

III. RESULTS FOR β−-DECAYING LIGHT ATOMS

As we mentioned earlier, we consider the β− decays in
a number of few-electron atoms: He, Li, and Be. In all our
calculations, we assume that before the nuclear β− decay each
of the atoms was in its ground state (except for calculations
shown in Table V). Furthermore, the probability of direct
electron ionization during β− decay was assumed to be
small. Its contribution is essentially ignored in this study.
Numerical evaluation of the corresponding small correction
can be found in Sec. V. Briefly, this means that all ions
which are formed after the nuclear β− decay contain the
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TABLE V. Transition amplitudes and final-state probabilities for the nuclear β+ decay from the ground and excited n 1S states (n = 1,2,3)
of the Be atom into the ground 1 1S state of the Li− ion.

State of Be N Amplitude Probability Energy (a.u.) Ref. Ener. (a.u.)a,b

1 1S 572 0.465 191 0.216 403 −14.662 921 18 −14.667 356 486
1 1S 1001 0.453 986 0.206 103 −14.664 823 14
1 1S 2155 0.454 427 0.206 504 −14.665 185 12
1 1S est.c 0.454 4(5) 0.206 5(4)

2 1S 572 0.605 389 0.366 495 −14.407 342 75 −14.418 240 328
2 1S 1001 0.594 124 0.352 983 −14.414 113 24
2 1S 2155 0.595 986 0.355 199 −14.415 257 47
2 1S est. 0.595 9(9) 0.355 2(10)

3 1S 572 0.000 057 0.000 000 −14.359 487 53 −14.370 087 876
3 1S 1001 0.000 089 0.000 000 −14.361 620 61
3 1S 2155 0.000 098 0.000 000 −14.361 786 13
3 1S est. 0.0 0.0

aThe reference energies employed here for the Li− ground-state wave functions are −7.497 066 19 a.u. for 572, −7.498 521 37 a.u. for 1001,
and −7.498 913 85 a.u. for 2155 configurations, respectively. The best energy is −7.500 582 500 a.u. [30].
bReference [31].
cThe estimate of uncertainties.

same number of electrons as the original atoms. In other
words, all final-state probabilities can be determined with
the use of Eq. (2), where the overlap integral contains two
N -electron wave functions. For instance, the nuclear β− decay
of the He atom produces the two-electron Li+ ion. If the
incident He atom was in its ground 1 1S (L = 0) state, then,
in keeping with the conservation rules formulated above, the
final two-electron Li+ ion will be in one of its bound n 1S

(L = 0) states, where n = 1,2,3, . . . , or in an unbound state.
In this study, we consider the bound n 1S (L = 0) states in
the Li+ ion up to n = 8. The transition amplitudes Ag→n and
corresponding probabilities pg→n = |Ag→n|2 for the nuclear
β− decay of the He atom can be found in Table I. Table I
also contains the total energies of all n 1S (L = 0) states (for
n = 1,2, . . . ,8) in the Li+ ion. These energies indicate, in
principle, the overall quality of the bound-state wave functions
used in our calculations of the overlap integrals, Eq. (2). The
wave function of the ground 1 1S (L = 0) state in the incident
He atom corresponds to the energy E = −2.903 724 377 01
a.u., which is very good for the Hy-CI wave function with
N � 974 terms.

Note that there are a few simple rules which must be
obeyed, in principle, for any distribution of the final-state
probabilities pg→n obtained in numerical calculations. For
simplicity, let us restrict ourselves to the cases when all final
states are also bound and each of these states is labeled

with the integer quantum number n (n � 0). This quantum
number n is often called the “excitation number” or “index
of excitation.” The value n = 0 corresponds to the ground
state in a few-electron atom (i.e., n = g). The first rule for
probability distribution is simple and states that the numerical
values of such probabilities rapidly decrease if the excitation
number n increases; that is, it must be pg→n > pg→(n+1) for an
arbitrary n (n � 0). In reality this inequality is even stronger:
pg→(n+1) � pg→n. In some actual calculations, one can find
an opposite inequality for the final-state probabilities. Usually,
it is directly related to very slow convergence rate(s) for
the wave functions of the incident and final atomic systems.
Numerical values of these final-state probabilities cannot
be used in actual applications. They must be improved in
future calculations with better convergent basis sets. The only
expectation from this rule can be found in those cases when
the ground-state wave function of the incident system and
the trial wave function of one of the excited states of the
final ion are almost orthogonal to each other. The final-state
probability is a very small value for such an excited state. In
many cases, it directly follows from an additional symmetry
of the basis functions used to construct the variational wave
functions.

The second rule states that the sum of all partial
probabilities must converge to the value which exceeds ≈0.75
(if the initial system was a neutral atom), but always less than

TABLE VI. Transition amplitudes and final-state probabilities for the nuclear β− decay from the ground 1 1S state of the Be atom into the
ground 1 1S state of the B+ ion. Convergence of the calculations is shown with the increasing basis set.

State of B+ N Amplitude Probability Energy (a.u.) Ref. Ener.

1 1S 572 0.751 759 0.565 142 −24.344 002 96 −24.348 884 446a

1 1S 1001 0.749 761 0.562 141 −24.345 883 91
1 1S est.b 0.749 7(10) 0.562 1(7)

aReference [33].
bThe estimate of uncertainties.
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unity. In fact, the difference

Pion(g) = 1 −
Nmax∑
n=1

pg→n (10)

is the total probability of electron ionization (from the
ground state g) during the nuclear β− decay in a neutral atom.
Ionization means that after β− decay the total number of bound
electrons decreases by unity. It is clear that the sum in Eq. (10)
must be infinite (i.e., Nmax = ∞). In actual computations,
however, there is a problem of slow convergence for the wave
functions of highly excited bound states. This means that in
actual cases the sum Eq. (10) is usually finite. The actual
maximal value of N in Eq. (10), Nmax, is determined by the
first rule mentioned above; that is, in the sum of Eq. (10)
we can use only those bound states for which the inequality
pg→n > pg→(n+1) is obeyed. The approximate value of Pion

determined for the nuclear β− decay in the He atom with the
use of our results from Table I is Pion ≈ 0.108. In other words,
the one-electron Li2+ ions are formed in ≈10.8% of all β−
decays of the He atoms. In actual experimental conditions
these ions can be observed in the β− decays of the 6He
atoms. The half-life of the 6He atom against such a β− decay
is ≈0.82 s.

In general, the method described above can be used to
determine the total probability of ionization during the nuclear
β− decay in any neutral atom. It is very simple and has many
advantages in comparison with the so-called direct methods.
In these direct methods the wave functions of the outgoing
electron and double-charged final ion must be explicitly
constructed. Then one needs to compute the overlap integral
between the product of these two wave functions and the
wave function of the incident atom. This step corresponds
to the sudden approximation used above. However, in actual
calculations we cannot assume that the outgoing electron is
always in the s wave. Briefly, this means that we need to
include many configurations in which the final (free) electron
moves in the p,d,f, . . . waves, while the double-charged
final ion is in one of its P,D,F, . . . states, respectively.
If the incident atom was in one of its S states, then only
the sS,pP,dD, . . . configurations for the final system must
be used in calculations. The total energies some of these
configurations are close to each other. To reach a “realistic”
accuracy one needs to consider a very large number (up to
few dozens) of different configurations (with different L) in
the final system. In general, each of these computations is
not easy to conduct with relatively high accuracy. This sig-
nificantly complicates all direct calculations of the ionization
probabilities.

An interesting and actual question is the convergence of
computational results obtained for the transition amplitudes
and transition probabilities. Recently, a number of papers have
been published about nuclear β− decay in different atoms and
ions. In all these works it was assumed that the determined
transition amplitudes and corresponding probabilities are
“exact;” that is, they will not change noticeably in similar
future calculations. In many cases, however, the following
calculations show that such results were not exact, and overall
changes in some cases are relatively large. In particular,
all calculations of the transition amplitudes and transition

probabilities performed with the use of Hartree, Hartree-
Fock, and Hartree-Fock-CI methods cannot be considered
very accurate unless some additional measures have been
taken. In this study we decided to analyze this problem in
detail. The result of our analysis can be found in Table II,
where various transition amplitudes and transition probabil-
ities are determined with the different number(s) of basis
functions.

As follows from Table II, our method provides a very good
convergence rate for the ground and low-excited n 1S (L = 0)
states in the Li+ ion. For the excited n 1S (L = 0) states
with n � 6 the overall convergence rate drops drastically. In
such cases, to keep the overall accuracy of our calculations
of the corresponding overlap integrals we need to use larger
numbers of basis functions. In general, it is very hard to
compute transition probabilities for highly excited (bound)
states of the final atomic system. On the other hand, the
numerical values of these probabilities decrease rapidly when
the “excitation number” n increases. Therefore, by using
a few known transition probabilities into the lowest bound
states of the final system, we can accurately evaluate the total
“ground-state to bound-states” probability and total ionization
probability for an arbitrary β−-decaying atom.

Our results obtained for the atomic transition amplitudes
and corresponding transition probabilities for the nuclear β−
decay in the Li atom can be found in Table III. In these
calculations we assume that the original Li atom was in
its ground (doublet) 1 2S state. Due to the conservation of
the L and S quantum numbers, the final Be+ ion will be
in one of its bound (doublet) n 2S states. The final-state
probability amplitudes and corresponding probabilities have
been computed with the use Eq. (2). The “ground-state to
ground-state” probability and the corresponding transition
amplitude for the β−-decaying B atom are shown in Table VI.
Note that for all elements discussed in this study our computed
“ground-state to ground-state” probabilities coincide well with
the corresponding results from Ref. [1]. However, if the
final ion is in one of its excited states, then our current
results have substantially better accuracy. This is directly
related to the better overall accuracy of our current wave
functions.

The knowledge of the final-state probabilities allows one to
predict the excitations of the final atomic fragment (i.e., in the
final atom or ion). In general, any excited state in a few-electron
atom decays with the emission of a few optical quanta. These
transitions produce a unique spectrum of postdecay optical
radiation. By using the computed final-state probabilities we
can estimate the spectrum and intensity of the postdecay
optical radiation which is observed for some time τ (usually
τ ≈ 1 × 10−9 to 1 × 10−2 s) after the nuclear β− decay. In
the case of the β−-decaying 6He atom (from its ground state),
the postdecay optical radiation corresponds to the chain of
optical transitions from the final n 1S state of the Li+ ion into
its ground 1 1S state. For instance, for the 3 1S state in the Li+
ion this chain of dipole transitions is 3 1S → 2 1P → 1 1S.
Various collisions between Li+ ions and He or Li atoms and
possible electron capture by the Li+ ion must also be taken into
account. The arising (optical) spectrum of postdecay radiation
is very complex, but it can be studied, in principle, with the
use of theoretical and current experimental methods.
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IV. FORMATION OF THE NEGATIVELY CHARGED IONS
DURING β+ DECAY IN FEW-ELECTRON ATOMS

Formation of the negatively charged ions (or anions)
during the nuclear β+ decay in many-electron atoms is a
very interesting experimental problem. On the other hand,
it is very interesting to evaluate the corresponding final-state
probabilities by using our computational methods described
above. It is clear a priori that such probabilities can be
found with the use of the sudden approximation (exactly as
it was made above for the nuclear β− decay). Formally, in
the case of the nuclear β+ decay in many-electron atoms,
one needs to determine the same overlap integral, Eq. (2),
between the incident and final N -electron wave functions.
This is exactly the same procedure as described above for
the nuclear β− decay, but actual computations of the overlap
integrals, Eq. (2), is a significantly more complicated problem
in those cases when the negatively charged ions are involved.
The first complication follows from the experimental fact
that many atoms do not form stable negatively charged ions.
However, if such negatively charged ions are stable, then the
construction of highly accurate variational wave function(s)
for these ions is a very hard problem. Briefly, this means that
the final-state probabilities obtained for the nuclear β+ decay
in many-electron atoms are not very reliable if they have been
determined for the negatively charged ions.

Nevertheless, in this study we have determined probabilities
for the ground-state (atom) to ground-state (negative ion)
transition for the nuclear β+ decay in some light atoms. Note
that each of the negatively charged atomic ions have either one
bound (ground) state, or no bound states at all. In particular,
we consider the possibility of forming the 7Li− ion during the
nuclear β+ decay of the 7Be nucleus. It should be mentioned
that more than 99% of all 7Be nuclei decay by the electron
capture. If K-electron capture in the 7Be atom occurs, then
the Li− ion cannot be formed. However, any experimental
observation of the Li− ions from decaying 7Be nuclei will be
an actual indication of the competing β+ decay. As follows
from Table IV, the total probability to form the bound Li− ion
during such a decay is evaluated as ≈0.2065. This means that
the Li− ions will form in ≈20.65% of all nuclear β+ decays of
Be atoms; that is, in one of five such decays we can observe the
negatively charged Li− ion. Another interesting result can be
found in Table V. As follows from that table, the probability to
form the bound Li− ion is larger ≈35.5% in those cases, when
the incident Be atom was in its excited 2 1S state. It indicates
clearly that the distribution of the final-state probabilities in
those cases when the negatively charged ions are formed is
very different from the known distributions of β−-decaying
neutral atoms.

Another interesting β+-decaying atomic system with a
small number of electrons is the 11B− ion. This ion arises
during the nuclear β+ decay of the 11C atom [τβ+ (11C) ≈
20.4 min]. It is very likely that the formation of the 11B− ion
will be the first actual experiment which can confirm the direct
formation of the negatively charged ions during the nuclear
β+ decay.

The formation of negatively charged ions during the
nuclear β+ decay has a great theoretical interest, since the
probability to form such ions is directly related to the change

in distribution of the outermost electron(s). Furthermore,
the density distributions of the outermost electron(s) for all
negatively charged ions are very similar to each other. As
is well known (see, e.g., Ref. [34]), the radial wave function
R(r) of an arbitrary N -electron atomic system with the nuclear
charge Q at large r has the following asymptotic form:

RQ(r) ∼ rb−1 exp(−tr) = r
Q∗
t

−1 exp(−tr), (11)

where t = √
2I , b = Q∗/t , and Q∗ = Q − N + 1, and the

notation I stands for the first ionization potential. For
negatively charged ions, Q∗ = Q − N + 1 = 0 and RQ(r) =
1
r

exp(−tr); that is, it does not depend explicitly upon Q. This
substantially simplifies all following evaluations and makes
them universal for all negatively charged ions. In particular, we
can expect that the total probabilities of negative ion formation
will accurately be represented by one relatively simple formula
which contains only a few parameters. This means that, if we
know such probabilities for some of the negatively charged
ions, then we can accurately predict analogous values for other
similar ions.

V. EMISSION OF THE FAST δ ELECTRONS DURING THE
NUCLEAR β− DECAY IN ATOMS

The sudden approximation used above allows one to deter-
mine the final-state probabilities for the β± decays in many-
electron atoms. Briefly, the analysis of atomic excitations
is reduced to the description of changes in electron density
distribution produced by a sudden change of the nuclear
electric charge Q → Q ± 1. The electronic or positronic
nature of the β± decay is not critically important for our
method. However, the sudden approximation is true only
in the lowest-order approximations upon the fine-structure
constant α. This means that, if we are interested in highly
accurate results for the final-state probabilities, then we need
to consider and evaluate the corresponding correction(s). The
leading contribution comes from the lowest-order correction
on electron-electron scattering, which is ≈α2(αQ)2. In heavy
atoms with Q ≈ 100, such a correction is relatively large
(≈α2), but in light, few-electron atoms it is significantly
smaller (≈α4). Nevertheless, this correction describes the
new phenomenon (i.e., the emission of the fast secondary
electrons), which are traditionally called the δ electrons. Let
us discuss this phenomenon in detail. As is well known
from quantum electrodynamics (see, e.g., Refs. [35,36]), the
differential cross section of the electron-electron scattering is
written in the form

dσ = 2πα4a2
0

dx

γ 2 − 1

×
[

1 + (γ − 1)2γ 2

x2(γ − 1 − x)2
− 2γ 2 + 2γ − 1

x(γ − 1 − x)

]
, (12)

where a0 is the Bohr radius, γ is the γ factor of the β electron
emitted from the nucleus, and the parameter x is the energy
lost by the β electron (or gained by the atomic electron a),

x = εβ − ε′
β

mec2
= ε′

a − εa

mec2
, (13)
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where the prime designates the particle after the process. It is
usually assumed that one of the two electrons (atomic electron
in our case) was at rest before electron-electron collision or
scattering (i.e., εa = mec

2).
Equation (12) is the closed expression for the differential

cross section of electron-electron scattering which depends
upon the parameter x, Eq. (13), and γ factor of the β−
electron. As follows from Eq. (12), the probability to observe
or produce a fast δ electron during the nuclear β−-decay is
very small in comparison with “regular” atomic processes,
since it contains an additional factor α4 ≈ 2.83 × 10−8. Note
also that Eq. (12) is derived for a free electron which is located
at a distance a0 from atomic nucleus. The actual K electrons
in heavy atoms are significantly closer to the nucleus than
electrons from outer electron shells. The effective radius of
the K-electron shell is smaller than a0 in ≈Q2 times. This
means that the factor 2πα4a2

0 in Eq. (12) must be multiplied
by an additional factor Q2. For light atoms considered in our
study the overall probability to observe the emission of the
fast δ electrons during the nuclear β− decay is very small. The
situation changes for heavy atoms with Q ≈ 90–100, but such
atoms are not discussed here.

The emission of the fast δ electrons can also be observed
during the nuclear β+ decay in many-electron atoms. In such
a case, the formula for the cross section of electron-positron
scattering takes the form [35,36]

dσ = 2πα4a2
0

dx

γ 2 − 1

[
γ 2

x2
− 2γ 2 + 4γ + 1

(γ + 1)x
+ 3γ 2 + 6γ + 4

(γ + 1)2

− 2γ

(γ + 1)2
�+ 1

(γ + 1)2
�2

]
, (14)

where γ is the γ factor of the positron emitted from the
nucleus, while all other notations are the exactly same
as in Eq. (12). Note again that in light atomic systems
the cross section, Eq. (14), is very small. In heavy atoms
the situation changes and in one of ≈17 000 nuclear β+
decays we can also observe the emission of the fast δ

electron.

VI. DISCUSSION AND CONCLUSION

We have considered atomic excitations arising during the
nuclear β− decay. For some light few-electron atoms, such
final-state probabilities and the total ionization probabilities
have been determined numerically to a very good numerical
accuracy. Our interest in light atoms is directly related to
the fact that currently the highly accurate wave functions
of the ground and six to eight low-lying excited states can
only be constructed for some few-electron atoms and ions.
Consideration of the six to eight bound states in the final atomic
system allows us to perform a complete analysis of atomic
excitations during the nuclear β− decay. We also consider
the formation of negatively charged ions during the nuclear
β+ decay. By using our highly accurate wave functions for the
negatively charged ions, we have determined the “ground-state
to ground-state” probabilities for some nuclear β+ decays in
which such negatively charged ions are formed (or can be
formed).

It should be mentioned that atomic excitations during the
nuclear β± decay were observed for the first time in 1912
(all earlier references on this matter can be found, e.g., in
Refs. [3,5–7]). In general, atomic and molecular excitations
arising during the nuclear β± decay have many interesting
aspects for theoretical study and experimental investigation.
Analysis of the direct atomic excitations in earlier studies
was substantially restricted by the use of nonaccurate atomic
wave functions. In this study, we have applied highly accurate
wave functions for all few-electron atoms and ions. The
overall accuracy of our predictions for many excited states has
increased significantly. In future studies we want to extend our
analysis to atomic systems with more electrons. A separate
goal is a consideration of different atomic (and molecular)
excitations, analysis of the postdecay radiation, and so on.

Note that the final-state probabilities determined above
for a number of β−-decaying light atoms can also be used
as important numerical tests for other similar values needed
in the analysis of various nuclear reactions in few-electron
atoms or ions. For instance, for exothermic nuclear (n; t),
(n; p), and (n; α) reactions in few-electron atoms or ions [37]
one needs to determine the numerical value of the following
integral:

Ak(V) =
∫

�∗
i (r1, . . . ,rN ) exp

[
ıV ·

(
N∑

i=1

ri

)]

×�
(k)
f (r1, . . . ,rN )d3r1 . . . d3rN, (15)

where N is the total number of bound electrons (here we
assume that N does not change during the nuclear reaction),
while V is the nuclear velocity in the final state (i.e., after
the nuclear reaction). Note that in the limit V → 0 the value
Ak(V) from Eq. (15) converges to the Ak value from Eq. (2).
This explains why the final-state probabilities determined
by Eq. (2) are often considered the “nucleus-at-rest” limit
of atomic probabilities obtained for more general nuclear
reactions.

In conclusion, we want to note that this work opens a new
avenue in the analysis of atomic excitations during the nuclear
β± decay in atoms and molecules. Currently, many aspects
of this problem are of significant experimental and theoretical
interest. In particular, the study of atomic excitations arising
in the nuclear β± decay can improve our understanding of
many atomic and QED processes. Furthermore, the complete
and accurate analysis of atomic excitations during various
nuclear reactions and processes is a complex problem which
requires an extensive development of new numerical methods
and algorithms. It should be mentioned that a sudden change of
the electric charge of an atomic nucleus and following changes
in the electron density distribution during the nuclear β− decay
must be of great interest for the density functional theory
of atoms and molecules. Note also that analysis of possible
molecular excitations arising during the nuclear β− decay
in molecules is a significantly more complicated problem
than an analogous problem for atoms. Nevertheless, some
useful conclusions about different excitations in molecular
systems can be made and corresponding probabilities can be
evaluated numerically. In fact, in the last five to seven years,
we have achieved a remarkable progress in the understanding
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of atomic excitations during various nuclear processes, re-
actions, and decays. Unfortunately, except for a very few
experimental papers published as a rule years ago (see, e.g.,
Refs. [38–40]), the current theory of atomic excitations during
various nuclear reactions has no experimental support. This is a
very strange situation, since all required (atomic) experiments
are very easy to perform. Currently, we can only hope that
our work will stimulate some experimental activity in the
area.
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