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Sturmian expansions for two-electron atomic systems: Singly and doubly excited states
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We present a configuration interaction (CI) method based on the Sturmian expansion for bound states of
a two-electron atomic system. These Sturmian functions are solutions of one-electron quantum mechanical
problems, where the eigenvalue is the magnitude of a short-range potential. Also, they fulfill the long-range
boundary conditions of Coulomb potentials. We choose to expand the Sturmians of the CI basis using >
Laguerre-type functions. We compute ground and single-excited states energies for He and H™. Moreover, we are

able to obtain energies and widths of double excited states of He, using a Sturmian basis with outgoing boundary
conditions. In all cases, our ansatz outperforms other CI calculations, for similar basis size.
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I. INTRODUCTION

One of the most common techniques for ab initio calcula-
tions in few-electron systems is the configuration interaction
(CI) method [1-3]. It has been used along the years to perform
atomic structure calculations [1,4,5] and to analyze collisional
processes [5]. The solution of the few-body Schrédinger
equation within the CI approach is expanded in terms
of antisymmetric products of one-electron wave functions.
Each one of the them is the product of a radial function
that accounts for the interparticle interaction and spherical
harmonics, which describe the angular dependence for a total
angular momentum L. The matrix elements of the few-body
Hamiltonian are then defined by six-dimensional integrals.
Since the angular ones can be computed analytically, the
matrix elements reduce to (i) one-dimensional integrals for
the kinetic energy and the electron-nucleus interactions and
(ii) two-dimensional integrals for the electron-electron repul-
sion. The CI technique leads to good results for many atomic
as well as molecular systems. However, energy and other
physically relevant magnitudes computed with CI converge
slowly. This is due to a pair of closely related factors: first,
electron-electron correlation is not explicitly introduced in the
method and, second, the electron-electron Kato cusp condi-
tions are not satisfied [6]. Then, high-precision calculations
with CI usually require large basis sets, compared to other
approaches that deal with the electronic correlation explicitly
[7-14].

Introduction of electronic correlation in the calculation
of two-electron bound states can be performed in different
ways. For example, one can explicitly include the dependence
in the interelectronic coordinate, using relative interparticle
coordinates [12,14—17] or perimetric ones [18]. However,
this by no means ensures the fulfillment of cusp conditions.
Moreover, the extension of these methods to other states
that include one or more particles in the continuum is not
straightforward (see for example, Ref. [19]).

Even though other strategies have been developed to intro-
duce electron-electron correlation, the traditional CI method
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is still a method of choice in many situations, for example,
ionizing collisions. In fact, most successful techniques to
describe collisions are still CI ones, such as the convergent
close coupling [20], the R matrix, or the J matrix [5]. In these
cases, Cl is a simple way to deal with bound and/or continuum
states on equal footing. Furthermore, one can always obtain
better results, including relevant physical information in the
basis itself. Among all the possible basis sets useful to deal
with atomic systems, we select Sturmian functions, which were
first used by Shull and Loewdin [1] even when they did not
pay attention to their connection with Sturmians problems.
Rotenberg used the same functions as Shull and Loewdin
[21,22]. He gave them the name Sturmian to emphasize
their connection with Sturm-Liouville theory. Glockle made
use of them in scattering problems [23]. In 1968, Goscinski
[24] presented a rigorous mathematical generalization of the
Sturmian functions. He conceived Sturmians as the solutions
of a Schrodinger equation where the magnitude of a potential
is the eigenvalue, and the energy is a parameter [24-26].
Therefore, the physical wave functions for a given interaction
are expanded in these eigenstates. In these works, the theory
was established for negative energies (i.e., bound states) and
general potentials. However, basis sets for general interactions
were not widely developed because few two-body potentials
admit closed-form analytical solutions. Instead, most of the
applications in the literature until now were restricted to
Coulomb Sturmian functions (CSF), with few exceptions such
those discussed by G. Rawitscher [27] and J. H. Macek
and S. Yu. Ovchinnikov [28,29]. They defined numerical
strategies to solve the Sturmian equation for general potentials.
We extended these works, introducing a systematic way to
generate Sturmians for any physically sound potential with
different types of boundary conditions [30-32].

In this contribution we continue our previous work with the
application of an optimal Sturmian CI basis for excited states
of atomic systems. We have already analyzed the definition
of a Sturmian CI basis set with the proper asymptotic form
for ground atomic states [32]. Here we further develop the
method to accommodate continuum states for the description
of some features of the atomic spectrum, such as resonances.
Our proposal relies on the fact that the basis functions satisfy
a Sturmian equation for the electron-nucleus interaction with
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the right asymptotic condition. Two different potentials are
included in the two-particle Sturmian equation. The auxiliary
potential introduces the physical aspects of the problem and de-
termines the asymptotic behavior of the functions. The gener-
ating potential is a short-range interaction whose magnitude is
the eigenvalue of the problem. We have used a finite-difference
scheme to transform the Sturmian equation into a matrix
generalized eigenvalue problem [32]. This method exhibited
excellent results for ground states of two-electron atoms.
Moreover, we have also shown recently that the introduction
of electron-nucleus cusp conditions by a suitable choice of the
auxiliary potential can speed up the convergence of the ener-
gies of two-electron ground states [33]. However, this approach
requires a careful balance between the range of the generating
potential and the size of the numerical grid. Here, we chose
to write the solution of the Sturmian equation in terms of
products of exponential functions times generalized Laguerre
polynomials. Our aim is to demonstrate that this spectral repre-
sentation overcomes the difficulties of the our previous numer-
ical scheme [32] and allows us to compute the solution of the
Sturmian equation for arbitrary large values of the coordinates.

We study the efficiency of this method in the calculation of
He atom and H™ ion spectra compared to other calculations.
Ground states are computed with negative-energy Sturmians
for each electron. However, we focus our attention on excited
states. In the case of highly asymmetrical excited states
(HAES), one electron is in a much higher excited state than
the other one. Therefore, the correlation and cusp condition
are less relevant, and better results from the CI method are
expected. We also are able to compute autoionizing states of
He using outgoing boundary conditions. We obtain excellent
results in all these cases. We show that this spectral represen-
tation is as efficient as the full numerical one presented before
[32]. Moreover, our method is better than the direct use of
Laguerre functions as basis sets for the three-body systems [5].

The outline of this work is as follows. In Sec. II we review
the Sturm-Liouville theory for two-body states. For atomic
system we discuss the boundary conditions to be imposed,
and general properties of the Sturmian functions. Then, we
introduce the numerical method to be used to obtain the
Sturmian basis set by means of a finite, L? expansion in
Laguerre functions. In Sec. III we present the CI expansion
for the two-electron atomic systems and briefly describe the
matrix system and analyze numerical features of the problem.
In Sec. IV we present the results in He and H™ systems
and their isoelectronic series, including convergence tests on
the basis parameters. Finally we draw some conclusions in
Sec. V. Atomic units are used unless otherwise stated, i.e.,
h = e =m, = 1, and energies are measured in Hartrees.

II. ONE-ELECTRON STURMIAN BASIS SET

A. Review of the Sturm-Liouville theory

The time-independent Schrodinger equation for an electron
in the center of mass of a heavy particle, interacting through a
potential V(r) = Vo(r) + BV (r)is

[ = 3V2 + Vo(r) — E]®(r) = =BV (r)®(D). (D
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Here the energy E of the system is considered a fixed parameter
and B is the eigenvalue. We have split the potential V(r) in
two terms: V|, that might contain a long-range (Coulomb)
interaction and V that is a central, physically sound short-range
potential. We write ®(r) in spherical coordinates

1
O(r) = —S51(r)¥im(0.¢) 2)

using the spherical harmonics Y}, [34]. Then, the Schrédinger
equation for the radial part S;(r) is

[Ho — E1Si(r) = =BV (r)Si(r), 3)
where the radial Hamiltonian is defined as
1d> I+
=——— Vo(r). 4
b= 55+ Vo) @)

Two-point boundary conditions must be set to define the

problem completely over the domain of the coordinate r. We

consider Sturmian functions that are regular at the origin:
Sir =0)=0. (5)

The second boundary condition is defined for r — oco. Let us
assume that the potential V (r) goes to zero faster than 1/r, for
sufficiently large r = Ry. Then, the Sturmian function is the
asymptotic solution of the homogeneous equation

[Ho — E]18i(r) =0. (6)

We consider also that Vjy includes at least a Coulomb tail
of charge |Z|. For negative energy, the asymptotic solution
behaves as

r—00 Z
S)(r) —— exp —kr — Eln(Zkr), (7)

with k = +/—2E. On the other hand, for positive energy,
standing, outgoing, or incoming wave behavior are possible:

Fy(r)
HE(r)

standing wave

Si(r) 7% (+) outgoing or (8)

(—) incoming wave,

where F; and H; are the regular and irregular Coulomb wave
functions, respectively [35].

Since the short-range potential is assumed to vanish for r >
Ry, Eq. (3) is solved in the domain r € [0, Ry]. This solution is
matched to the desired asymptotic behavior atr = Ry to obtain
the eigenvalues B = B,; for n = 0,1, ...,00. The negative
energy or standing-wave positive energy requires the condition

Si(Rp) = 0. )

For outgoing or incoming boundary conditions, both the
solution and its derivative (i.e., the logarithmic derivative)
should be continuous at r = Ry
1 dSi(r) 1 dH(r)
Si(Ro) dr |,_p,  Hf(Ro) dr |._g~

(10)

The solution of Eq. (3) with boundary conditions at r =
0 and r = Ry leads to a finite set of N eigenvalues f,;
and eigenfunctions S, ;(r) with n =0,1,...,N — 1. These
eigenvalues and eigenvectors are real valued for negative
energy or positive energy with a standing-wave boundary
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condition. However, they become complex for positive energy,
with incoming or outgoing boundary conditions.

For all those cases, the Sturm-Liouville theory establishes
that closure

Z Su iV (r)S,1(r) = 8(r" =), 1D
and the orthogonality condition

Ro B
(S |VISus) = / dr Sy (V)8 i(r) =8,  (12)
0

is fulfilled by the eigenfunctions.

We stress the fact that the energy E is an external parameter
of the Sturm-Liouville equation. In our method, the short-range
potential V is defined externally according to the problem
under scrutiny. We will further discuss this feature in the next
sections.

B. Numerical evaluation of the Sturmian functions

There are a variety of schemes to obtain the Sturmian
functions defined in the precedent section. Recently, we have
presented a full numerical method to solve this problem, which
relies on the discretization in a uniform grid of the wave
functions S, ; [32]. Here we propose a different approach
to solve Eq. (3), making use of a L? Laguerre-type basis
set [30,31,36,37]

@ia(r) = e @A) LI 20r), (13)

where L} is a generalized Laguerre polynomial [34]. We
also include a free parameter A that can be used to scale the
radial coordinate for different states. We expand each Sturmian
function in the subspace spanned by a set of N Laguerre-type
functions {¢ jyl}?’;ol as

N—
SN =Y alp0hr). (14)

The use of this expansion transforms Eq. (3) into

_ﬂn,lvlan,h (15)

after projecting onto the basis set.

Jia,; =

The vector a,; =

{ag.af . ....ay_, ,}7 represents the coefficients of each Stur-
mian Sflv ;» and we have defined the matrix elements [J;]; ; =
(pj1lHy — Elg;1) and [V];; = (@ 1|V ]gpj.). This expan-

sion includes the natural conditions for the coefficients
a;,; =0anday;, =0, as a transformation into the Laguerre
space of the boundary radial conditions Eq. (5) and Eq. (9).
Diagonalization of (15) gives a set of real eigenvalues S, ; with
n=01,...,N—1.

Other asymptotic conditions for positive energy, such as
outgoing or incoming waves, can be defined. To this end, it is
necessary to replace the boundary condition aj, ; = 0 by

hflza%[ | —hy_ la;tll =0, (16)

where hil are the coefficient expansion of the regularized

Coulomb wave functions HljE in the Laguerre basis set
[38,39]. Equation (16) can be understood as the transformation
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of the logarithmic derivative condition given by Eq. (10) into
the Laguerre basis. If the elements of the potential are such
that [V,] j.j =0for j’,j > N, condition (16) is equivalent to
solve a generalized eigenvalue problem of the form (15) with
(H/1j; = 3] for j',j # N — 1 and

(HIv-1v-1 = [Tv—1n—1 + v—i n(hs ,/h IR CY)

A set of complex eigenvalues B, ; (n = 0,1, ...,N — 1) is the
solution of the matrix system (15).
The orthogonality and closure relations [Eq. (11) and

Eq. (12), respectively] within this subspace are

(Srll\’,,l V}Srltvl) = 8!1,}1' (18)
N—-1
3 SNV ISY ) =8V — 1), (19)
n=0

where 8V is the representation of the Dirac delta function
within this subspace spanned by the ¢; ;. This representation
has as a limit the Dirac delta as N — oo [30,32].

III. BOUND-STATE FUNCTION FOR A TWO-ELECTRON
ATOMIC SYSTEM

Let us now consider the Hamiltonian of two electrons in
the Coulomb field of a heavy nucleus of charge Z:
1 , 1, Z Z 1
H=—=-V, — =V, —— —— 4+ —, (20)
2 ! 2 2 ry ry I
where (r;,r;) denote the usual set of electronic coordinates
with the radial components r; = |r;| (i = 1,2), while r|, =
[r; —ry| is the interelectronic distance. The Schrodinger
equation for the wave function W is

HWY¥(r;,r;) = E¥(r;.r), (21)

where E is the total energy of the atomic system.

We can now define a CI expansion using one-electron
Sturmians. The wave function for a bound state with a given
total angular momentum L and projection M is written as:

LM =~ =
Y(ry,r) = Zylllz (T1,12)
Ll
Ni—1 N,—1

! (r 1) Snyt(r2)
XY S S g
n1=0 n,=0 "2
where b1 lflLM are the expansion coefficients. We introduced the

symmetrization operator A = (1 + € Pj5)/+/2 that accounts
for the exchange of the electrons according to the Pauli
exclusion principle. The permutation operator P}, exchanges
coordinates r; <> r, and € = 1 for singlet states or € = —1 for
triplet states.

The angular part is expressed in terms of the bispherical
harmonics [14]

VEI®L ) = ) (imalyma | LM) Yy, (F1)Yim, (F2),

nminy

(23)
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where Y, are spherical harmonics and (l;mylym;|l1l, L M)
are Clebsch-Gordan coefficients [14]. The individual angular
momentum /; and /, must satisfy the triangular rule and also
parity conservation (—1)% = (—=1)*2, To avoid redundancies
in the expansion (22), the angular momenta are restricted to
[; < 1p.Also,ifl; = l,,thenn; < n,. These restrictions ensure
numerical stability in the calculation, avoiding repeated sets
of equations given by symmetry.

To solve Eq. (21) by means of the expansion (22), first
we observe that for each coordinate, the terms containing
the kinetic energy plus the Coulomb interaction are removed
from the Hamiltonian (20) if we take Vy = —Z/r in the
one-dimensional Schrodinger equation (3) for each Sturmian.
The remaining term that couples the radial part is the electron-
electron repulsion, which can be also expanded in spherical
harmonics as

= e V(P (24)

with r_ = min(ry,r;) and r- = max(ry,r;).
Projecting Eq. (21) onto the basis set, we obtain a
generalized matrix system of the form

Hb = ESb, (25)
where b is a vector containing the expansion coefficients
bIiLM for fixed (L,M), E are the energy eigenvalues and

the Hamiltonian, and overlapping matrices H and S are

AN 13 1 1L —Il L
”]’1’5’21”1"2 [(El + EZ)On rlzl nhny = B, Vn] 'y Onz’an
1 1 z 1
= Buabs ,1222 N ,1“]51 I 51212
o0
1 1l
+ Z 2l + 1 Yllfl/zﬂll’lz Z AZ ]211171
m=—I
—i—eP(nl — ny,li > b) (26)
AN, Il Al
Snl’];/zlnfnz = 0” ,ll] Onzzizslillslélz =+ GP(I’ll — I’lz,ll — 12)7
27
where the matrix elements are defined as
o0
Oyllln = / dr Sy (r)Su(r) (28)
0
’ o0 —
Vil = / dr S,y (r)V () Su(r) (29)
0
[AANN e o0
n]’]izl'zlnfnz = '/(; dry /(; erSn',l[ (rl)Sn/zlé(rZ)
7l

X ,.Z%Snll] (rl)Snzlz(rZ) (30)

Al = / dT / AT [V (1 ®)] Y (F)

X Yin BV (F1, ) (31)

and the operator P(n; — nj,l; — [) exchanges the indexes
for symmetry. Note that in Eq. (26), E; and E, are one-
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electron parameter energies used to compute the basis set, see
Eq. (1).

For ground states (a symmetric state with L = M = 0), the
total size of the radial two-electron basis is Ny = N(N +
1)/2 for each pair of electronic angular momenta (/;,/5). The
matrices H and S are real and symmetric. While H is a full
matrix due to the interelectronic term, S has a block diagonal
structure corresponding to the overlapping terms for a given
pair (/1,»). Inthe HAES case, if [ # [, the radial size is Niy =
Ny x Nyandifly = [, then Nioy = Ny X N, — Ni(Ny — 1)/2.
H and S will be real and the last one will still have a block
diagonal structure for the HAES, but neither of them is going
to be symmetric.

So far, we have considered the energy of the basis set as
a real, negative parameter, so the Sturmian functions have an
exponentially decaying asymptotic behavior. However, if the
energy is chosen to be positive, outgoing wave asymptotic
behavior can be imposed to the basis set, which is adequate
for doubly excited, autoionizing states. The matrix obtained
with this boundary condition is now complex symmetric and
non-Hermitian, and the eigenvalues will be complex, too.

IV. RESULTS

A. Sturmian basis-set parameters

The Sturmian for each electron can be defined for different
sets of basis parameters (V,A,E,N ). Our basis can represent
symmetric states where the electrons are equivalent, such as
the ground state. It can also describe asymmetric excited states
(including HAES), where one electron has a lower energy than
the other one. We will use the notation E;, A;, and N; for
i = 1,2 to distinguish the electrons. When the electrons are
considered on equal footing, we will drop the i subindex and
simply write E| = E, = E and so on. However, we will show
that different basis parameters might be convenient to deal
with continuum (for example, autoionizing) states.

First, we analyze the role of the different basis parameters
and its physical relation with the system under scrutiny.
One aspect that should be clarified is how the asymptotic
behavior of the basis helps to accelerate the convergence of the
calculation. The asymptotic behavior of the basis is defined by
the energy E and the charge of the long-range potential V),
according to Egs. (6) and (7).

The choice of the energy of the basis will also depend on
the state we are dealing with. For example, for the symmetric
ground state, we chose E = Eqypprox/2, Where Egpprox 1S an
estimate of the energy to be obtained, which can be found in
literature according to the atomic system to solve. In the usual
case where ones does not know a priori a good approximate
for the energy, an iterative method can be implemented. One
can start with some arbitrary energy Ej, obtain the ground-
state energy E|, recalculate the basis using E = E; and the
ground-state energy E», and so on. To set the energy basis of
HAES states, we have already pointed out that we consider
that one electron is in a lower state than the other. Again if
Epprox 1 an estimate of the energy, and a value E| is selected
for the higher state; then simply E; = E,pprox — Ej. For these
states, several combinations of (E;, E;) can be tested until a
good energy value for the atomic system is obtained.
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One can select the charge of the Coulomb potential Vj
as the nuclear charge of the atom and choose the energies
E; > to be the energy of the state considered. In such cases,
the basis will have the right asymptotic behavior of all the
particles far from each other (in the €2 region discussed in
Ref. [40]). The election of V; as this Coulomb potential
removes the electron-nucleus interactions and provides the
correct logarithmic dependence on r; and r, to the wave func-
tion in this region. Then, it is clear that a better convergence
will result from these CI calculations if we define the basis
set such that it describes accurately the inner region of the
coordinate space, that is, when two or more particles are close
to each other.

The aggregation of the basis in the inner region (that is,
the accumulation of probability density of the Sturmians) is
controlled by the choice of generator potential V. For the
atomic systems that we are considering, a Yukawa V(r) =
—e~ " /r potential can be optimal because (i) it does not affect
the asymptotic region and (ii) combined with the auxiliary
potential V, represents quite well the screening effect produced
by one electron over the other. The parameter A defines
the range of the Yukawa potential and, hence, determines
the aggregation of the basis. It can be seen that in this
case the basis-set functions diagonalize Herman-Skillman—
like potentials with many different charges. At this point it
is important to note that this is a relevant difference with
the standard CSF approach: While our Sturmians are mostly
located in the region of the space where the atomic state is
non-negligible, CSF are spread in a larger region where the
state is already zero.

Finally, we need to choose the scaling parameter A carefully.
Here, we performed a study of the ground-state energy for/; =
I = 0 as a function of A with all other parameters held fixed.
In Fig. 1 we see the results for the He atom as a function of . It
is clear that for a given set of parameters the energy converges
to a minimum. This allows us to define a convergence rule
for this parameter in the following calculations, seeking for
the value of A; = X, that gives the best ground-state energy
eigenvalue. This rule will be extended in the next sections to
the asymmetric cases where A; # Aj.

-2.87896

-2.87897 — =

-2.87898

-2.87899

=0) (a.u.)

1,

-2.87900

Egs(ly

-2.87901

-2.87902

—2A879031

FIG. 1. Ground-state energy (in Hartrees) for He with N = 15,
E =1.45 au., and o = 0.4 for the Yukawa, as a function of the
parameter A (in arbitrary units).
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TABLE I. Ground-state energy E, for He as a function of the
electron pair of angular momenta.

Present work

(ll,lz) Size E() ()») Ref. [5] E()

0,0) 120 —2.879027923 4.2) —2.87902797
(1,1) 240 —2.900515058 (8.8) —2.900513 86
(2,2) 360 —2.902772510 (13.2) —2.90276209
(3,3) 480 —2.903327013 (14.4) —2.90331321
4.4) 600 —2.903524 584 (15.6) —2.903 506 82
(5.5) 720 —2.903613 398 (18.1) —2.903 58925
(6,6) 840 —2.903 660 341 (22.2) —2.903628 16

Ref. [7] —2.9037243770

B. Ground-state energy of He and H™

As usual with CI atomic calculations, we first test our
basis computing the ground-state energy of He and H™. In
Table I we summarize the converged energies as several pairs
of electron angular momenta are included in the basis. The
size in the table stands for the total two-electron basis size. The
parameters were set as « = 0.4 for the short-range Yukawa,
E = —1.45 a.u. The number of Laguerre functions used for
each one-electron basis elements was N = 15. The size of the
basis set was chosen such that, for the first pair of angular
momentum, we obtain a value close to that of Ref. [5], where
they used a CSF basis with N = 30 for each electron. As we
add more angular momentum pairs, our results improve over
those of Ref. [5] in the fourth significant digit. The accuracy of
the energies is about 2.2 x 107> a.u. for this basis size. These
results show that our Sturmians enhances the convergence
rate of the energy. This boost is largely due to the fact that
the basis is denser in the region where the electronic density of
the state is more significant. Moreover, it can be attributed also
to the proper physics included in the basis, in the sense that it
introduces electronic screening and possesses an asymptotic
behavior closer to the atomic ground state.

Table II shows the convergence of the energy of the ground
state for the H™ system. The basis parameters were o = 0.2,
E = —0.27 a.u,, and N = 20 for one-electron basis. A bigger
basis is needed as the electron-electron correlation is more
important for this system. However, the number of elements

TABLE II. Ground-state energy for H™ as a function of the
electron pair of angular momenta.

Present work

(1) Size Eo ) Ref. [5] Eo
(0,0) 210 —0.51449610 (12)  —0.514496 14
(1,1 420  —0.52658402 (3.7)  —0.52658410
2.2) 630  —0.52743848 (8.5)  —0.52743744
(3.3) 840  —0.52762478 (9.8)  —0.52762391
4.4) 1050  —0.52768776  (10.5)  —0.52768618
(5.5) 1260  —0.52771487  (11.3)  —0.52771215
(6,6) 1470 —0.52772866  (14.6) —
Ref. [7] —0.5277510165
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TABLE III. Convergence of the 4' F and 4° F He state energy as a function of the electron pair of angular momenta.

4'F $PF
(1,1) Size Ey (A1,22) Eo (A1,22)
0,3) 24 —2.031249981 02 (2.0,0.4) —2.031250032 54 (2.0,0.4)
(1,2) 48 —2.03125225658 (1.7,0.6) —2.03125229242 (2.0,0.7)
(L,4) 72 —2.03125507761 (2.0,0.8) —2.03125510143 (2.0,0.8)
2,3) 96 —2.031255097 30 (1.3,0.4) —2.03125511983 (1.2,0.4)
2,5) 120 —2.03125512692 (1.3,0.8) —2.031255148 36 (1.2,0.7)
(3.,4) 144 —2.03125512818 (2.0,0.8) —2.03125514924 (1.6,0.8)
(3.,6) 168 —2.03125512987 (2.0,2.0) —2.03125515065 (1.6,1.0)
Ref. [7] —2.031255144 38175 —2.031255168 403 24

used in our calculations to achieve similar accuracy compared
to Ref. [5] is still smaller. The accuracy of the energies is of
4.2 x 1072 a.u. for this basis size.

C. Singly excited states of He

Let us now focus onto the main purpose of this contribution:
We extend our study to calculate energies of asymmetrical
(excited) states. Table III shows the energies of the singlet and
triplet states of He for L = 3, computed with different pairs of
angular momenta (/1,/,). There is an improvement in accuracy
and convergence compared to those obtained by Foumouo [5].
The size of the Sturmian basis for each electron is much smaller
compared to that of the ground state, and few angular-momenta
configurations are needed to achieve convergence. The basis
parameters differ for each electron with £, = —1.95 a.u,
E, = —0.1 a.u., a; = 0.1, and o, = 0.3 and the one-electron
basis sizes are Ny =2 and N, = 12. The same parameters
were used for singlet and triplet cases. The values of (A;,A,)
for which the energy converges are also shown in Table III.
Note that, despite that the energy eigenvalue are similar for the
symmetric and antisymmetric states, the parameters are not the
same.

The solution of the matrix system given by Eq. (25)
generates Ny, energy eigenvalues. Each one of them can be
associated to a bound or a continuum state. Since the Sturmian
functions form a L? basis set, those states corresponding
to continuum ones are pseudostates which ultimately will
decay exponentially as the bound states. For the He atom,
for example, the eigenvalues which verify E; < —2 will
correspond to ground or singly excited states.

We show the results for singly excited states of He in
Table 1V, with different values of angular momentum L
and levels n. The energy values obtained were optimized
first for the lowest n level. Although the basis parameters
are those which give the best lower energy, they provide
a good representation of the excited energy states as well.
Of course, this can be improved by changing the basis set
values of the free parameter A, the energy or the range of the
Yukawa potential. However, we want to emphasize that the
discretization provided by the finite spectral representation
gives a good approximation for the lowest excited states
without increasing the size or changing the basis set for each
state under scrutiny.

Finally, we point out that the precision of our values
increases for higher total angular momenta. As mentioned
before, the HAES are expected to give better energies than the
ground states for the same number of basis elements, which is
confirmed by our calculations.

D. Doubly excited states for He

Up to this point, we have shown that our method is able to
deal with the ground and HAES for two-electron systems.
In these cases, exponential decays are suitable asymptotic
behaviors. We show in this section that our method can also be
applied to calculate the doubly excited states of a two-electron
atom. To this end, we choose a positive energy for the Sturmian
basis, and the asymptotic behavior as outgoing wave, to meet
the requirements of the doubly excited states where one of the
electrons can escape and reach large distances away from the
nucleus. In this case both the eigenvalues and the Sturmians
will be complex, and the matrix system of Eq. (25) will be
complex-symmetric and non-Hermitian. The He eigenvalues
E; obtained with the diagonalization will be then complex:
the real part is the energies of each atomic state, while the
imaginary ones give the width of the state lines. The choice
of the basis parameters is made in a similar fashion as in the
ground state, but the basis size must be increased for good
accuracy.

TABLEIV. Energy of the first three excited states for singlet states
of He for different L with a total of 168 basis functions.

n L Present work Ref. [7]

3 2 —2.0556110426 —2.0556207328522456
4 2 —2.0312703879 —2.031279846 1786870
5 2 —2.019797 6563 —2.020015836 1599840
4 3 —2.0312551298 —2.0312551443817490
5 3 —2.020002 3656 —2.020002937 1587427
6 3 —2.0137084544 —2.013890683 8155497
5 4 —2.020000709 6 —2.020000710898 584 7
6 4 —2.0138893011 —2.0138893453873132
7 4 —2.0101671391 —2.010204 3862247726
6 5 —2.0138890317 —2.013889034 7542797
7 5 —2.0101989535 —2.010204 1828064820
8 5 —2.0075259826 —2.007 8125718286558
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TABLE V. Energies for the Rydberg series of the singlet S states of He, using 30 Sturmians per electron.

Present work Ref. [41]
(N,k), R(E) S(E) R(E) 3(E)
2,1), —0.777 876955 —0.002 060 106 —0.777 867 636 —0.002 270653
2,—1), —0.621 817 695 —0.000 106 535 —0.621927254 —0.000107 818
(3,2); —0.351 827523 —0.001 406 250 —0.353 538536 —0.001 504 906

We emphasize that to apply our method for these boundary
conditions, one only needs to change one matrix element in
the Hamiltonian, from standing wave conditions (a}, ; = 0) to
outgoing ones (17). ’

In Table V, we present the results for the real and imaginary
part of the energy for some of the singlet S states of He. We
use the (V,k), nomenclature for the Rydberg series: the index
N denotes the principal quantum number of the remaining
ion once the outer electron is ionized. The index n denotes the
principal quantum number of the outer electron while the index
k determines the parabolic quantum number of the Stark-type
state in which the inner electron resides.

The basis set parameters were chosen to give the best value
of the first doubly excited state, but it is seen that good results
for other states can be achieved. The size of the basis set
can be increased not only to obtain more accurate results but
also to find more eigenvalues that correspond to the Rydberg
series.

E. He isoelectronic series

Finally, we can go further in the analysis of the basis
behavior and study the results for ground and excited states of
two-electron atomic systems for different nuclear charges. It

is well known that the H™ ion has only a double bound (the
ground state) and an infinite number of resonant states [42].
On the other hand, He atom has, in addition to the ground
state, an infinite number of single and doubly excited bound
states.

The basis set parameters were optimized for each nuclear
charge to give the best energy. We used a fixed number of
basis elements in every case (N, = N, = 20) to simplify our
calculations. In Table VI we show the results for several singly
excited energy states as a function of the nuclear charge. Appli-
cation of our method with double bound asymptotic behavior
gives strictly real eigenvalues. However, the calculation with
outgoing electrons leads to complex ones. The real part of this
eigenvalues is seen in Table VI compared with the results of
other authors [43]. In spite of the outgoing wave asymptotic
condition, the real part of the complex eigenvalues gives a
good result for the ground and singly excited states.

In Table VII we show the results for the doubly excited
states (2,1), and (2,1)3, using the notation as in Sec. IVD,
for several charges of the isoelectronic series. The results are
compared with those of Ref. [44]. We obtained very good
agreement in both the real and imaginary parts, with fewer
basis elements per electron.

TABLE VI. Real part of the energies for the singlet ground state and first singly excited states of the He-isoelectronic series, using 20

Sturmians per electron.

1s* 1s2s 1s3s 1s4s
Z Present work Ref. [43] Present work Ref. [43] Present work Ref. [43] Present work Ref. [43]
2 —2.9036 —2.8911 —2.1459 —2.1429 —2.0591 —2.0603 —2.0281 —2.0331
3 —7.2798 —7.2656 —5.0408 —5.0331 —4.7337 —4.7297 —4.6287 —4.6275
4 —13.655 —13.640 —9.1848 —9.1735 —8.5173 —8.5100 —8.2868 —8.2837
5 —22.030 —22.015 —14.578 —14.564 —13.411 —13.402 —13.009 —13.002
6 —32.407 —32.390 —21.222 —21.206 —19.417 —19.406 —18.793 —18.784
TABLE VII. Energies for (2,1), and (2,1); doubly excited states of the He isoelectronic series, using 20 Sturmians per electron.
(2,1), (2,1);
Present work Ref. [44] Present work Ref. [44]

Z N(E) J(E) R(E) J(E) R(E) J(E) N(E) J(E)

2 —0.77787 —0.002 06 —0.77787 —0.00227 —0.58971 —0.000 652 —0.58992 —0.000675
3 —1.90661 —0.002 85 —1.905 84 —0.00283 —1.41572 —0.001 06 —1.41557 —0.00107
4 —3.53504 —0.00301 —3.53346 —0.00313 —2.60258 —0.00139 —2.602 05 —0.00132
5 —5.65970 —0.003 32 —5.660 88 —0.003 32 —4.148 95 —0.00142 —4.14950 —0.00148
6 —8.31744 —0.003 40 —8.28820 —0.003 45 —6.054 96 —0.00151 —6.058 00 —0.00159

042503-7



FRAPICCINI, RANDAZZO, GASANEO, AND COLAVECCHIA

V. CONCLUSIONS

In this article we presented a CI expansion of two-electron
bound states based on one-electron Sturmian functions. These
Sturmians are expanded with a finite Laguerre-type basis
set. Our proposal allows the introduction of the long-range
Coulomb asymptotic behavior both for negative and positive
energies. The resulting eigenproblem includes the Coulomb
potential and a short-range auxiliary potential which is used
to generate the basis. The use of Laguerre-type functions to
expand the Sturmians avoids the problems found when using
finite difference methods in the diagonalization of the Sturmian
equations.

To demonstrate that the use of Laguerre-expanded Sturmian
function is as efficient as the other Sturmian methods [32], we
study the two-electron atomic system. The accuracy obtained
for the ground states of the He atom and the H™ ion are
similar to those presented in Ref. [32]. The clue here is that
we use the Laguerre functions to solve a one-dimensional
problem: the Sturmian equation. Then, the atomic system
is solved in terms of these Sturmian functions. This can be
understood as a sort of series rearrangement technique which
allows the optimization of the basis. In the case of the atomic
systems considered, the addition of a short-range Yukawa
to the Coulomb potential in the Sturmian basis significantly
improves the results over the use of pure Coulomb Sturmians.
This makes clear the difference between the use of pure
Laguerre basis and Sturmian functions even when they are
expanded in terms of Laguerre functions. This is due to the
following: (i) the asymptotic behavior of the basis is the proper
one to deal with the problem under consideration and (ii) the
basis set condenses in the region where the atomic states are
mainly located. Moreover, it includes the screening produced
by one electron over the other. These facts are of utmost
importance when using a CI expansion to build atomic wave
functions.

In this article we have also extended our previous work to
the calculation of excited states for singlet and triplet states
of He for L = 3 and singly excited states of He, from L = 2
to L = 5. This shows the full range of applications of the
Sturmian expansion, because different sets of basis parameters
can be optimized to obtain either accurate ground or singly
excited states.

PHYSICAL REVIEW A 82, 042503 (2010)

One of the advantages of our Sturmian method in the
study of doubly excited states is the use of basis functions
with outgoing wave asymptotic behavior. We obtained very
good results for low-lying Rydberg states of singlet He, and
more states are expected to converge to the exact value as
the number of basis set elements is increased. We would like
to emphasize that the complex energies for these states arise
naturally from the use of our basis with the proper outgoing
condition, and there is no need to artificially manipulate the
equation to obtain resonance widths.

A qualitative analysis of ground and singly and doubly
excited states was performed for the He isoelectronic series,
with real (exponential decay) and complex (outgoing wave)
Sturmian basis set. The calculations are in very good agree-
ment for the real part of the energy for the ground, singly
excited, and double excited states. The imaginary part of the
energy, on the other hand, appears only when the basis set
contains elements with outgoing wave behavior. In such cases,
a very good approximation of the resonance energy is obtained.

We would like to stress that any kind of short-range potential
can be used in our scheme. Our method then can be easily
used to analyze isolated or confined atomic systems, as well
as artificial (for example, quantum dots) atoms. The choice
of the auxiliary potential would then be determined from the
physical properties of the problem and can be modified to suite
each particular system.

In summary, we have shown that this CI method with gen-
eralized Sturmian functions and correct asymptotic conditions
included in the basis can outperform other schemes, both in
the calculation of bound states or resonances of two-electron
species. This implies that bound and continuum states can
be treated on equal footing with the same accuracy in our
proposal. Furthermore, extension to more electrons presents
no difficulty, apart from the algebraic complexity of the
description of angular momenta. Applications to molecular
calculations and collision problems of our method are on the
way and will be presented elsewhere.
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