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I. INTRODUCTION

Cusp relations have turned out to be extremely useful in
studying exact properties of several quantities such as the
wave function, the electron density, and the kinetic energy
density. They are associated with the singularity of the
Coulomb potential. The nature of the cusp was first studied
by Kato [1]. Electron-electron coalescence was studied for
the wave function by Kolos and Roothaan [2], Roothaan and
Kelly [3], and Pack and Brown [4]. Cusp conditions were
derived for the electron density [5], the first-order density
matrix [6], the uniform electron gas [7,8], and the density
matrices [9,10]. Three-particle coalescence was also studied
[11–13]. Cusp relations were derived for the density for highly
excited states [14]. The curvature of the electron density in
the ground state was studied by Esquivel et al. [15,16], and
the generalization for excited states was also presented [17].
Nuclear cusp conditions for the energy density were obtained
by March et al. [18]. Relations between the derivatives for
the many-electron wave functions at the cusp were derived
by Rassolov and Chipman [19], and expressions between the
derivatives of the densities were also derived for both the
ground and the excited states [20].

The pair density has become very important as it is the
key quantity of pair density functional theory [21–32]. In this
article, cusp relations are presented for the pair density both for
the ground and the excited states. These expressions include
the first and the third derivatives.

In the following section, the higher order nuclear cusp
relations are summarized [20]. In Sec. III, higher order
electron-electron cusp relations are derived for the ground-
and excited-state wave functions. Section IV presents higher
order cusp conditions for the pair density. The last section is
devoted to illustrative examples and discussions.

II. HIGHER ORDER NUCLEAR CUSP RELATIONS
FOR THE GROUND- AND EXCITED-STATE

WAVE FUNCTIONS

First, the higher order nuclear cusp relations derived earlier
[20] are summarized. The total Hamiltonian can be written as

Ĥ = Ĥ1 + Ŵ + Ĝ, (1)

where

Ĥ1 = − 1
2∇2

1 − Zα

r1
, (2)

Ŵ = −
∑
β �=α

Zβ

|r1 − Rβ | +
N∑

j �=1

1

|r1 − rj | , (3)

Ĝ = −
N∑

i=2

∑
β �=α

Zβ

|ri − Rβ | + 1

2

N∑
i=2

N∑
j �=i

1

|ri − rj |

− 1

2

N∑
i=2

∇2
i −

N∑
j �=1

Zα

rj

. (4)

We will study the wave function in the vicinity of the nucleus α,
and the origin of the coordinate system is placed at the nucleus
α. In this article, only two-particle coalescence is studied. As
we consider the case where |r1| = r1 is small, smaller than r2,
the following expansion can be used in W :

1

|r1 − r2| =
∑
l,m

4π

2l + 1

rl
1

rl+1
2

Y ∗
lm(�1)Ylm(�2). (5)

So the expansion of W has the form

W =
∑
l,m

rl
1WlmY ∗

lm(�1), (6)

where Wlm depend on r2, . . . ,rN but do not depend on r1:

Wlm = − 4π

2l + 1

[ ∑
β �=α

Zβ

Ylm(�β)

Rl+1
β

−
∑
j>1

Ylm(�j )

rl+1
j

]
. (7)

Ylm are the spherical harmonics. The operator G acts only on
r2, . . . ,rN .

The most general expansion of the antisymmetric wave
function around the nucleus α is

� =
∞∑
l=0

m=l∑
m=−l

r l
1χlm(r1,X)Ylm(�1), (8)

where X stands for the coordinates σ1,r2,σ2, . . . ,rN,σN . We
note in passing that the antisymmetry of the wave function in
Eq. (8) is retained only with the full summation over l from
zero to infinity.

In certain highly excited states, the spherical average of the
derivative of the wave function is zero at a nucleus: χ00(0,X) =
0. This is the case where there are no s electrons. To include
this case and the even more special cases where

χlm(0,X) = 0, (9)
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l > 0, we rewrote Eq. (8) as

� =
∑
m

rl
1χlm(r1,X)Ylm(�1)

+
∑
l′>l

∑
m′

rl′
1 χl′m′ (r1,X)Yl′m′(�1), (10)

where l is the smallest integer for which χlm is not zero. In
the second term in Eq. (10), the summation should go only
for l′ > l. Such highly excited atoms have been observed, for
example, the 2p3 4S state of a negative He ion and of Li I,
Be II, B III, and C IV ions [33].

The function χlm can be expanded as

χlm(r,X) = a
(0)
lm (X) + a

(1)
lm (X)r + a

(2)
lm (X)r2 + a

(3)
lm (X)r3 + · · ·

(11)

Substituting expressions (10), (11), and (6) into the
Schrödinger equation Ĥ� = E�, multiplying it with the
spherical harmonics Y ∗

lm(�1), integrating on the polar angles
�1, and equating the coefficients of rl−1, rl , rl+1 separately to
zero, we arrive at the system of equations

Zαa
(0)
lm (X) + (l + 1)a(1)

lm (X) = 0, (12)

(2l + 3)a(2)
lm (X) + Zαa

(1)
lm (X) − (Ĝ + W̄ − E)a(0)

lm (X) = 0,

(13)

3(l + 2)a(3)
lm (X) + Zαa

(2)
lm (X) − (Ĝ + W̄ − E)a(1)

lm (X) = 0,

(14)

where W̄ = (4π )−1/2W00 is constant. Combining these equa-
tions, we are led to the relations for the terms alm:

a
(1)
lm (X) = − Zα

l + 1
a

(0)
lm (X), (15)

a
(2)
lm (X) = 1

2l + 3

[
Z2

α

l + 1
+ Ĝ + W̄ − E

]
a

(0)
lm (X), (16)

a
(3)
lm (X) = − Zα

3(l + 1)(l + 2)

×
[

(3l + 4)a(2)
lm (X) − Zα

l + 1
a

(0)
lm (X)

]
. (17)

If l = 0, the relations of Rassolov and Chipman [19] can be
recovered. In the following section, the electron-electron cusp
relations are derived.

III. HIGHER ORDER ELECTRON-ELECTRON
CUSP RELATIONS FOR THE GROUND- AND

EXCITED-STATE WAVE FUNCTIONS

Now, we turn to the electron-electron coalescence and
derive electron-electron cusp relations. We proceed similarly
as we did in the previous section. The same total Hamiltonian
can be now be rewritten as

Ĥ = Ĥ12 + Û + K̂, (18)

where

Ĥ12 = −∇2
r12

+ 1

r12
, (19)

Û = −
∑

α

Zα

(
1

|r1 − Rα| + 1

|r2 − Rα|
)

+
N∑

j=3

(
1

r1j

+ 1

r2j

)
,

(20)

K̂ = −1

4
∇2

R − 1

2

N∑
j=3

∇2
i −

N∑
i=3

∑
α

Zα

|ri − Rα| + 1

2

N∑
i,j=3
i �=j

1

rij

,

(21)

r12 = r1 − r2, R = 1
2 (r1 + r2). (22)

Now we expand the wave function and the potential Û

around r12 = 0:

� =
∞∑

l′�l

m′=l∑
m′=−l

r l′
12γl′m′ (r12,X)Yl′m′ (�12), (23)

U =
∑
l′,m′

rl′
12Ul′m′Y ∗

l′m′(�12), (24)

where, in this section, X stands for the coordinates
σ1,σ2,R,r2, . . . ,rN,sN and

Ulm = 4π

2l + 1

(
1

2

)l
{

1

2

N∑
j=3

1

|R − rj |l+1
[Ylm( ̂rj − R)

+ Ylm( ̂R − rj )] −
∑

α

1

|Rα − R|l+1
[Ylm( ̂Rα − R)

+ Ylm( ̂R − rα)]

}
. (25)

We note in passing that if we take the ground state or low-lying
excited state, then l = 0; l �= 0 only when we consider an
excited state with no s electrons. The function γlm can now be
expanded as

γlm(r12,X) = b
(0)
lm (X) + b

(1)
lm (X)r12 + b

(2)
lm (X)r2

12

+ b
(3)
lm (X)r3

12 + · · · (26)

Substituting expressions (23), (26), and (25) into the
Schrödinger eguation, multiplying it with the spherical har-
monics Y ∗

lm(�12), integrating on the polar angles �12, and
equating the coefficients of rl−1

12 , rl
12, rl+1

12 separately to zero,
we arrive at the relations

b
(1)
lm (X) = 1

2(l + 1)
b

(0)
lm (X), (27)

b
(2)
lm (X) = 1

2l + 3

[
1

4(l + 1)
+ 1

2
(K̂ + Ū − E)

]
b

(0)
lm (X),

(28)

b
(3)
lm (X)

= 1

6(l + 1)(l + 2)

[
(3l + 4)b(2)

lm (X) − 1

4(l + 1)
b

(0)
lm (X)

]
,

(29)

where Ū = (4π )−1/2U00. For l = 1, the p-wave condition of
Rassolov and Chipman [19] can be recovered. It also describes
a case of two electrons in a triplet state.
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IV. HIGHER ORDER CUSP RELATIONS FOR THE
DERIVATIVES OF THE PAIR DENSITY

The pair density n can be easily calculated from the wave
function (10) by integrating |�|2 for all coordinates, except r1

and r2:

n(r1,r2)

= N (N − 1)

2

∫
|�(r1,σ1,r2,σ2,r3,σ3,...,rN,σN )|2

× dσ1dσ2dr3dσ3 · · · drNdσN . (30)

Now n is averaged for the polar angles r̂1:

n̄(r1,r2) = 1

4π

∫
dr̂1n(r1,r̂1,r2). (31)

Substituting Eq. (10) into Eq. (31), we obtain

n̄(r1,r2) =
∑
m

r2l
1 χ̃lm(r1,r2)2 +

∑
m,l′,m′;l′>l

r2l′
1 χ̃l′m′ (r1,r2)2,

(32)

where χ̃2
lm is obtained after integrating χ2

lm for the coordinates
of N − 2 electrons:

χ̃2
lm = N (N − 1)

2

∫
χ2

lmdQ. (33)

Q stands for all the coordinates of N − 2 electrons. For highly
excited states, the functions ηl(r1,r2) are introduced with the
definition

ηl(r1,r2) = n̄(r1,r2)

r2l
1

. (34)

Equations (32) and (34) lead to

ηl =
∑
m

χ̃2
lm +

∑
l′,m′;l′>l

r
2(l′−l)
1 χ̃2

l′m′ . (35)

For r1 = 0, ηl takes the form

ηl(0,r2) =
∑
m

χ̃2
lm(0,r2) = N (N − 1)

2

∑
m

∫ [
a0

lm

]2
dQ.

(36)

Differentiating Eq. (35) with respect to r1 and making use of
Eq. (15), we arrive at

d

dr1
ηl(r1,r2)

∣∣∣∣
r1=0

= −2
Zα

l + 1
ηl(0,r2). (37)

The second derivative can be expressed as

d2

dr2
1

ηl(r1,r2)

∣∣∣∣
r1=0

= 2

(
1

2l + 3

{[
Z2

α

(l + 1)2
(4l + 5) − 2E

]
ηl(0,r2)

+ 2[Wl(0,r2) + Gl(0,r2)]

}
+ ηl+1(0,r2)

)
, (38)

where

Wl(0,r2) = N (N − 1)

2

∑
m

∫
a0

lmW̄a0
lmdQ, (39)

Gl(0,r2) = N (N − 1)

2

∑
m

∫
a0

lmĜa0
lmdQ. (40)

In Eq. (38), we used the notation

ηl+1(0) = N (N − 1)

2

∑
m

∫
dQ

∣∣a(0)
l+1m(X)

∣∣2
. (41)

This notation means that there is a contribution from the zero-
order part of χl+1. Thus, while the first derivative of ηl at the
cusp can be expressed with the atomic number of the nucleus
considered and the value of η at the cusp, the second derivative
includes the energy, the potential at the nucleus, the integral of
the operator G, and the ηl+1(0), too. So there is a contribution
from the l + 1 terms.

The third derivative of ηl [Eq. (35)] takes the form

d3

dr3
1

ηl(r1,r2)

∣∣∣∣
r1=0

= 4Zα

(l + 1)(l + 2)(2l + 3)

(
2(3l + 5){Eηl(0,r2)

− [Wl(0,r2) + Gl(0,r2)]} − 4l + 7

l + 1
Z2

αηl(0,r2)

)
− 12

Zα

l + 2
ηl+1(0,r2). (42)

From Eqs. (37)–(42), we arrive at a relation between the
function η and its first and third derivatives:

η′′′
l (0,r2) = 2Zα

(l + 1)(l + 2)

[
− (3l + 5)η′′

l (0,r2)

+ 4(2l + 3)Z2
α

(l + 1)2
ηl(0,r2) + 4ηl+1(0,r2)

]
. (43)

Equation (43) gives the dependence of the third derivative of
the pair density at the nucleus on the lower derivatives.

Now we turn to the electron-electron cusp relations. With
the definition

ξl(r12,R) = n̄(r12,R)

r2l
12

, (44)

and using Eq. (27), we obtain

ξl(0,R) =
∑
m

χ̃2
lm(0,R) = N (N − 1)

2

∑
m

∫ [
b0

lm

]2
dQ. (45)

The derivative of Eq. (44) with respect to r12 leads to

d

dr12
ξl(r12,R)

∣∣∣∣
r12=0

= 1

l + 1
ξl(0,R). (46)

The second derivative can be expressed as

d2

dr2
12

ξl(r12,R)

∣∣∣∣
r12=0

= 2

(
1

2l + 3

{[
4l + 5

(l + 1)2
− E

]
ξl(0,R)

+ [Ul(0,R) + Kl(0,R)]

}
+ ξl+1(0,R)

)
, (47)
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where

Ul(0,R) = N (N − 1)

2

∑
m

∫
b0

lmŪb0
lmdQ, (48)

Kl(0,R) = N (N − 1)

2

∑
m

∫
b0

lmK̂b0
lmdQ. (49)

The third derivative takes the form

d3

dr3
12

ξl(r12,R)

∣∣∣∣
r12=0

= − 2

(l + 1)(l + 2)(2l + 3)

(
(3l + 5){Eξl(0,R)

− [Ul(0,R) + Kl(0,R)]} − 4l + 7

4(l + 1)
ξl(0,R)

)
+ 6

l + 2
ξl+1(0,R). (50)

Equations (45)–(47) and (50) lead to a relation between the
function η and its first and third derivatives:

d3

dr3
12

ξl(r12,R)

∣∣∣∣
r12=0

= 1

(l + 1)(l + 2)

[
(3l + 5)

d2

dr2
12

ξl(r12,R)

∣∣∣∣
r12=0

− 2l + 3

(l + 1)2
ξl(0,R) − 4ξl+1(0,R)

]
. (51)

V. ILLUSTRATIVE EXAMPLES AND DISCUSSION

The cusp relations derived earlier are now illustrated with
few simple examples. Consider first two electrons in a bare
nuclear field with charge Z. The electrons are in the 2p (l = 1,

m = 0) excited state with antiparallel spins. Then the spatial
part of the wave function is symmetric:

�(r1,r2) = φ2p(r1)φ2p(r2), (52)

where

φ2p(r) = cre−Zr/2Y1m(�), (53)

where c is a constant. We can readily obtain the pair density
average for the polar angles �1:

n̄(r1,r2) = f (r2)r2
1 e−Zr1 , (54)

where

f (r2) = c4r2
2 e−Zr2 |Y1m(�2)|2 1

4π
. (55)

Then we define the function η1 as

η1(r1,r2) = n̄(r1,r2)

r2
1

. (56)

Equations (54) and (56) lead to the result

η1(r1,r2) = f (r2)e−Zr1 . (57)

Consequently,

η1(0,r2) = f (r2). (58)

We can immediately calculate the first derivative of the
function η1 and take its value at r1 = 0:

d

dr1
η1(r1,r2)

∣∣∣∣
r1=0

= −Zf (r2) = −Zη1(0,r2), (59)

with complete agreement with Eq. (37) as l = 1. The second
and third derivatives at r1 = 0 are as follows:

d2

dr2
1

η1(r1,r2)

∣∣∣∣
r1=0

= Z2f (r2) = Z2η1(0,r2), (60)

d3

dr3
1

η1(r1,r2)

∣∣∣∣
r1=0

= −Z3f (r2) = −Z3η1(0,r2). (61)

We can readily check that Eqs. (58)–(61) satisfy Eq. (43).
As a second example, consider two electrons confined by a

harmonic potential [34]. This harmonium (or Hooke’s atom)
is described by the Hamiltonian

Ĥ = −1

2
∇2

1 + 1

2
ω2r2

1 − 1

2
∇2

2 + 1

2
ω2r2

2 + 1

r12
. (62)

After introducing the intracular and extracular coordinates
[Eq. (22)], we immediately notice that the center-of-mass
equation is the well-known three-dimensional oscillator solu-
tion. The relative motion of the two electrons is characterized
by the Schrödinger equation:[

− 1

2
∇2

12 + 1

2
ω2

r r
2
12 + 1

2r12

]
φ(r12) = ε′φ(r12), (63)

where ωr = ω/2 and ε′ = ω[2(l + n) + 1]/4. An analytical
solution can be given, for example, for n = 2 and arbitrary l

with the energy ε′ = (2l + 5)/[8(l + 1)]. The electrons have
antiparallel spins. Then the spatial part of the wave function is
symmetric:

�(r12,R) = φ(r12)ζ (R), (64)

where ζ (R) is the wave function of the center-of-mass motion.
The wave function of the relative motion then takes the
form

φ(r12) = u(r12)

r12
Ylm(r̂12), (65)

where

u(r12) = rl+1
12

[
1 + r12

2(l + 1)

]
e
− r2

12
8(l+1) . (66)

Making use of Eq. (31), we obtain

n̄(r1,r2) = r2l
12

[
1 + r12

2(l + 1)

]2

e
− r2

12
4(l+1)

|ζ (R)|2
4π

. (67)

Then we define the function ξ1 as

ξl(r12,R) = n̄(r12,R)

r2l
12

. (68)

Equations (67) and (68) lead to the result

ξl(r12,R) =
[

1 + r12

2(l + 1)

]2

e
− r2

12
4(l+1)

|ζ (R)|2
4π

. (69)
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At the electron-electron coalescence

ξl(0,R) = |ζ (R)|2
4π

, (70)

we can immediately calculate the first derivative of the function
ξl and take its value at r12 = 0:

d

dr12
ξl(r12,R)

∣∣∣∣
r12=0

= |ζ (R)|2
4π

1

l + 1
= ξl(0,R)

l + 1
, (71)

with complete agreement with Eq. (46). The second and third
derivatives at r12 = 0 are as follows:

d2

dr2
12

ξl(r12,R)

∣∣∣∣
r12=0

= −|ζ (R)|2
4π

l

2(l + 1)2
, (72)

d3

dr3
12

ξl(r12,R)

∣∣∣∣
r12=0

= −|ζ (R)|2
4π

3

2(l + 1)2
. (73)

We can readily check that Eqs. (70)–(73) satisfy Eq. (51).
Note that in both examples, the term ηl+1 = 0 in Eqs. (43)

and (51). This is the consequence of the fact that both electrons
have the same azimuthal quantum number l. In these examples,
we can see the importance of the generalization of the relations
for the values of l > 0.

As a further example, we could take three electrons in a
bare Coulomb potential −Z/r . Suppose we have an excited
state of symmetry 4Su for a configuration 2p3, the spatial part
of the wave function is factorized, and we have

�(1,2,3) = 1√
6

∣∣∣∣∣∣∣
φ1(1) φ1(2) φ1(3)

φ2(1) φ2(2) φ2(3)

φ3(1) φ3(2) φ3(3)

∣∣∣∣∣∣∣ , (74)

where the φj are H-like 2p orbitals with m = 0, ± 1. The pair
density is

n(1,2) = 1
2 [φ1(1)2φ2(2)2 + φ2(1)2φ1(2)2 + φ1(1)2φ3(2)2

+ φ3(1)2φ1(2)2 + φ2(1)2φ3(2)2 + φ3(1)2φ2(2)2

− 2(φ1φ2) (1)(φ1φ2) (2) − 2(φ1φ3) (1)(φ1φ3) (2)

− 2(φ2φ3) (1)(φ2φ3) (2)]. (75)

Finally, we can average over the polar angle �1, getting

n̄(r1,r2) ∝ r2
1 e−Zr1 [φ1(r2)2 + φ2(r2)2 + φ3(r2)2]

= cr2
1 r2

2 e−Z(r1+r2), (76)

and the cusp conditions are easily verified.
The pair density is a very important quantity. It has a

fundamental role in describing electron systems. Contrary
to the electron density, it is not easy to give adequate
approximation to the pair density. Exact relations for the pair
density can be helpful to judge the quality of an approximation.
The cusp relations presented earlier have the charming feature
that they are valid not only for the ground state but for arbitrary
excited states, too.

The pair density is the key quantity of the pair density
functional theory. It was shown [21,22] that the problem of an
arbitrary system with even electrons can be reduced to a two-
particle problem. This means an enormous simplification as we
always have to solve a two-particle equation independently
of the number of electrons. This remarkable result has the
drawback that we do not know the exact form of the Pauli
potential. Exact relations and theorems play a very important
role in the density functional theory as they have proved useful
in improving the accuracy of approximate energy functionals.
We believe that these relations are also very useful in the
pair density functional theory. We have proved [21,22] that
the unknown Pauli potential can be constructed from the pair
density. Therefore these exact relations might be useful in
inventing accurate approximations for the Pauli potential.

In conclusion, it is stated that there exist higher order
cusp relations for the pair density. These relations are de-
rived both for the electron-nucleus and the electron-electron
coalescences, and they are valid both for the ground and the
excited states of atoms, ions, or molecules.
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