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Nonrelativistic bound states at finite temperature. II. Muonic hydrogen
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We illustrate how to apply modern effective field-theory techniques and dimensional regularization to factorize
the various scales, which appear in QED bound states at finite temperature. We focus here on the muonic hydrogen
atom. Vacuum polarization effects make the physics of this atom at finite temperature very close to that of heavy
quarkonium states. We comment on the implications of our results for these states in the quark gluon plasma. In
particular, we estimate the effects of a finite-charm quark mass in the dissociation temperature of bottomonium.
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I. INTRODUCTION

In a previous paper [1], we showed how to apply modern
effective field-theory (EFT) techniques to the hydrogen atom at
finite temperature. They provide a systematic way to separate
the physics occurring at the various dynamical scales involved
in that system, which makes calculations simple and transpar-
ent. The main motivation of that work was to pave the way for
a QCD-based quantitative study of heavy quarkonium states
in the quark gluon plasma (several works in this direction have
recently appeared in the literature [2–7]), which share a number
of important features with the hydrogen atom. The main
qualitative difference, as far as the bound-state dynamics is
concerned, between heavy quarkonium states and the hydrogen
atom is that vacuum polarization effects in the latter are very
suppressed. For muonic hydrogen, however, the vacuum polar-
ization effects provide the leading corrections to the Coulomb
potential, as is the case for heavy quarkonium states. This is
our main motivation to study muonic hydrogen in detail here.

Muonic hydrogen is under current research at the Paul
Scherrer Institute in the so-called muonic hydrogen Lamb shift
experiment [8]. It allows for precision tests of QED, which,
among other things, probe the electromagnetic structure of
the proton [9] or the size of the proton [10]. Theoretical
calculations, on one hand, have achieved an impressive
precision [11–16], and a number of experimental results
are available [17,18]. However, thermal effects on this atom
due to blackbody radiation, or to electron-positron plasmas,
have not been considered to our knowledge, either theoretically
or experimentally. Current experimental facilities may now
produce electron-positron plasmas [19], which also are the
target of intense theoretical studies [20,21] (see Ref. [22] for a
recent review). Making muonic hydrogen atoms slowly travel
through an electron-positron plasma would be an ideal experi-
ment to probe how well we understand thermal effects in non-
relativistic bound states at relatively high temperatures. Recall
that an analogous experiment at lower temperature with black-
body radiation on Rydberg atoms [23] first detected thermal
level shifts in the early 1980s. This would mean a further step
in taking advantage of the similarities of the electron-positron
plasma with the quark-gluon plasma (see Refs. [24,25] for
reviews) in order to learn about the nontrivial properties of the
latter, as has already been advocated by some authors [26].

In the center-of-mass frame, the proton of a muonic
hydrogen is essentially at rest, and the muon moves at small
velocities v � α � 1. Hence, the relevant scales at zero

temperature are those of a nonrelativistic system [27]: the
muon mass mµ (hard), the typical momentum p, which is of the
order mµα/n (soft), and the energy E ∼ mµα2/n2 (ultrasoft),
n being the principal quantum number. Unlike the hydrogen
atom case, vacuum polarization effects introduce a new scale
in the muonic hydrogen atom, the electron mass me, which is of
the order of the soft scale for the lower-lying states (n = 1,2),
but larger for the remaining ones. At finite temperature, further
scales are introduced, not only T , the temperature, but also
eT ∼ mD , the Debye mass, and others that will be discussed
later. In order to efficiently deal with the physics at each of
these scales, we will use the effective theories of nonrelativistic
QED (NRQED) [27], suitable for energies much smaller than
the hard scale, potential NRQED (pNRQED) [28], suitable for
energies much smaller than the soft scale, and hard thermal
loop (HTL) effective theory [29], suitable for energies much
smaller than the temperature, in a way analogous to Ref. [1].
Recall that pNRQED enormously facilitates the iteration of
the Coulomb potential in ultrasoft contribution (at scale E),
and the HTL action does the same for soft thermal photon
resummations at scale eT . When scales eT and E coincide,
the combination of pNRQED and HTL is crucial in order to
consistently obtain both the iteration of the Coulomb potential
and the resummation of soft thermal photons.

We will use the real-time formalism [30], which is manda-
tory for the study of the propagation of a (nonthermalized)
nonrelativistic system in a thermal bath. We will restrict
ourselves to temperatures much smaller than the muon mass,
and hence, the thermal bath does not affect the free muon
propagator, which remains the same as at zero temperature.
The same holds true for the free proton propagator, which
will be further approximated by that of a static source.
Thermal propagators will, in general, be necessary for the
photons, electrons, and positrons. Recall that, in the real-time
formalism, a doubling of degrees of freedom is required
to properly account for the thermal propagation. External
propagators can only correspond to type-1 fields, vertices
contain either type-1 fields or type-2 fields. Propagators can be
11, 12, 21, or 22. When drawing Feynman diagrams, we will
understand that all possible types of vertices and propagators
compatible with a given diagram are added up, and will not
display each type explicitly (for muons and protons only the
11 propagator must be considered). The techniques and results
we will use have been reviewed in Ref. [31]. We reproduced
the basic ones in Appendix B.
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We distribute the paper as follows. In Sec. II, we study the
ideal case in which the electron mass is set to zero (me = 0).
This not only makes calculations simpler, but also makes the
system closer to the heavy quarkonium case. In Sec. III, we
focus on the actual case me �= 0. These two sections are divided
into subsections in which the cases T � p, T ∼ p, and T � p

are studied, p being the typical relative momentum in the
bound state (or the inverse Bohr radius). Section IV is devoted
to discussion and conclusions.

II. me = 0 CASE

Let us first consider an ideal case in which the electron mass
me is taken to be zero. This case is in fact closer to the one
in heavy quarkonium states, particularly in charmonium, than
the actual case with me �= 0, which we will study in Sec. III. It
has already been discussed in the past in order to clarify subtle
issues on the renormalization group structure of nonrelativistic
effective theories [32].

A. p � T

For temperatures much smaller than the soft scale (mµα

in this case), we can study the thermal effects in the atom
starting from the pNRQED Lagrangian at zero temperature, up
to exponentially suppressed contributions ∼e−p/T . This means
that the potentials are the same as the ones at zero temperature.
The only difference, with respect to the hydrogen atom case, is
that these potentials now contain O(α) corrections due to vac-
uum polarization effects produced by virtual electron-positron
pairs. As in the hydrogen atom, the ultrasoft photons, electrons,
and positrons are responsible for the finite-temperature effects.
Then, our starting point in this section is Eq. (6) from Ref. [33],

LpNRQED = −
∫

d3x
1

4
Fµν(t,x)Fµν(t,x)

+
∫

d3r d3R S†(t,r,R)

[
i∂0 + ∇2

2mµ

+ α

|r|

+ ∇4

8m3
µ

+ e2

m2
µ

(
− cD

8
+ 4d2

)
δ3(r)

+ icS

α

4m2
µ

σ ·
(

r
|r|3 × ∇

)]
S(t,r,R)

+
∫

d3r d3R S†(t,r,R)er · E(t,R)S(t,r,R)

+
∫

d3x ē(t,x)iγ µDµe(t,x), (1)

where S(t,r,R) is the muon wave-function field, r being its
distance to the proton and R being the position of the proton;
e(t,x) is the electron Dirac field. α = e2/4π is the electro-
magnetic coupling constant, and c0, cs , and d2 are matchings
coefficients, which can be found at one loop in Ref. [34].

Let us separate the cases T � E and T � E, which are
analyzed in Secs. II A 1 and II A 2.

1. T � E

In this case, the leading temperature-dependent contribu-
tions are given by the diagram in Fig. 1, in an analogous way
to the hydrogen atom case. Virtual ultrasoft electron-positron
pairs give rise to O(α) corrections, and no soft thermal photon

FIG. 1. Muonic hydrogen atom self-energy at leading order (due
to ultrasoft photons). The double line stands for the propagator of
the atom, and the wavy line stands for the thermal propagator of the
transverse photons. The vertex corresponds to the dipole term in the
multipole expansion, see Eq. (1).

resummation is necessary at scale E. Hence, there is no
qualitative difference with respect to the hydrogen atom, and
we will not discuss it further. We refer to Ref. [1] for the
relevant formulas for the spectrum and decay widths.1

2. T � E

In this case, scale T can be integrated out before calculating
the spectrum and decay widths we call the resulting effective
theory pNRQED>T (for further explanations about the nota-
tion, see Appendix A). In the photon and electron-positron
sectors, this gives rise to the HTL action [29]. In the atom
sector, the pNRQED Lagrangian gets additional temperature-
dependent potentials. At leading order (LO) in α, they arise
from the diagram in Fig. 1 upon expanding E − H in the
integrals, and have been calculated in Ref. [1],

δV
(LO)
T = απT 2

3mµ

− 4α2

3m2
µ

δ3(r)

[
1

ε
+ ln

(
µ

2πT

)

+ 5

6
+ ln (2π )

]
+ O

(
αr2E4

T

)
, (2)

H ∼ E ∼ α/r . Possible O(αr4ET 4) terms arising from
higher orders in the multipole expansion cancel out. Note that
the preceding dominant contribution is a constant mass shift,
and the r-dependent part is (mµα2/n2T )2 suppressed. Hence,
vacuum polarization corrections to the photon propagator may
compete with the r-dependent part of the LO potential dis-
played previously and must be calculated. From the diagrams
in Fig. 2, we obtain the next-to-leading order (NLO) in α,

δV
(NLO)
T = − 3α

2π
ζ (3)T m2

Dr2 + iαT m2
D

6
r2

[
1

ε
+ γ + ln π

− ln
T 2

µ2
+ 2

3
− 4 ln 2 − 2

ζ ′(2)

ζ (2)

]

1In the case E � T , the formulas presented in Ref. [1] provide
the leading contribution for T � αE only. For T � αE, additional
contributions exist [35].

FIG. 2. Muonic hydrogen atom self-energy at NLO (due to
ultrasoft photons, electrons, and positrons). The solid line stands
for the thermal Dirac propagator of electrons and positrons, and the
dashed line stands for the propagator of the longitudinal (A0) photons.
The remaining lines are as in Fig. 1.
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− iαm2
D

32mµ

[
1

ε
+ c + 2γ + 2 ln

(
µ

T

)]

+O

(
αr2m2

DE2

T
,
αr2m4

D

T

)
, (3)

with m2
D = (eT )2/3 and c a numerical constant. The computa-

tions have been done in dimensional regularization (DR) with
ε = (4 − d)/2 → 0. The first and second lines of this result
also appears in an analogous calculation that has already been
carried out in the static limit of the QCD case [6]. The third line
is subleading. We have displayed it to match the precision of
Eq. (2) when eT ∼ E. In order to eventually check the correct
cancellation of the 1/ε poles, we have calculated analytically
the leading infrared (IR) behavior in Appendix C. The constant
c remains unknown. We see that indeed δV

(NLO)
T competes in

size with δV
(LO)
T , except for the global energy shift given by

the first term in Eq. (2). In fact, it provides the dominant
term in the potential for the energy of the photon transitions
between two states belonging to this case. The IR divergences
arising earlier are canceled by ultraviolet (UV) divergences
arising from contributions at smaller scales (E,eT , . . .). These
contributions are hard to calculate in the general case because
HTL propagators must be used for the ultrasoft photons and
the Coulomb potential must be kept unexpanded in the atom
propagator. At these scales, however, the Bose distribution can
be expanded, which simplifies somewhat the calculations, and
produces the so-called Bose enhancement, see Eqs. (B8) and
(B10). The dominant contribution arises from the diagrams
of Fig. 3. We have only been able to work out an analytic
expression for cases eT � E and eT � E, which will be
discussed as follows and for its UV behavior. Technical details
for the latter are shown in Appendix C.

Before discussing the two cases, which allow to proceed
further analytically, we display the energy shift and decay
width induced by the temperature-dependent potentials (2)
and (3) at LO in perturbation theory,

δET
n = απT 2

3mµ

− 2α

3πm2
µ

|φn(0)|2
[

1

ε
+ ln

(
µ

2πT

)

+ 5

6
+ ln (2π )

]
− 3α

2π
ζ (3)T m2

D〈r2〉n

+O

(
αr2E4

T
,
αr2m4

D

T

)
, (4)

δ
T
n = −αT m2

D〈r2〉n
3

[
1

ε
+ γ + ln π − ln

T 2

µ2
+ 2

3

− 4 ln 2 − 2
ζ ′(2)

ζ (2)

]
+ αm2

D

16mµ

[
1

ε
+ c + 2γ

+ 2 ln
(µ

T

) ]
+ O

(
αr2E4

T
,
αr2m4

D

T

)
, (5)

FIG. 3. Further contributions to the muonic hydrogen atom self-
energy when p � T � E. The wavy line and the dashed line with
a blob are the HTL propagators for the transverse and longitudinal
photons, respectively.

in which 〈r2〉n = n2

2m2
µα2 [5n2 + 1 − 3l(l + 1)], n and l being

the principal and angular momentum quantum numbers
here. The labels n,m, . . . are also used through the paper as
a short-hand notation for the whole ensemble of quantum
numbers of a given Coulomb state, either bound or in the
continuum, and φn(0) is the wave function at the origin.
The previous contributions are to be added to the ones
coming from lower scales, which we discuss as follows
in two particular cases that share the feature that the
lower-energy scales are hierarchically ordered, and hence
the method of the integration by regions can be used
[36,37]

(1) E � eT . In this case, the loop integral is dominated by
energy and momentum ∼E for which eT can be treated as a
perturbation. At LO in the HTL expansion, we obtain

δEE
n = 2α

3π

∑
m

|〈n|v|m〉|2(En − Em)

×
[

1

ε
+ ln

(
µ

|En − Em|
)

+ 5

6
− γ + ln (2π )

]

− απT m2
D

3
〈r2〉n + O

(
αr2T m4

D

E2

)
, (6)

δ
E
n = 4α3T

3n2
+ αT m2

D

3

∑
m

|〈n|r|m〉|2

×
[

1

ε
− 2 ln

|En − Em|
µ

+ 11

3
− ln 4

− γ + ln (π )

]
+ O

(
αr2T m4

D

E2

)
. (7)

We observe that the LO IR divergences appearing at scale
T in Eqs. (4) and (5) are canceled by the UV divergences
in Eqs. (6) and (7), respectively. Note that the subleading IR
divergence at scale T , in the second line of Eq. (5), is very
much suppressed in this case (mµα5 � αm2

D/mµ). A similar
calculation for the heavy quarkonium case has been presented
in Ref. [38]. Technical details can be found in Appendix
Sec. C 2. Here, we only mention that a collinear region exists
that contributes at this order.

Upon summing up the contributions from both energy
regions, namely, Eqs. (4) and (6) for the energy and Eqs. (5)
and (7) for the decay width, finite results are obtained at the
desired order,

δEn = απT 2

3mµ

+ 2α

3π
|φn(0)|2

[
ln

(
2πT

|En|
)

− γ

]

+ 2α

2π

∑
m

|〈n|v|m〉|2(En − Em) ln
|En|

|En − Em|

− αT m2
D〈r2〉n
π

(
3ζ (3)

2
+ π2

3

)

+O

(
αr2E4

T
,
αr2T m4

D

E2

)
, (8)
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δ
n = 4α3T

3n2
+ 2αT m2

D〈r2〉n
3

[
ln

T

|En| − γ + 3

2

+ ln 2 + ζ ′(2)

ζ (2)

]
− 2αT m2

D

3

∑
m

|〈n|r|m〉|2

× ln
|En − Em|

|En| + O

(
αr2E4

T
,
αr2T m4

D

E2

)
. (9)

(2) eT � E. In this case, the loop integral is dominated by
energy and momentum ∼eT for which E can be treated as
a perturbation. At LO in the energy expansion, we obtain a
contribution, which is equivalent to adding a new term to the
potential that goes like m2

Dr2,

δEeT
n

LO = αm3
D

6
〈r2〉n + O

(
α2r2m2

DT
)
, (10)

δ
eT
n

LO = αT m2
D

3
〈r2〉n

(
1

ε
− γ + ln π + ln

µ2

m2
D

+ 5

3

)

+O
(
α2r2m2

DT
)
. (11)

We observe that the LO IR divergence appearing at scale
T is canceled by the earlier UV divergence. An analogous
contribution has also been calculated in the static limit of
QCD [6].

At NLO in the energy expansion, we have restricted
ourselves to compute the UV divergence analytically,

δ
eT
n

NLO = − αm2
D

16mµ

[
1

ε
+ c∗ − 2 ln

(
mD

µ

)]
+O(αr2E2T ). (12)

It cancels the IR divergence in the second line of Eq. (3), as it
should (c∗ is an unknown constant that can be of order 1/α1/2

because of Bose enhancement).
Fortunately, the contribution of the loop integral for energy

and momenta ∼E is subleading. The calculation at that scale
may even require nonperturbative techniques if E gets close
to scale e2T [30,39,40].

Summing up the contributions from the T energy region
and from the mD energy region, namely, Eqs. (4) and (10)
for the energy and Eqs. (5) and (11) for the decay width, the
leading thermal effects for this situation are obtained,

δEn = απT 2

3mµ

+ αm3
D〈r2〉n
6

+ O(αr2E2T ), (13)

δ
n = 2αT m2
D〈r2〉n
3

[
ln

T

mD

− γ + 1

2
+ 2 ln 2 + ζ ′(2)

ζ (2)

]

− 2αm2
D

16mµ

(
ln

T

mD

+ c∗ − c

2
− γ

)
+ O(αr2E2T ).

(14)

B. T ∼ p

Since mµ � T still holds, our starting point is the NRQED
Lagrangian at T = 0 [27] (this is correct up to exponentially
small contributions ∼e−mµ/T ),

L = ψ+
[
iD0 + D2

2mµ

+ D4

8m3
µ

+ cF e
σ · B
2mµ

+ cDe
|∇ · E|
8m2

µ

+ icSe
σ (D × E − E × D)

8m2
µ

]
ψ + N+iD0N − 1

4
FµνF

µν

+ d2

m2
µ

FµνD
2Fµν + ēiγ µDµe. (15)

where ψ is the muon Pauli-spinor field.
Since T ∼ p � E, we can integrate out scales T and p,

which leads to what we call pNRQEDT , the suitable effective
theory for scale E, which is similar to the one that has already
been introduced in Sec. II A, with the only difference that now
T is of the same order as the cutoff of the effective theory. In
the photon and electron-positron sectors, we have the standard
HTL. In the atom sector, temperature-dependent potentials
are induced. Recall that, at scale T , there is no enhancement,
and vacuum polarization effects due to electron-positron pairs
are always suppressed by α. Hence, the leading potential will
still be the Coulomb potential, but the first α correction to it
will already be temperature dependent. This is given by the
diagram in Fig. 4.

The temperature-dependent part of the potential induced by
the diagram in Fig. 4 is both UV and IR safe in momentum
space. However, when it is Fourier transformed to coordinate
space, an IR divergence is encountered. The calculation is
rather involved, so we only display the final result here, which
can be given in terms of one-parameter integrals of special
functions. Details are given in Appendix D (the formulas in
that appendix have to be used setting me = 0 for this case).
We obtain,

δVr = −αm2
Dr

4
− 3α

2π
ζ (3)T m2

Dr2 + αm2
D

4π2T 2r

∫ ∞

0

du

u(eu + 1)
[−4 − 4ρ2u2 + (ρ2u2 + 4) cos (ρu) + ρu sin (ρu)

+ (6ρu + ρ3u3) Si (ρu)] + iαm2
DT r2

6

[
1

ε
+ γ + ln π + 2 ln (rµ) − 1

]
− i3αm2

D

2π2T

[
1

2
− ln (rT ) − ln π

]

+ i3αm2
D

π2T 2r

∫ ∞

0

du

u4
sin (ρu)

[
Li2(−eu) + u ln (1 + eu) + π2

12
− u2

4

]
+ O(α3T ), (16)

where ρ = 2rT and Si stands for sine integral,

Si (z) =
∫ z

0

sin t

t
dt. (17)

The LO energy correction is obtained by computing
the expectation value of the potential of Eq. (16) for
the desired state and adding the ultrasoft contribution.
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The calculation in pNRQEDT is identical to one carried out in
the second case of Sec. II A (since E ∼ mµα2, T ∼ p ∼ mµα,
we have eT � E). Hence, the outcome can be directly read off
Eqs. (10) and (11). Notice that the IR divergence in Eq. (16) at
first order in quantum-mechanic perturbation theory, induces

a contribution that cancels out the UV divergence in Eq. (11),
as it should. Also, the contribution from integrating out the
scale mD can be encoded in a correction to the potential,
summing it up to δVr , where the following finite result is
obtained,

δV = −αm2
Dr

4
− 3α

2π
ζ (3)T m2

Dr2 + αm3
Dr2

6
+ αm2

D

4π2T 2r

∫ ∞

0

du

u(eu + 1)
[−4 − 4ρ2u2 + (ρ2u2 + 4) cos (ρu) + ρu sin (ρu)

+ (6ρu + ρ3u3) Si (ρu)] − iαm2
DT r2

3

[
− ln (rmD) + 4

3
− γ

]
− i3αm2

D

2π2T

[
1

2
− ln (rT ) − ln π

]

+ i3αm2
D

π2T 2r

∫ ∞

0

du

u4
sin (ρu)

[
Li2(−eu) + u ln (1 + eu) + π2

12
− u2

4

]
+ O(α3T ), (18)

and hence, at first order in perturbation theory,

δEn = 〈n|Re δV |n〉,
(19)

δ
n = −2〈n|Im δV |n〉.

C. T � p

Since mµ � T still holds, we can also start from NRQED at
T = 0. Now, we may proceed by sequentially integrating out
first scale T and next scale p. After integration of scale T , we
get an effective theory, which consists of HTL contributions
in the photon and electron-positron sectors and of NRQED
with temperature-dependent matching coefficients in the atom
sector. This NRQED>T in the atom sector is identical to the one
that we have in the hydrogen atom case [1], up to order α cor-
rections induced by the electron-positron vacuum polarization.

The next step is to integrate out energy scale p, namely, to
match NRQED>T to what will be called pNRQED<T , which is
expected to produce temperature-dependent potentials. These
potentials must be calculated using HTL photon propagators.
Let us separate the two following cases:

(1) eT ∼ p. In this case, the computations can be carried
out as in Sec. V B of Ref. [1]. The relevant diagram is
similar to Fig. 4, but instead of a photon propagator with
a self-energy insertion, we would have to use the tree-level
HTL photon propagator (Fig. 5). The only difference, with
respect to Ref. [1], is due to the fact that the electron-positron
pairs that generated the HTL photon propagators are now

FIG. 4. Leading correction to the Coulomb potential due to
vacuum polarization when T � p. The thick and extra-thick solid
lines stand for the nonrelativistic propagator of the muon and the
static propagator of the proton, respectively. The remaining lines are
as in Fig. 2. There is also an LO correction coming from an extra
diagram, which is obtained from the second one by changing the
muon line by a proton line.

taken to be massless, so, in fact, the outcome is simpler: The
nontrivial function g(meβ) reduces to πm2

D

16αT 2 . Then, we obtain
the following LO potential:

V (r,T ) = −αe−mDr

r
− αmD + iαT φ(mDr) + O

(
αT 2

mµ

)
,

(20)

where

φ(x) = 2
∫ ∞

0

dz z

(z2 + 1)2

[
sin (zx)

zx
− 1

]
. (21)

This potential coincides with the one first obtained in Ref. [2]
for QCD (up to trivial changes in color factors made explicit
in Ref. [1]). As in the hydrogen atom case, we can use this
result in order to estimate the dissociation temperature, which
is Td ∼ mµα2/3/ ln1/3 α, as anticipated in Ref. [1] for the QCD
case.

(2) eT � p. In this case, T � Td always holds. Hence, the
imaginary part of the potential is bigger than the real one,
so it does not make much sense to speak about bound states
anymore.

III. me �= 0 CASE

Now, we address the actual case of a nonvanishing electron
mass. Although the real muonic hydrogen is not as close to
heavy quarkonium systems as the ideal one (me = 0), it may
still be useful to learn about certain aspects of it. In particular,
about the role of a finite-charm mass in the bottomonium
system, which is analogous to that of a finite-electron mass
in muonic hydrogen [41]. This case may then shed light on

FIG. 5. Leading correction to the Coulomb potential due to
vacuum polarization when T � p. The lines are as in Figs. 3 and 4.
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the effects of the charm quark mass in bottomonium at finite
temperature, specially when charm quarks are thermalized.
Irrespective of that, muonic hydrogen is a real system that
appears in nature, which nowadays is produced in large
samples [8], and, therefore, our results may eventually be
checked against the experiment.

For actual muonic hydrogen me ∼ p for the lower-lying
states (n = 1,2), whereas for the remaining states (n � 3),
one may safely consider me � p [41]. Then, let us analyze
these two cases separately.

A. Lower-lying states (n = 1,2)

As mentioned previously, these two states fulfill p ∼ me,
and hence relativistic electron-positron pairs must be inte-
grated at the same time as the momentum transfer p. In
Secs. III B and III C, let us see how this is carried out depending
on what the temperature is.

1. T � p

As in the massless case, our starting point can be pNRQED.
However, now, due to the fact that me ∼ p (rather than
me = 0), the electron-positron pairs have already been inte-
grated out when calculating the potentials, and hence are not

active anymore. The situation is then totally analogous to the
hydrogen atom, the only difference being that the potentials
get O(α) corrections due to virtual electron-positron pairs,
the most important of which is the Uehling potential. In
other words, the thermal bath contains neither electrons nor
positrons, so the thermal effects are only due to the photons,
which do not distinguish between electrons and muons. Hence,
the results concerning this case can be read off Sec. III of
Ref. [1] by making m → mµ [up to O(α) corrections].

2. T ∼ p

Again, as in the massless case, we can start with NRQED.
Scales T and me must be integrated out at the same time as
energy scale p. In the photon sector, which is not sensitive to
scale p, we get the mass-dependent HTL action (see Sec. V A 1
of Ref. [1]). In the electron and positron sectors, which are not
sensitive to scale p either, we get an NRQEDT Lagrangian for
each of these particles (see Sec. V A 2 of Ref. [1]). In the atom
sector, the potentials now depend on both temperature and
electron mass, except for the leading Coulomb potential. The
most important correction is a kind of temperature-dependent
Uehling potential, which is obtained from the diagram in
Fig. 4,

δVr = −4α2f (meβ)m2
er

π
− 2α2

πr

∫ ∞

0

du√
u2 + 1

(
eβme

√
u2+1 + 1

) [1 − cos (σu) − σu Si (σu)]

+ α2

3πr

∫ ∞

0

du
√

u2 + 1

u2
(
eβme

√
u2+1 + 1

) [2 − 3σ 2u2 + (σ 2u2 − 2) cos (σu) + σu sin (σu) + σ 3u3 Si (σu)]

− α

π
T m2

Dr2(βme)3
∫ ∞

0
du

u
√

u2 + 1

eβme

√
u2+1 + 1

+ i8α2T 3g(meβ)r2

3π

[
1

ε
+ γ + ln π + ln (rµ)2 − 1

]

− i4α2T

π (eβme + 1)

[
1

2
− ln (rT ) − ln 2 − (eβme + 1)

∫ ∞

0

du

u
(
eβme

√
u2+1 + 1

) +
∫ ∞

0

du e−βmeu

u

]

+ i4α2T 3

πrm3
e

∫ ∞

0

du

u4
sin (σu)

[
Li2

( − eβme

√
u2+1

) + (βme)
√

u2 + 1 ln
(
1 + eβme

√
u2+1

) + π2

6
− (βme)2

2
(u2 + 1)

− g(meβ) + (βme)2u2

2(eβme + 1)

]
+ i4α2T

π

∫ ∞

0

du

u3

[
Sinc (σu) − 1

eβme

√
u2+1 + 1

− Sinc (σu) − e−8β3m3
eu

3

eβme + 1

]

+ i4α2m2
eT r2

3π (eβme + 1)

[
1

ε
− 1 + γ + 2 ln (rµ) + ln π

]
− i16α2m2

e

3πT (eβme + 1)

(−2/3) + O(α3T ), (22)

where β = 1/T , σ = 2mer , and

f (meβ) =
∫ ∞

0
dx

x2

√
x2 + 1

(
eβme

√
x2+1 + 1

) , (23)

g(meβ) = β2m2
e

∫ ∞

0
dx

x

eβme

√
x2+1 + 1

. (24)

Further expressions for these functions can be found in
Appendix B of Ref. [1]. The computations that lead to Eq. (22)
are carried out in Appendix D.

Notice that Eq. (22) has two IR divergences, which, as
in the me = 0 case, arise when the Fourier transform of
the momentum space potential is taken in order to get the
coordinate space potential. The IR divergence in the third line
of Eq. (22) is similar to the one that appears in Eq. (16) for
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the massless case [with T 2g(meβ) instead of m2
D]. The IR

divergence in the last line of Eq. (22), however, is proportional

to m2
e

eβme +1 , and hence distinct from the me = 0 case. It emerges
from a region in which not only the three-momentum transfer
is small, but also the component of the three-momentum of the
electron-positron pair in the loop parallel to the momentum
transfer is small. In either case, these IR divergences should
cancel against UV divergences in the pNRQED calculation.

The relevant diagram in the pNRQED calculation is again
Fig. 3 in which the photon line must be understood as the mass-
dependent HTL propagator (see Appendix E). In the dominant
contribution to this diagram, E − H in the atom propagator
can be treated as a perturbation (recall that E − H ∼ mµα2 �
eT ). Then, using the fact that �11(k0,k) is symmetric with
respect to k0 → −k0, we obtain

δEeT
n = αm3

D

6
〈r2〉n + O

(
αr2Em2

D

)
, (25)

δ
eT
n =

{
16α2T 3

3π
g(meβ)

(
1

ε
− γ + ln π + ln

µ2

m2
D

+ 5

3

)

+ 8α2m2
eT

3π (eβme + 1)

[
1

ε
− 2 ln

mD

µ
+ 5

3
+ ln (4π )

−γ − 2 ln 2

]}
〈r2〉n + O

(
αr2Em2

D

)
. (26)

We see that indeed the preceding UV divergences cancel
those of Eq. (22), as expected. There is a subtle point in this
calculation, however, which we discuss in Appendix E, which
must be correctly dealt with in order to get the UV divergence
of the last line [that cancels the IR divergence in the second to
last line of Eq. (22)]. As in the massless case, the contribution
from scale mD can be encoded in a correction to the potential,
and this summed to δVr ,

δV = −4α2f (meβ)m2
er

π
− 2α2

πr

∫ ∞

0

du√
u2 + 1

(
eβme

√
u2+1 + 1

) [1 − cos (σu) − σu Si (σu)]

+ α2

3πr

∫ ∞

0

du
√

u2 + 1

u2
(
eβme

√
u2+1 + 1

) [2 − 3σ 2u2 + (σ 2u2 − 2) cos (σu) + σu sin (σu) + σ 3u3 Si (σu)]

− α

π
T m2

Dr2(βme)3
∫ ∞

0
du

u
√

u2 + 1

eβme

√
u2+1 + 1

+ αm3
Dr2

6
− i16α2T 3g(meβ)r2

3π

[
− ln (rmD) + 4

3
− γ

]

− i4α2T

π (eβme + 1)

[
1

2
− ln (rT ) − ln 2 − (eβme + 1)

∫ ∞

0

du

u
(
eβme

√
u2+1 + 1

) +
∫ ∞

0

du e−βmeu

u

]

+ i4α2

πr

∫ ∞

0

du

u4
sin (σu)

[
Li2

( − eβme

√
u2+1

) + βme

√
u2 + 1 ln

(
1 + eβme

√
u2+1

)

+ π2

6
− (βme)2

2
(u2 + 1) − g(meβ) + (βme)2u2

2(eβme + 1)

]
+ i4α2T

π

∫ ∞

0

du

u3

[
Sinc (σu) − 1

eβme

√
u2+1 + 1

− Sinc (σu) − e−8β3m3
eu

3

eβme + 1

]

− i8α2m2
eT r2

3π (eβme + 1)

[
− ln (rmD) + 4

3
− γ

]
− i16α2m2

e

3πT (eβme + 1)

(−2/3) + O(α3T ). (27)

The energy shift and the decay width at first order in
perturbation theory can be obtained from Eq. (19).

3. T � p

This case is very similar to the me = 0 one. We start with
NRQED and integrate out scale T first. Since T � me, the
mass-dependent HTL propagators may be expanded in me/T ,
and hence become the usual HTL propagators with NLO
contributions due to the nonvanishing electron mass. Hence,
the finite-mass effects do not affect the gross features of the
system. In particular, in the eT ∼ p case, the dissociation
temperature will be similar to the one in the massless case. For
eT � p, like in the massless case, no bound state is expected
to survive.

B. Higher-energy states (n � 3)

As mentioned before, these states fulfill me � p � E, and
hence relativistic electron-positron pairs may be integrated

out before the momentum transfer p is. In Secs. III B 1 and
III B 2, let us see how this is carried out depending on what the
temperature is.

1. me � T

In this case, we can start with an NRQED Lagrangian
for the muon in which the relativistic electron-positron pairs
have already been integrated out, which gives rise to 1/m2

e

corrections to the Maxwell Lagrangian. Since there are neither
electrons nor positrons in the thermal bath, the different
situations coincide with those of the hydrogen atom, and the
relevant expressions can be read off Secs. III and IV of Ref. [1]
by making m → mµ (up to 1/m2

e corrections).

2. me � T

In this case, we can start with an NRQED Lagrangian for
the muon keeping the relativistic Dirac Lagrangian for the
electron in it. When me ∼ T , both scales must be integrated out
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at the same time. In the photon sector, a mass-dependent HTL
Lagrangian is induced (see Sec. V A 1 of Ref. [1]). In the elec-
tron and positron sectors, a temperature-dependent NRQEDT

Lagrangian for each particle is induced (see Sec. V A 1
of Ref. [1]). In the muon sector, a temperature-dependent
NRQED>T Lagrangian is also induced. At lower orders, it
can be obtained from the diagrams of Sec. IV of Ref. [1],
together with diagrams containing an electron-positron loop.
The most important effect is the appearance of two mass shifts,
one ∼αT 2/mµ from diagram (38) of Ref. [1] and the other
one ∼α2me from the second diagram in Fig. 4. In the proton
sector, an analogous mass shift ∼α2me occurs, which is due
to a diagram obtained from the previous one by changing the
muon line with a proton line.

The next step is to integrate out scale p, namely, matching
to pNRQED using the HTL Lagrangian. This has already
been done in Sec. V B of Ref. [1]. At LO, this produces
a temperature-dependent potential and further mass shifts,
which can be read from a corrected version of formulas (58)
and (60) in that reference (making m → me). The origin of
the corrections is discussed in Appendix E and boils down
to a simple replacement; see Eq. (E17). Both the potential
and the mass shift contain an imaginary part, which becomes
more important than the real part starting at some temperature
Td , which we call dissociation temperature. In Sec. III C, the
dissociation temperatures will be estimated for several states.

For T � me, none of the higher-energy states exists
anymore, since the dissociation temperatures fulfill me > T ,
see Sec. III C.

C. Dissociation temperatures, level shifts, and decay widths

The dissociation temperatures will be estimated in a similar
way as they were in the hydrogen atom case [1]. This is
by identifying the momentum scale for which the real and
imaginary parts of the momentum space potential are equal,
p ∼ (16α)1/3[g(meβ) + (meβ)2nF (meβ)/2]1/3T =: md and
equating it to the typical momentum transfer in the muonic
hydrogen atom2 p ∼ mµα/n2. The results are displayed in
Table I. Table II shows the same results for the hydrogen
atom. In order to carry out the estimates, we also have used the
formulas of Appendix E, which are meant for higher excited
states (T ∼ me � p), for the case of the lower-lying states,
instead of the me = 0 formulas. This is indeed legitimated:
We are just not taking advantage of the fact that Td � me for
these states, which produces the simplifications discussed in
Sec. III A 3.

2Note that in Ref. [1], the typical momentum of the electron
p ∼ meα/n was used rather than the typical momentum transfer
p ∼ meα/n2, as we have adopted here. For the lower-lying states,
the order of magnitude estimates does not differ much, but for
higher-energy, estimates may differ considerably. We have also
identified an error, which affects the dissociation temperatures, in
the computation of the potential (57) of Ref. [1], which is explained
and corrected in Appendix E. Here, we reproduce Table I of Ref. [1]
in Table II with the current choice of p and the correct version of the
potential for the sake of comparison.

TABLE I. Dissociation temperature for the lower-lying states of
muonic hydrogen.

n Td (MeV) mD (MeV) md (MeV)

1 1.7 0.16 0.77
2 0.41 0.036 0.19
3 0.19 0.012 0.086
4 0.13 0.0056 0.048
5 0.10 0.0030 0.031

From the results in Table I, we see that only the lowest-lying
states n = 1,2 survive at temperatures of the electron-positron
plasma me � T . Hence, only transitions between these levels
might be observed in an eventual experiment. We will focus on
the experimentally prominent Kα transition [17]. We display
our results for the energies of the 1S and 2P states, and for
the energy of the Kα transition as a function of temperature
in the range T ∈ (2,0.05) MeV in Figs. 6–8, respectively. The
calculations have been carried out numerically, using first-
order perturbation theory for the potential (27).

Another observable that we can predict with our results is
the decay width. In Fig. 9, we show the decay width for the
1S state as a function of the temperature. By comparing Figs. 6
and 9, it can be seen that Td ∼ 1.7 MeV is the temperature
that makes the decay width of the same magnitude as the
binding energy.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have discussed the properties of muonic
hydrogen in a thermal bath, which may consist not only of
blackbody radiation, but also of an electron-positron plasma.
We have further developed the effective theory techniques for
bound-state systems at finite temperature initiated in Ref. [1],
in particular, the application of DR to the factorization of
the various scales in the system. They enormously facilitate
the organization of the calculation. For instance, they show
when Coulomb or HTL resummations are necessary and when
they are not. In addition, both partial and final results are
naturally obtained as a series of small scales over large ones,
thus providing good control on the systematics.

We discussed two cases. First, we addressed the academic
case of muonic hydrogen with a vanishing electron mass,
which turns out to be closer to heavy quarkonium states than
the actual case with a nonvanishing electron mass, which we
addressed next. All the thermal modifications we found turned
out to be spin independent.

TABLE II. Dissociation temperature for the lower-lying states of
hydrogen.

n Td (keV) mD (keV) md (keV)

1 49 0.15 3.7
2 36 0.020 0.93
3 31 0.0061 0.41
4 28 0.0025 0.23
5 26 0.0013 0.15
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1 2 3 4 5
T (MeV)

-0.0038

-0.0036

-0.0034

-0.0032

-0.0028
E (MeV)

FIG. 6. E vs T for the 1S state. This result was computed using
the assumption that 1

r
� mD , so we expect important deviations from

the real energy starting at T ∼ 4 MeV.

0.5 1 1.5 2
T (MeV)

-0.0011

-0.0009

-0.0008

-0.0007
E (MeV)

FIG. 7. E vs T for the 2P state. For the 2P state, the typical
radius is four times larger than for the 1S state, so we expect important
deviations from the real energy starting at T ∼ 1 MeV.

0.5 1 1.5 2
T (MeV)

0.0019

0.0021

0.0022

0.0023

0.0024

0.0025

E (MeV)

FIG. 8. Kα transition vs T . This result is reliable until T ∼
1 MeV. Note that this temperature is twice what we predicted for
the dissociation temperature of the 2P state.

0.5 1 1.5 2 T MeV

0.001

0.002

0.003

0.004

Decay Width MeV

FIG. 9. Decay width for the 1S state. As for the binding energy,
this has been computed using the assumption that 1

r
� mD .

TABLE III. Dissociation temperature for ϒ (1S) for different
values of the charm mass. The nf = 3 light quark masses are set
to zero. We use the values of the Bohr radius and �QCD found in
Table 2.1 of Ref. [42] as an input. The values of these parameters for
nF = 3 are used for all values of mc except for mc = 0, where we
use the ones for nF = 4.

mc (MeV) Td (MeV)

∞ 480
5000 480
2500 460
1200 440

0 420

In the zero electron mass case, we studied how the effects of
vacuum polarization modify the picture that we encountered
in normal hydrogen [1]. The modifications turned out to be
important when the temperature was higher than the binding
energy. For instance, they gave the LO contribution to a
hypothetical Kα transition for high enough temperatures
Eq. (2). For temperatures below dissociation, we presented
the LO and selected NLO thermal corrections to the binding
energy and decay width.

In the actual electron mass case, muonic hydrogen behaves
very much the same as hydrogen for temperatures below the
electron mass. For temperatures higher or on the order of the
electron mass, the vacuum polarization effects are sizable, and,
at some point, make the bound states dissociate. In Table I, we
display the dissociation temperature for the lower-lying states.
We also calculated the thermal modifications to a number
of observables before dissociation occurred. For instance, we
plotted the dependence of the Kα transition on temperature in
Fig. 8, which could be tested experimentally in the future [8].

We close with a concrete application to the heavy quarko-
nium case. As we have mentioned before, the way a finite-
electron mass affects muonic hydrogen is similar to the way a
finite-charm quark mass affects bottomonium [41]. Since this
should also be the case at finite temperature, we can easily
translate the results for the dissociation temperature of muonic
hydrogen to the QCD case, which we show in Table III.
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APPENDIX A: NOTATION FOR THE DIFFERENT
EFFECTIVE FIELD THEORIES

At zero temperature, there are three different energy scales
for nonrelativistic bound states. These are the hard scale
(for muonic hydrogen mµ), the soft scale mµα, and the ultrasoft
scale mµα2. Moreover, a finite-temperature system also has a
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different energy scale as T ,eT ,e2T , . . . . This makes it hard
to find a comprehensible notation for all the effective field
theories that may arise from integrating out the different
degrees of freedom. In this paper, we have used the following
notation. Basically, we named the effective field theories as
one would do for zero temperature, and we encoded the
temperature information in a subindex. Subindex T means
that the temperature has been integrated out, also subindex
mD means that scale eT has been integrated out. Since the
matching coefficients of the effective field theory that we
obtain after integrating out mµ (p) and T is not the same
if mµ(p) ∼ T or if mµ(p) � T , we include a symbol <, >,
or a blank depending on the relation between these scales.
For example, if we are in mµ(p) ∼ T , we will arrive at
NRQEDT (pNRQEDT ), but if we are in mµ(p) � T , we
reach NRQED>T (pNRQED>T ) because T is smaller than
the energy cutoff of NRQED (pNRQED).

APPENDIX B: BASIC FORMULAS

In this appendix, we display a number of formulas of the
real-time formalism that are relevant to the paper. Our notation
closely follows Ref. [31]. Recall that, in this formalism, there
is a doubling of degrees of freedom [30]. Fields are labeled
1 or 2. Fields 1 (2) only interact with fields 1 (2) according
to (minus) the original interaction Lagrangian. Fields 1 may
be converted to fields 2, and vice versa, through propagation
so that propagators become 2 × 2 matrices. For instance, for a
free scalar field, we have

�(K) =
( 1

K2−m2+iε
0

0 −1
K2−m2−iε

)
− 2πi δ(K2 − m2)

×
[

nB(k0) θ (−k0) + nB(k0)

θ (k0) + nB(k0) nB(k0)

]
, (B1)

where i�(K) is the Feynman propagator, and nB(k0) is the
Bose distribution function.

For the tree-level propagator of the transverse electromag-
netic field in the Coulomb gauge, i�ij (K), we have

�ij (K) =
(

δij − kikj

|k|2
)

�(K). (B2)

The tree-level A0-propagator matrix in the Coulomb gauge is
diagonal, traceless, and the 11 component coincides with the
propagator at zero temperature.

For the tree-level propagator of a Dirac fermion field iS(K),
we have S(K) ≡ (K/ + m) �̃(K), where �̃(K) follows from
�(K) by replacing nB by −nF , nF being the Fermi-Dirac
distribution.

Since we are always in case mµ � T , all vertices involving
muons or protons will be type 1. However, vertices involving
photons and electrons can be both type 1 and type 2. At
the order we are calculating, it turns out that we only need
propagators of type 11 for the photons, either at tree level or
including one-loop self-energies.

For computations that require loop-corrected propagators
(for example, Figs. 2 and 3), it is convenient to use the
so-called Keldysh representation [31]. In this representation,

the retarded, advanced, and symmetric propagators are defined
as

�R = �11 − �12, (B3)

�A = �11 − �21, (B4)

�S = �11 + �22. (B5)

Notice from Eq. (B1) that at tree level only, �S depends on
the temperature.

In order to calculate loop corrections to the �11 propagator
in an efficient way, we use the following method [31]:

(1) We compute the �R propagator, using the fact that, for
this propagator, the Dyson equation is of the zero-temperature
type (this is not so for �S),

�R = �0
R + �0

R�R�R, (B6)

where the self-energy �R is

�R = �11 + �12, (B7)

and �0
R is the tree-level retarded propagator obtained accord-

ing to formulas (B1)–(B3).
(2) The advanced propagator �A is the complex conjugate

of the retarded one, and the symmetric propagator �S reads,
in the bosonic case,

�S(K) = [1 + 2nB(|k0|)] sgn (k0)[�R(K) − �A(K)]. (B8)

(3) Finally, one obtains

�11 = 1
2 (�R + �A + �S). (B9)

Note that, for |k0| � T , the size of the symmetric propaga-
tor for bosons is larger than what one would expect from naive
power counting,

�S(K) = T

k0
[�R(K) − �A(K)] (B10)

plus terms suppressed by 1/T . This effect is called Bose
enhancement, and it complicates the power counting of the
EFTs at scales lower than the temperature.

APPENDIX C: CALCULATIONS IN SEC. II A

What all these computations have in common is that the
starting point is pNRQED. In this effective theory and in all
the theories that are derived from it by integrating out further
degrees of freedom, the leading correction to the Hamiltonian
is [6,28]

δH = ie2ri

∫
dDk

(2π )D
1

E − H − k0 + iε

(
k2

0�ij + kikj�00
)
rj ,

(C1)

with �ij and �00 being the 11 transverse and A0 photon
propagators, respectively. δH is a potential δV (energy
independent) only if E is much smaller than the scales inside
the � propagators. Depending on the concrete calculation that
one is doing, the explicit expression for � may be different.

1. Integrating out the T scale

After integrating out scale T , we will reach pNRQED>T .
At LO, the difference between pNRQED and pNRQED>T will
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be a correction on the potential of the type of Eq. (C1) where
the internal momentum K is of order T .

The LO correction (2) is obtained using the tree-level
photon propagator in Eq. (C1). If one uses the Coulomb
gauge, thermal effects only appear in transverse photons. This
computation is done in detail for different relations between T

and E in Ref. [1],

δV LO = e2ri

∫
dDk

(2π )D
k2

0

E − H − k0 + iε

×
(

δij − kikj

|k|2
)

2πδ(K2)nB(k0)rj . (C2)

The NLO potential comes from including one-loop cor-
rections with the photon propagator (this corresponds to the
diagram of Fig. 3). This can be done analytically for T � E.
The required expressions for the photon propagator are found
in Sec. III B of Ref. [6]. Since T � E, the muonic hydrogen
propagator can be expanded

1

E − H − k0 + iε
→ 1

−k0 + iε
− (E − H )

(−k0 + iε)2
+ · · · .

(C3)

Let us compute the first term in this expansion,

δV NLOa = ie2ri

∫
dDk

(2π )D
1

−k0 + iε

× (
k2

0�
1−loop
ij + kikj�

1−loop
00

)
rj . (C4)

Looking at the expressions of Ref. [6] and using the relation
(B9), one sees that both �ij and �00 are even functions in k0,
so one can use for the first term of the expansion,

i

−k0 + iε
→ πδ(−k0). (C5)

So, we only need the photon propagator in the limit k0 → 0 to
get the LO.

In Ref. [6], the propagators are given as an integral of a
parameter q0. The best strategy to perform the calculation
is to integrate first over internal momentum and leave the
integration of this parameter for the end. This computation
was done in Sec. IV B 1 of Ref. [6], here we take the Abelian
limit making CF = 1 and CA = 0,

δV NLOa = 3

2
ζ (3)

α

π
r2T m2

D + i
α

6
r2T m2

D

[
1

ε
+ γE + ln π

− ln
T 2

µ2
+ 2

3
− 4 ln 2 − 2

ζ ′(2)

ζ (2)

]
. (C6)

For the NLO in Eq. (3), namely, the contributions coming
from second term in Eq. (C3), we will restrict ourselves to
the extraction of the leading IR logarithmic behavior. We use
the fact that, in the IR, the photon self-energy approaches the
HTL limit, so instead, we substitute the complete self-energy
by �HTLe−β2k2

. The factor e−β2k2
is introduced to regulate UV

divergences and does not affect the leading IR behavior we are
interested in. The HTL self-energy has the property that can
be written as �HTL = m2

Df (k0/k) with f (x) as a nontrivial
function. Performing the change of variables k0 = kx, the
IR behavior can easily be extracted. First, we compute the

contribution from the retarded part of the longitudinal photon
propagator,

δV NLOb
L = ie2ri(E − H )

∫
dDk

(2π )D
kikj

k4

�L
R(k0,k)

(k0 − iε)2
rj

= − e2

2mµ

∫
dDk

(2π )D
�L

R(k0,k)

k2(k0 − iε)2
. (C7)

We have used that ri(E − H )ri = − 1
2mµ

plus terms that
vanish on the physical state. As we are only interested
in the leading logarithm behavior, the change �L

R(k0,k) →
�L

HTL,R(k0,k)e−β2k2 = m2
Df L

R (k0/k)e−β2k2
can be made,

where

f L
R (x) = 1 − x

2
ln

(
x + 1 + iε

x − 1 + iε

)
, (C8)

δV NLOb
L = − ie2m2

D

2mµ

∫
dDk

(2π )D
f L

R (k0/k)e−β2k2

k2(k0 − iε)2
. (C9)

The preceding equality is only true as far as the leading IR
behavior is concerned. Now, with the change k0 = kx,

δV NLOb
L = − ie2m2

D

2mµ

�D−1

(2π )D

∫ ∞

0
dk kD−5e−β2k2

∫ ∞

−∞

dx f L
R (x)

(x − iε)2

= − ie2m2
D

4mµ

�D−1

(2π )D

(
T

µ

)D−4




(
D − 4

2

)

×
∫ ∞

−∞

dx f L
R (x)

(x − iε)2
. (C10)

�D−1 is the D − 1-dimensional solid angle. Note that the
contribution from the advanced part of the longitudinal photon
propagator is obtained by replacing f L

R (x) → (f L
R )∗(x) in

Eq. (C10). Since it has all the singularities in the upper half
complex plane, the corresponding integral gives zero. The inte-
gral over x in Eq. (C10) can be done using standard techniques
from integration in the complex plane, and the result is∫ ∞

−∞

dx f L
R (x)

(x − iε)2
= −π2. (C11)

The contribution from the symmetric part of the longitudinal
photon propagator does not produce IR divergences in DR. So,
we do not need to compute it here, as we are only interested
in the logarithms.

Next, we proceed analogously for the transverse photon
propagator. As in the longitudinal part, only the retarded
plus advanced contribution is IR sensible. We approximate
�T

R(k0,k) = m2
Df T

R (k0/k)e−β2k2
where now,

f T
R (x) = 1

2

[
x2 − (x2 − 1)

x

2
ln

(
x + 1 + iε

x − 1 + iε

)]
, (C12)

then

δV NLOb
T = − ie2ri(E − H )rj

2

∫
dDk

(2π )D
m2

De−β2k2

×
(

δij − kikj

k2

) [
f T

R (k0/k)[
k2

0 − k2 + i sgn (k0)ε
]2

+ fA(k0/k)[
(k2

0 − k2 − i sgn (k0)ε
]2

]
. (C13)
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The first (second) terms in the square brackets have all the
singularities in the lower (upper) complex k0 half plane, and
hence, the whole expression vanishes. The contribution from
the symmetric piece of the propagator also vanishes for the
same reason. Hence,

δV NLO = 0. (C14)

2. The E scale for T � E � mD

In order to obtain Eqs. (6) and (7), the starting point
is pNRQEDT . In this effective theory, the atom self-energy
gives the correction for the Hamiltonian (C1). Recall that the
photon propagators in Eq. (C1) must be taken in the HTL
approximation. We use the method of integration by regions
[36,37] in order to evaluate it. In this integral, there are three
relevant regions: k,k0 ∼ E with λ = k0 − k ∼ E (we call it the
off-shell region), k,k0 ∼ E with λ ∼ mD (collinear region),
and k,k0 ∼ mD (mD region). By power counting, one can see
that the mD region will just be a higher-order correction, so
we focus on the regions k,k0 ∼ E. In the off-shell region, the
atom propagator cannot be expanded, but the HTL photon
propagator can. For example, the longitudinal photon retarded
propagator can be written as

�00,R = 1

k2 + m2
Df L

R (k0/k)
. (C15)

After the compulsory expansion,

�00,R = 1

k2
− m2

Df L
R (k0/k)

k4
+ · · · . (C16)

The fact that the nontrivial functions appear only in the
numerator after the expansion is crucial in order to be able
to do the integration analytically. The collinear region does
not contribute in the part that is related to longitudinal
photons.

The transverse photon retarded propagator is

�ij,R =
(
δij − kikj

k2

)
k2

0 − k2 − m2
Df T

R (k0/k) + iε
. (C17)

In the off-shell region, an expansion, such as the one for
the longitudinal photon propagator has to be made. Also,
in the collinear region (that has k,k0 ∼ E but k2

0 − k2 ∼ m2
D),

the atom propagator cannot be expanded , but the HTL photon
propagator has to be expanded around the region |k0/k| ∼ 1.
As in the previous case, this expansion makes it possible to
proceed analytically.

Details of this computation can be found in Ref. [38].

3. Integrating out mD for mD � E

After integrating out mD , we will arrive at what we will call
pNRQED>mD

. In the photon sector, we will have a nontrivial
action, but we will not need it at the level of precision we
are working. In the atom sector, a correction of the potential
in the matching between pNRQEDT (or pNRQED>T ) and
pNRQED>mD

of the form of Eq. (C1) appears where the
internal momentum is of order k ∼ mD .

Because mD � E, we can also put E − H = 0 at LO in the
atom propagator as in Sec. C 1. Hence, we will need the HTL
photon propagator in the k0 → 0 limit (i.e., T � k � k0). The
HTL photon propagators are very well known and can be found
in Refs. [6,30,31]. In our case, the fact that k0 → 0 makes

k2
0�ij (K) = 0, (C18)

kikj�00(K) = kikj

[
1

k2 + m2
D

− iπT m2
D

k
(
k2 + m2

D

)2

]
. (C19)

Using this in Eq. (C1), the results of Eqs. (10) and (11) are
obtained.

For the NLO (12), the calculation is very similar to the
one we have carried out for the T scale. As in that case, we
will focus on the logarithmic behavior, now in the UV. As an
example, we again study the retarded part of the longitudinal
photon propagator [note that consistency with Eq. (C14)
ensures that there will not be a logarithmic contribution from
transverse photons],

δV
NLOmD

L

= −ie2ri

∫
dDk

(2π )D
kikj (E − H )

(k0 − iε)2

1

k2 + m2
Df L

R (k0/k)
rj

= ie2

2mµ

∫
dDk

(2π )D
k2

(k0 − iε)2

1

k2 + m2
Df L

R (k0/k)
, (C20)

using that scaleless integrals in DR are 0,

δV
NLOmD

L = − ie2m2
D

2mµ

∫
dDk

(2π )D
f L

R (k0/k)

(k0 − iε)2

1

k2 + m2
Df L

R (k0/k)
.

(C21)

Now is when the change k0 = kx becomes useful,

δV
NLOmD

L

= − ie2m2
D

2mµ

�D−1

(2π )D

∫ ∞

−∞

dx f L
R (x)

(x − iε)2

∫ ∞

0

dk kD−3

k2 + m2
Df L

R (x)

= ie2m2
D

4mµ

�D−1

(2π )D
π cosec

(
Dπ

2

) (
mD

µ

)D−4

×
∫ ∞

−∞

dx
[
f L

R (x)
]D−3

(x − iε)2
. (C22)

If one is only interested in the logarithmic behavior, one can put
D − 3 = 1 in the x integration and use Eq. (C11). Formula (12)
is readily obtained from the previous expression.

4. UV behavior for E ∼ mD

Although we have not been able to obtain an analytic result
for Eq. (C1) in this situation, its UV behavior can easily be
isolated as follows:

1

E − H − k0 + iε

=
[

1

E − H − k0 + iε
− 1

−k0 + iε
+ (E − H )

(−k0 + iε)2

]

+ 1

−k0 + iε
− (E − H )

(−k0 + iε)2
. (C23)
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The piece in brackets on the right-hand side of the preceding
equation leads to a UV finite expression when substituted
in Eq. (C1). So, the UV divergences arise from the re-
maining terms on the right-hand side of this equation. In
fact, the computation for these UV divergences is exactly
the same as in case mD � E, which we have carried in
Sec. C 3.

APPENDIX D: CALCULATIONS IN SEC. III A

1. Correction to the Coulomb potential in pNRQEDT

In this section, we deal with the matching procedure that
has to be done for T ∼ p. In perturbation theory, the pNRQED
potential is related to the Fourier transform of the longitudinal
photon propagator in the limit where p0 → 0 (for P the
external momentum of the propagator). For this temperature
range, the propagator, which can be obtained by the procedure
outlined in Appendix B, is needed for T ∼ me ∼ p � p0. The
retarded self-energy reads

�R(P ) = −2e2

π2

∫ ∞

0

dk k2√
k2 + m2

e

(
eβ

√
k2+m2

e + 1
)

+ e2

π2p

∫ ∞

0

dk k
(
2k2 + 2m2

e − p2/2
)

√
k2 + m2

e

(
eβ

√
k2+m2

e + 1
)

× ln

(| − p + 2k|
|p + 2k|

)
− 2ie2p0

πp

∫ ∞

p/2

dk k

eβ
√

k2+m2
e + 1

− ie2p0m
2

πp

1

eβ
√

p2/4+m2
e + 1

. (D1)

For me → 0, this self-energy coincides with the Abelian limit
of the one found in Ref. [6].

In order to obtain the potential, the first step is to use
formulas (B8) and (B9) to get the corrections for the 11
propagator. Then, the propagator is related to potential plus
the self-energy by the following formula:

V (r) = −e2
∫

dD−1p

(2π )D−1
(eip·r − 1)�11(p0 = 0,p), (D2)

at LO, this gives the Coulomb potential V (r) = −α
r
. For

simplicity, we define

Vr (r) = −e2
∫

dD−1p

(2π )D−1
eip·r�11(p0 = 0,p), (D3)

and

Vm = −e2
∫

dD−1p

(2π )D−1
�11(p0 = 0,p) (D4)

such that

V (r) = Vr (r) − Vm. (D5)

For the NLO, we need the corrections to the propagator,

δ�11 = �1 + �2 + �3 + �4 + �5, (D6)

where

�1 = − 2e2

π2p4

∫ ∞

0

dk k2√
k2 + m2

e

(
eβ

√
k2+m2

e + 1
) , (D7)

�2 = 2e2

π2p5

∫ ∞

0

dk k
√

k2 + m2
e

eβ
√

k2+m2
e + 1

ln
|−p + 2k|
|p + 2k|

= − 2e2

π2p5

∫ ∞

0

dk k2
√

k2 + m2
e

eβ
√

k2+m2
e + 1

×
∫ 1

−1
dλ

(
1

p − 2kλ + iε
+ 1

p − 2kλ − iε

)
, (D8)

�3 = − e2

2π2p3

∫ ∞

0

dk k√
k2 + m2

e

(
eβ

√
k2+m2

e + 1
) ln

|−p + 2k|
|p + 2k|

= e2

2π2p3

∫ ∞

0

dk k2√
k2 + m2

e

(
eβ

√
k2+m2

e + 1
)

×
∫ 1

−1
dλ

(
1

p − 2kλ + iε
+ 1

p − 2kλ − iε

)
, (D9)

�4 = −4iT e2

πp5

∫ ∞

p/2

dk k

eβ
√

k2+m2
e + 1

, (D10)

�5 = −2iT e2m2
e

πp5

1

eβ
√

p2/4+m2
e + 1

. (D11)

The contribution of Eq. (D7) to Eq. (D2) leads to the first term
in the first line of Eq. (22). In order to calculate the contribution
of Eq. (D8) to Eq. (D2), it is convenient to leave the integration
over the internal momentum k to the end. Consider then,

−e2

2

∫ 1

−1
dλ

∫
dD−1p

(2π )D−1

eip·r

p5

×
(

1

p − 2kλ + iε
+ 1

p − 2kλ − iε

)
, (D12)

and use

1

p − 2kλ + iε

= − 1

2kλ − iε
− p

(2kλ − iε)2
− p2

(2kλ − iε)3

− p3

(2kλ − iε)4
+ p4

(2kλ − iε)4(p − 2kλ + iε)
, (D13)

in Eq. (D12),

e2

2

∫ 1

−1
dλ

[
1

(2kλ − iε)2
+ 1

(2kλ + iε)2

] ∫
dD−1p

(2π )D−1

eip·r

p4

+ e2

2

∫ 1

−1
dλ

[
1

(2kλ − iε)4
+ 1

(2kλ + iε)4

]

×
∫

dD−1p

(2π )D−1

eip·r

p2
− e2

2

∫ 1

−1
dλ

∫
dD−1p

(2π )D−1

eip·r

p

×
[

1

(2kλ − iε)4(p − 2kλ + iε)

+ 1

(2kλ + iε)4(p − 2kλ − iε)

]
. (D14)
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Some terms vanish because of the symmetry λ → −λ. The
integral over p in the first and second terms is straightforward.
By using the symmetries in the λ and p variables, the third
term can be simplified as follows:

ie2

32π2r

∫ 1

−1
dλ

∫ ∞

−∞
dp (eip·r − e−ip·r )

×
[

1

(2kλ − iε)4(p − 2kλ + iε)

+ 1

(2kλ + iε)4(p + 2kλ + iε)

+ 1

(2kλ + iε)4(p − 2kλ − iε)

+ 1

(2kλ − iε)4(p + 2kλ − iε)

]
. (D15)

At this point, the integral over p can be done using standard
techniques of complex analysis,

− e2

8πr

∫ 1

−1
dλ

[
ei2kλ

(2kλ + iε)4
+ e−i2kλ

(2kλ − iε)4

]

= − e2

8πr

∫ 1

−1
dλ cos (2kλ)

[
1

(2kλ + iε)4
+ 1

(2kλ − iε)4

]

− ie2

8πr

∫ 1

−1
dλ sin (2kλ)

[
1

(2kλ + iε)4
− 1

(2kλ − iε)4

]
.

(D16)

Hence, our final result for Eq. (D12) reads

− e2

8πr

∫ 1

−1
dλ

[
1

(2kλ + iε)4
+ 1

(2kλ − iε)4

]

× [cos (2kλr) − 1 + 2k2λ2r2] − ie2

8πr

∫ 1

−1
dλ sin (2kλr)

×
[

1

(2kλ + iε)4
− 1

(2kλ − iε)4

]
. (D17)

After performing the integration in λ, we obtain the second
line and the first term of the third line in Eq. (22). �3 can be
computed in a very similar way and leads to the second term
in the first line of Eq. (22). Let us next consider �4,

4iT e4

π

∫
dD−1p

(2π )D−1

eip·r

p5

∫ ∞

p/2

dk k

eβ
√

k2+m2
e + 1

= 4iT e4

π

∫
dD−1p

(2π )D−1

eip·r

p5

{∫ ∞

0

dk k

eβ
√

k2+m2
e + 1

− p2

8(eβme + 1)
+

[∫ ∞

p/2

dk k

eβ
√

k2+m2
e + 1

−
∫ ∞

0

dk k

eβ
√

k2+m2
e + 1

+ p2

8(eβme + 1)

]}
. (D18)

Earlier, we separated the pieces that led to IR divergences from
the ones that did not. The first term inside the curly brackets
gives the second term in the third line in Eq. (22), and the
second term together with Vm gives the fourth line of Eq. (22).
The rest of the terms in the curly brackets give the fifth line and

the beginning of sixth line of Eq. (22). �5 can be computed in
a very similar way and gives the remaining terms of Eq. (22).

APPENDIX E: COMPUTATION OF THE HTL RETARDED
SELF-ENERGY FOR THE LONGITUDINAL

PHOTON IN THE me �= 0 CASE

There are some subtle points in the computation that lead
to Eq. (26), which do not arise in the massless case and are
worth elaborating upon. Let us start from formula (37) of
Ref. [31] for the massive case,

�L
R(P ) = −2ie2

∫
dDk

(2π )D
(
q0k0 + q · k + m2

e

)
[�̃S(Q)�̃R(K)

+ �̃A(Q)�̃S(K)], (E1)

Q = P − K . It is customary to make the change K → −Q

in the second term to get a simplified expression that reduces
to twice the first term. However, the terms proportional
to m2

e , which do not exist in the massless case, have a
stronger IR sensibility than the remaining ones. This leads to
ill-defined expressions in the HTL approximation for T ∼ me.
These expressions must be properly defined in order to get
consistent results before and after the shift K → −Q has been
carried out.

To see this in detail, we work out just a small part of the
computation, which illustrates the point, namely, the part of
Im �L

R(P ) that comes only from the m2
e term in the numerator.

We call this term �m2
e
(P ),

�m2
e
(P ) = −2ie2m2

e

∫
dDk

(2π )D
[�̃S(Q)�̃R(K)

+ �̃A(Q)�̃S(K)] . (E2)

One can use the shift K → −Q to get a simplified expression,

�m2
e
(P ) = −4ie2m2

e

∫
dDk

(2π )D
�̃A(Q)�̃S(K) . (E3)

By carrying out the HTL expansion and by taking into account
that we must also expand p0 (p � p0 in the computation of
the potential), we obtain

�m2
e
(P ) = 8e2m2

ep
2
∫

dD−1k

(2π )D−1

nF

(√
k2 + m2

e

)
√

k2 + m2
e

×
[

1

(2k · p − iε)2
+ 4p0

√
k2 + m2

e

(2k · p − iε)3
+ · · ·

]
.

(E4)

Notice that the last term is ill defined in the IR (this is
apparent if spherical coordinates are used). Let us focus on
the imaginary part,

Im �m2
e
= −16ie2m2

ep0p
2
∫

dD−1k

(2π )D−1
nF

(√
k2 + m2

e

)
×

[
1

(2k · p − iε)3
− 1

(2k · p + iε)3

]
. (E5)

For illustration purposes, we will make this computation in
two ways

(1) Using dD−1k = d�D−2 d(cos θ )kD−2 dk, where θ is
the angle between the internal momentum and the external
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one,

Im �m2
e
= −32ie2m2

ep0p
2 �D−2

(2π )D−1

×
∫ ∞

0
dk kD−2nF

(√
k2 + m2

e

)
×

∫ π

0

d(cos θ )

(2kp cos θ − iε)3
, (E6)

and performing the angular integration, one arrives at

Im �m2
e
= 4πe2 m2

ep0

p

�D−2

(2π )D−1

×
∫ ∞

0
dk nF

(√
k2 + m2

e

)
kD−4δ(k). (E7)

This expression has an end-point singularity, but one can skip
it in DR by choosing D − 4 > 0. So, the result is zero in
this way.

(2) Using dD−1k = dD−2k⊥ dkz, we choose z to be the
direction parallel to the external momenta,

Im �m2
e
= −16ie2m2

ep0p
2 �D−2

(2π )D−1

×
∫ ∞

0
dk⊥ kD−3

⊥ nF

(√
k2
⊥ + k2

z + m2
e

)
×

∫ ∞

−∞
dkz

[
1

(2pkz − iε)3
− 1

(2pkz + iε)3

]
.

(E8)

Notice that the integrand vanishes for all kz except when kz ∼
0, so one may substitute

nF

(√
k2
⊥ + k2

z + m2
e

) → nF

(√
k2
⊥ + m2

e

) + dnF

dE

k2
z

2
√

k2
⊥ + m2

e

.

(E9)

This simplifies the computation a lot because complex plane
integration techniques can be applied,

Im �m2
e
= 4πe2m2

ep0
�D−2

(2π )D−1

∫ ∞

0

dk⊥kD−3
⊥√

k2
⊥ + m2

e

dnF

dE

×
∫ ∞

−∞
dkz δ(2pkz). (E10)

This expression does not have any end-point singularity, and,
in fact, it does not need a regularization anymore,

Im �m2
e
= − e2m2

ep0

2πp(eβme + 1)
. (E11)

Indeed, this is the expected result, which eventually leads
to terms contributing to the second line of Eq. (26). Then,
we arrive at the paradoxical situation in which the final
result depends on the precise way DR is implemented, either
in spherical coordinates or in Cartesian ones. The apparent
contradiction is resolved by noticing that DR in spherical coor-
dinates does not allow for the shift K → −Q. In order to show

this is the actual reason for it, let us start now from Eq. (E2),

Im �m2
e
(P )

= −4π2e2m2
e

∫
dDk

(2π )D
δ
(
K2 − m2

e

)
× δ

(
(K − P )2 − m2

e

){sgn (k0 − p0)[1 − 2nF (|k0|)]
− sgn (k0)[1 − 2nF (|k0 − p0|)]}. (E12)

The integral over k0 is straightforward,

Im �m2
e
(P )

= −2e2m2
eπ

∫
dD−1k

(2π )D−1

1√
k2 + m2

e

× {[
nF

(√
k2 + m2

e − p0
) − nF

(√
k2 + m2

e

)]
× δ

(
p2

0 − p2 − 2p0

√
k2 + m2

e + 2k · p
)

− [
nF

(√
k2 + m2

e + p0
) − nF

(√
k2 + m2

e

)]
× δ

(
p2

0 − p2 + 2p0

√
k2 + m2

e + 2k · p
)}

. (E13)

So far, we have used the complete expression for the
self-energy. Next, we apply HTL expansion and also p � p0,
as earlier,

Im �m2
e
(P ) = −2e2m2

eπ

∫
dD−1k

(2π )D−1

× 2p0e
β
√

k2+m2
e

T
√

k2 + m2
e

(
eβ

√
k2+m2

e + 1
)2

δ(2k · p).

(E14)

From this expression, no matter if one uses spherical or
Cartesian coordinates, one arrives at

Im �m2
e
= − e2m2

ep0

2πp(eβme + 1)
, (E15)

which agrees with Eq. (E11). If the expansion for small p0

is not carried out, the same result is found with the three
methods because then no regularization is needed.

The conclusion is that when the formula for the retarded
self-energy in the massive case [1], that is,

�L
R(P ) = 4e2

∫
dD−1k

(2π )3
√

k2 + m2
e

1

eβ
√

k2+m2
e + 1

×
p2 − (p·k)2

k2+m2
e(

p0 − p·k√
k2+m2

e

+ iε
)2 (E16)

is expanded for p � p0, DR must be used in Cartesian
coordinates in order to properly regulate IR divergences (i.e.,
to be consistent with the shift of momenta carried out at some
point in order to get the preceding expression). This point
was overlooked when calculating the potential in formula (57)
of Ref. [1], and terms analogous to Eq. (E14) were missed.
The correct formula is obtained by making the following
substitution in Eq. (57) of Ref. [1]:

g(mβ) → g(mβ) + m2β2

2(eβm + 1)
. (E17)
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