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Spin-polarized self-consistent-field equations for paired orbitals
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Unrestricted Hartree-Fock-like equations are proposed to find multiple spin-symmetry-broken states of the
molecular systems. Developed equations are pseudo-eigenvalue-type equations for the Fock-type operators
constructed in such a way to include an effective field which makes different-spin orbitals biorthogonal. The
eigenvectors of these operators are noncanonical Hartree-Fock orbitals becoming Löwdin-Amos-Hall paired
(corresponding) orbitals after self-consistency is achieved. The eigenvalues of the modified Fock operators
appear to be the energies of the paired orbitals. Because the paired orbitals do not follow the spatial symmetry
of the molecular nuclear core, the equations allow one to obtain the broken symmetry states with relative ease as
demonstrated for the model H6 hexagon molecule. For this molecule, the Čı́žek-Paldus instability matrix analysis
predicts the existence of three spin-symmetry-broken states. All these solutions are systematically achieved by
the paired equations, unlike the standard unrestricted equations which basically converge to a single solution.
The proposed approach is also valid for the density functional theory in which the spin-polarized Kohn-Sham
equations might be transformed to paired equations.
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I. INTRODUCTION

The physical significance of spin-symmetry-broken (BS)
solutions of the Hartree-Fock (HF) equations as the states
revealing correlation effects beyond the HF approximation
was recognized long ago by Löwdin, who translated into
mathematical form Slater’s idea of different orbitals for
different spins (DODS) [1,2].

In the beginning, the DODS principle was applied by
Löwdin to alternant hydrocarbons, resulting in the theory of
alternant molecular orbitals (see the book by Paunz [3]). Alter-
nant orbitals appear to be paired since they are combinations
of the occupied and virtual orbitals of alternant systems for
which molecular orbitals occur in pairs [2]. Later, Löwdin
suggested that the molecular orbitals might be transformed to
paired orbitals in the DODS approach for arbitrary molecular
systems [4]. This suggestion was proved by Amos and Hall
[5] for occupied orbitals and was extended for unoccupied
orbitals by Karadakov [6] and Mayer [7]. Since then, paired
orbitals have been widely used in numerous applications
within the Hartree-Fock theory as well as the density functional
theory (DFT), such as the spin-projection techniques [8,9], the
calculation of the electron-transfer parameters [10], and the
complete active space DFT scheme [11], among others.

In addition, in the basis of paired orbitals, an unrestricted
determinant is conveniently transformed into a linear com-
bination of restricted determinants, allowing one to assign
a structure in question in terms of idealized covalent and
charge-transfer configurations [12]. This approach has been
used to investigate a few open-shell systems such as the
Fe(II)–NO complex [13], the Fe(II)–nitrobenzene complex
[14], ruthenium complexes with redox-active quinonoid lig-
ands [15], and the Fe(II)–porphyrin nitroxyl complexes [16].

The BS solutions reveal themselves via nonzero spin
contamination 〈Ŝ2 − Sz(Sz + 1)〉, where Sz = (Nα − Nβ)/2
and Nα and Nβ are the number of spin-up and spin-down
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electrons, respectively. In the basis of paired orbitals, spin
contamination may be regarded as the effective number of
pairs of spatially separated orbitals occupied by two electrons
with antiparallel spins. Moreover, in this basis set the spin
contamination may be expressed as a weighted sum of
contributions from particular pairs [12]. This makes it possible
to find out which orbital pair is responsible for the largest spin
contamination. Therefore, paired orbitals might be considered
orbital channels providing antiferromagnetic coupling within
Noodleman’s broken-symmetry approach developed to study
antiferromagnetically coupled magnetic moments [17].

The conditions for the HF solutions to be unstable to-
ward the spin or charge polarization were first formulated
by Thouless [18]. Later these conditions were specialized to
the restricted HF solutions for closed-shell systems and the
concept of singlet and triplet instabilities were introduced by
Čı́žek and Paldus [19]. Fukutome developed the classification
of the BS solutions [20] (see also a review by Stuber and
Paldus [21]).

It is nonlinearity of the HF and Kohn-Sham (KS) equations
that may break the spin symmetry as well as the spatial
symmetry (which the starting determinant possesses) to
converge these equations to lower energy states. While the
single BS state is relatively easy to find, locating additional
(and ultimately all possible) BS solutions still remains a
challenging computational problem. In the particular case
of spin-preserving spatial symmetry-broken solutions, this
problem was considered in Refs. [22,23]. The case of the
spin-symmetry-broken solutions has not been addressed yet
and current practice is still limited by obtaining a single
spin-symmetry-broken solution revealing desired spin density.

Converging to the BS solution might be systematically
achieved only if the starting symmetry-adapted (SA) solution
is unstable with respect to the spin polarization [24]. The
BS minimum might then be reached in the direction of the
steepest descent on the energy hypersurface in the space of
orbital variations within the analysis of the second energy
variation (see Fig. 1(a) in Ref. [24]). If the SA state is
unrestricted Hartree-Fock (UHF) stable being a local minimum
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(see Fig. 1(b) in Ref. [24]), then the analysis of the second
variation of energy is of no help in searching for the BS
solution, which becomes unreachable in a systematic way even
though it has lower energy than the SA solution.

Obtaining spin-symmetry-broken solutions usually relies
on making a spin-polarized state from available SA solutions
via some tricks and turns, which is especially required for the
states with zero spin projection Sz = 0. The main idea of such
recipes is to push the self-consistent field (SCF) converging
toward a BS solution using a specifically prepared spin-
polarized initial guess. Among such schemes the simplest one
is the mixing of the highest occupied and lowest unoccupied
molecular orbitals of the SA higher spin state to generate differ-
ent α and β molecular orbitals as the initial guess for obtaining
a low-spin BS state. Nowadays, the so-called constraint density
functional theory (DFT) scheme [25] provides perhaps the
most elaborate way to achieve BS solution. In this method the
spin symmetry is made permanently broken by constraining
the atomic-center localized spins to some intuitively defined
values.

The idea of the present work is to develop the SCF equations
for noncanonical orbitals which do not obey the symmetry of
nuclear configuration. It is the paired-orbital basis set that is
chosen as such noncanonical orbitals. Keeping untouched the
total energy and the density matrix given by the canonical
equations (i.e., those for canonical orbitals diagonalizing the
Fock operators), these equations allow one to handle SA and
BS states on equal terms.

II. PAIRED EQUATIONS

As was shown by Gilbert, the noncanonical restricted HF
equations are transformed into the pseudo-eigenvalue-type
equations by adding an operator ρ�ρ (where ρ designates
Dirac-Fock density and � is a Hermitian operator) to the Fock
operator. This operator mixes canonical occupied HF orbitals
between themselves to form localized orbitals [26].

A straightforward extension of Gilbert’s technique for the
spin-polarized case gives the following pseudo-eigenvalue
equations:

Rα|ai〉 = λα
i |ai〉,

(1)
Rβ |bi〉 = λ

β

i |bi〉,
with modified Fock operators defined as

Rσ = (1−ρσ )Fσρσ + ρσ F σ (1−ρσ )

+ ρσ �σρσ + (1−ρσ )�σ (1−ρσ ). (2)

Here Fσ are spin-polarized Fock (or Kohn-Sham) operators,
and ρσ is the density for σ -spin electrons (σ = α,β). The oper-
ators �σ and �σ are Hermitian operators mixing unrestricted
Hartree-Fock occupied and unoccupied orbitals, respectively,
between themselves within each σ -spin manifold.

The matrix of the modified Fock operator Rα for spin-
up electrons in the basis of molecular orbitals reads as the
following four-block matrix:

(〈a|�α|a〉 〈a|Fα|ā〉
〈ā|Fα|a〉 〈ā|�α|ā〉

)
, (3)

where |a〉 and |ā〉 designate occupied and unoccupied α-spin
orbitals, respectively. The matrix of the Rβ operator in the
basis of |b〉 and |b̄〉 orbitals for β spin looks analogous.
Upon achieving self-consistency, the off-diagonal blocks of
matrix (3) become zero and the obtained occupied and
unoccupied orbitals diagonalize the operators ρα�αρα and
(1−ρα)�α(1−ρα). Therefore, the occupied and unoccupied
orbitals satisfying Eqs. (1) and (2) are the Hartree-Fock
noncanonical orbitals and simultaneous eigenvectors of the
operators �σ and �σ . These noncanonical spin-polarized
orbitals give the same total energy as that corresponding to the
canonical HF orbitals, allowing one to fulfill any additional
conditions on orbitals determined by the choice of the �σ and
�σ operators.

Among noncanonical orbital sets, Löwdin-Amos-Hall
paired orbitals [4,5] seem to be the best choice since they (i) are
in general not symmetrical and (ii) allow one to directly assign
antiferromagnetic coupling of the α and β spins to particular
orbital pairs |ai〉 and |bi〉. The overlap between paired orbitals
indicates the type of the unrestricted solution: if 〈ai |bi〉 =
ti = 1 for all pairs in the determinant, then the solution is spin
uncontaminated (i.e., symmetry adapted); for intermediate
overlaps (when 0 � ti < 1), the solution is spin-symmetry
broken. In the paired orbital basis set, the spin contamination
is conveniently expressed as 〈Ŝ2 − Sz(Sz + 1)〉 = ∑

(1 − t2
i ),

where summation runs over all occupied pairs. Each orbital
pair induces the spin contamination ηi = 1 − t2

i , which might
be considered the order parameters in the second-order phase
transition between the symmetric SA phase and the spin-
polarized BS phase. Any deviation of all ηi from zero splits the
corresponding doubly occupied orbital into the pair of different
orbitals. In turn, the initially symmetry-adapted determinant
becomes spin-symmetry broken.

The paired orbitals for different spins (PODS) equations
have been first derived by substituting the Fock operators for
α and β spins by choosing �α=ρα+ρβ , �β=ρα+ρβ , �α=ρβ ,
and �β=ρα [27]. The eigenvalues of these operators are in fact
the squared overlap between the α and β orbitals, making them
paired orbitals. Therefore, corresponding pseudo-eigenvalue-
type equations for these operators (referred to below as
PODS-I) appeared to have topological meaning in the sense
that they determine pairwise connections of the α and β spins
in the molecule.

In the present work, the PODS-I equations are rewritten in a
more physical form using the Edmiston-Ruedenberg approach
for localizing orbitals [28]. To obtain localized orbitals, these
authors substituted only the off-diagonal elements of the Fock
matrix by the matrix elements of some nonlocal operator. The
diagonal of the Fock matrix was kept unchanged.

Adapting this idea to paired orbitals, one obtains the
following pairing operators:

Rα = (1−ρα)Fαρα + ραFα(1−ρα)

+
Nα∑
i=1

|ai〉〈ai |Fα−ρβ |ai〉〈ai | + ραρβρα

+
Nbasis∑

i=Nα+1

|āi〉〈āi |Fα−ρβ |āi〉〈āi | + (1−ρα)ρβ(1−ρα),
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Rβ = (1−ρβ )Fβρβ + ρβFβ(1−ρβ)

+
Nβ∑
i=1

|bi〉〈bi |Fβ−ρα|bi〉〈bi | + ρβραρβ

+
Nbasis∑

i=Nβ+1

|b̄i〉〈b̄i |Fβ−ρα|b̄i〉〈b̄i | + (1−ρβ)ρα(1−ρβ),

(4)

where Nα , Nβ , and Nbasis are numbers of the α spins,
β spins, and basis functions, respectively. In the basis of
molecular orbitals, the matrices of the pairing operators (4)
look schematically as follows:

⎛
⎜⎜⎜⎜⎜⎝

〈ai |Fα|ai〉 〈ai |ρβ |aj 〉
〈a|Fα|ā〉

〈aj |ρβ |ai〉 〈aj |Fα|aj 〉
〈āk|Fα|āk〉 〈āk|ρβ |āl〉

〈ā|Fα|a〉
〈āl|ρβ |āk〉 〈āl|Fα|āl〉

⎞
⎟⎟⎟⎟⎟⎠

. (5)

The matrix of the Rβ operator has an analogous form. As
clearly seen from matrix (5) the pairing operators (4) are
built from the Fock operators so that the eigenvalues of
operators (4) can be considered the energies of the paired
orbitals. To clarify the latter statement, let us suppose that for
some system there are known canonical UHF (or unrestricted
KS) orbitals ψα

i and ψ
β

i . Then diagonal matrix elements of
the Rα and Rβ operators in the basis of these canonical
orbitals are the HF energies (i.e., εα

i = 〈ψα
i |Fα|ψα

i 〉 and
ε

β

i = 〈ψβ

i |Fβ |ψβ

i 〉). In accordance with a general property
of square matrices, the trace of the matrix is the sum of its
eigenvalues. Since the off-diagonal matrix elements 〈ā|Fα|a〉
(and corresponding Hermitian conjugate integrals) coupling
unoccupied and occupied Hartree-Fock orbitals are all equal
to zero, these matrices are block diagonal. Therefore, for both
blocks of the occupied and unoccupied orbitals, the diagonal
sum rule holds: ∑

εα
i =

∑
λα

i .

The same rules hold for the β eigenvalues as well.
For both the occupied and unoccupied blocks, the off-

diagonal elements

〈
ψα

i

∣∣ρβ
∣∣ψα

j

〉 =
Nβ∑
k

〈
ψα

i

∣∣ψβ

k

〉〈
ψ

β

k

∣∣ψα
j

〉

are in general nonzero. These values are small compared
with diagonal elements εα

i and εα
j except for the frontier

orbital energies, which might be close to zero. Therefore,
the eigenvalues of the modified pairing operators (4) may be
interpreted as canonical Hartree-Fock orbital energies εα

i and
ε

β

i each being split by a field (proportional to the density of the
β and α electrons, respectively) such that the center of gravity
of the one-electron levels is unchanged.

Obtained Eqs. (1) and (4), (called PODS-II), unlike PODS-I
[27], do not in general guarantee self-consistent eigenvectors
to be paired orbitals. That is because the diagonal blocks of
the PODS-II matrices do not contain the entire matrix of the

ραρβρα . To ensure the biorthogonality of eigenvalues, the SCF
convergence procedure is followed by a single singular-value
decomposition (SVD) transformation of the overlap.

III. CYCLIC H6: TEST CASE

Pseudo-eigenvalue PODS-II equations (1) and (4) have
been programmed on the basis of the QMIC package written
by Nichols and Simons [29]. Below, this modified program is
referred to as the PODS program (and is available by request
from authors of the present paper).

A model hexagonal H6 molecular system with elongated
H-H bonds was chosen as a test case, for which Bénard and
Paldus showed that the nonsinglet stability matrix for this
system has three negative roots when the H-H bond is longer
than some critical value [30]. This implies the existence of
three spin-symmetry-broken solutions.

This makes H6 a very convenient test case for the PODS-II
equations as it allows us to check whether they may converge to
multiple spin-symmetry-broken solutions without the analysis
of the stability matrix. The latter seems to be well defined
only within the Hartree-Fock theory, where the two-electron
integrals in the molecular-orbital basis of the general type
〈ψiψj |1/r12|ψkψl〉 are available. Application of this analysis
within DFT is conceptually questionable though practically
possible via the construction of two-electron integrals for the
Kohn-Sham orbitals.

The 3-21G basis set is employed to provide dimension of
the PODS-II matrices large enough to include at least occupied
and unoccupied paired orbitals. The PODS-II calculations have
been compared with the standard UHF calculations using both
the GAUSSIAN98 package [31] and the PODS program. The
number of SCF iterations corresponds to the total energy
convergence threshold of 10−8 a.u.. The initial guess is chosen
to be that arising from the core Hamiltonian.

The closed-shell solution 1A1g (which is referred to as SA
below) becomes UHF unstable for an H-H distance larger than
1.21 Å. The H-H distance has been chosen to be 2 Å to ensure
the presence of low-lying broken-symmetry states. For this
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TABLE I. PODS-II total energies Etot (in a.u.) with respect to
the SA energy of −2.775562 a.u., spin contamination ηi = 1 − t2

i

for orbital pair (the sum of ηi is given in the parenthesis, i.e., 〈Ŝ2〉),
PODS-II orbital energies λα

i and λ
β

i (in a.u.), and the UHF orbital
energies εα

i and ε
β

i (in a.u.) along the sum of energies for each set of
energies (in parentheses).

State Etot ηi λα
i λ

β

i εα
i ε

β

i

SA 0.0 0.0 −0.441 −0.441
−0.350 −0.350
−0.350 −0.350

BS-1 −0.228 0.69 −0.510 −0.510 −0.510 −0.510
0.91 −0.485 −0.485 −0.485 −0.485
0.91 −0.485 −0.485 −0.485 −0.485

(2.51) (−1.480) (−1.480) (−1.480) (−1.480)
BS-2 −0.201 0.78 −0.556 −0.552 −0.551 −0.551

0.96 −0.486 −0.538 −0.492 −0.492
0.90 −0.440 −0.392 −0.439 −0.439

(2.64) (−1.482) (−1.482) (−1.482) (−1.482)
BS-3 −0.173 1.00 −0.548 −0.526 −0.574 −0.574

0.91 −0.495 −0.492 −0.495 −0.495
0.89 −0.441 −0.467 −0.415 −0.415

(2.80) (−1.484) (−1.485) (−1.484) (−1.484)

geometry the closed-shell singlet appears to be UHF unstable
with three negative eigenvalues of the stability matrix (two of
them being eg degenerate). Two nondegenerate BS solutions
and one doubly degenerate BS solution have been found for
the PODS-II equations for Sz = 0 using the level shift. It is
worthwhile to note that all solutions are obtained with the
same initial guess by mixing of some pairs of the occupied and
unoccupied molecular orbitals. Such mixing is a standard tool
to obtain a BS UHF solution used, for instance, in GAUSSIAN98.
Contrary to the PODS-II equations, the UHF equations allow
one to find only the lowest energy solution (BS-1 state with
〈Ŝ2〉=2.51 in Table I) being started from the same initial guess
despite all attempts of the use of standard recipes including
simple shifting of virtual orbital levels. “Additional” BS states
with 〈Ŝ2〉 equal to 2.64 and 2.80 appear to be local minima
(designated BS-2 and BS-3, respectively, in Table I) as has been
checked by running the UHF equations within the GAUSSIAN

package starting with the BS-2 and BS-3 wave functions
obtained by PODS. A schematic plot of the PODS-II total
energy as a function of the spin contamination (which is equal
to 〈Ŝ2〉 in this particular case) is given in Fig. 1. Here the SA
state represents a saddle point with zero spin density and three
local BS minima having distinct spin polarizations.

The BS-1 state represents a spin-density wave with Mul-
liken atomic spin densities on hydrogens (shown as solid and
open data point symbols in Fig. 1) being equal in absolute
magnitude. Unlike the BS-1 solution, BS-2 and BS-3 reveal
three different pairs of positive and negative Mulliken atomic
spin densities. The latter pairing shown as linked symbols
of different colors in Fig. 1 resembles the Rumer diagrams
describing spin-singlet electron pairs to form the total singlet
function [32].

In agreement with above-mentioned diagonal sum rule the
calculated PODS-II eigenvalues obtained for all three BS
solutions have center of gravity coinciding with that for the

E
to

t (
a.

u.
)

〈S2〉
2.51 2.64 2.80

BS-1 BS-2 BS-3

-0.23

0

-0.20
-0.17

FIG. 1. (Color online) Schematic plot of the total energy Etot

of the H6 hexagon Sz = 0 solutions as a function of the mean
value of the spin operator Ŝ2 (dimensionless). Graphs above the
plot show Mulliken atomic spin densities on hydrogen atoms for
each broken-symmetry state; the open symbols denote positive
density linking and the solid symbols denote negative density
of the same absolute magnitude: (BS-1) circle = ±0.942, (BS-2)
square = ±0.965, triangle = ±0.968, hexagon = ±0.939, (BS-3)
square = ±0.965, triangle = ±0.998.

UHF orbital energies (see Table I, where values in parentheses
are the sums of three eigenvalues). It is worthwhile to note
that for the BS-1 solution the paired orbitals have energies
coinciding with those for the UHF orbitals which appear
biorthogonalized due to their spatial symmetry.

IV. CONCLUSION

In summary, we have developed modified (so-called
PODS-II) unrestricted equations equally applicable for both
Hartree-Fock and Kohn-Sham theories. The PODS-II equa-
tions are proved to allow metastable spin and charge polarized
states to be reached (which might be achieved within the UHF
equations just accidentally) via simple virtual level shifting.
As compared with previously developed PODS-I equations
which might be considered “orbital overlap” equations, the
PODS-II equations are Hartree-Fock-like “orbital energy”
equations. The PODS-II orbitals are noncanonical and in
general unpaired, but they become biorthogonal via a single
transformation. From the computational point of view, the
PODS-II equations are less demanding than the PODS-I
equations. The convergence of the PODS-II equations is
much better than that of the PODS-I equations, as revealed
for BS states of H6. The PODS-II equations might be
particularly useful in finding multiple BS solutions to estimate
antiferromagnetic exchange parameters for molecular magnets
containing a multiplicity of spin centers.
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