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and deuterium targets by the classical-trajectory Monte Carlo method
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The classical-trajectory Monte Carlo method has been used to study the capture of negative kaons by hydrogen
and deuterium atoms; subsequently, the elastic scattering, Stark mixing, and Coulomb deexcitation cross sections
of Kp and Kd atoms have been determined. The results for kaonic atom formation confirm the initial conditions
that have been parametrically applied by most atomic cascade models. Our results show that Coulomb deexcitation
in Kp and Kd atoms with �n >1 is important in addition to n = 1. We have shown that the contribution of
molecular structure effects to the cross sections of the collisional processes is larger than the isotopic effects of
the targets. We have also compared our results with the semiclassical approaches.
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I. INTRODUCTION

A kaonic atom, Kx (x = p,d), is formed when a beam
of negative kaons enters a target of hydrogen or deuterium.
The kaon loses its kinetic energy through the ionization
and excitation of atoms and molecules of the target and
is eventually captured, replacing the electron, in an excited
state. Such atoms are called exotic atoms. They are usually
formed in highly excited states; then, they are deexcited by
competitive cascade processes [1]. The x-ray transitions to
the lowest orbits are affected by the presence of the strong
interaction between the nucleus and kaon. The measurements
of the x-ray transitions, provide fundamental information on
the low-energy kaon-nucleon interactions. Quantities such
as kaon-nucleon scattering lengths can be determined by
comparing the Deser-Truman formula with the measured shift
and width of the Kα x-ray [1,2].

The kaonic hydrogen measured by the DEAR Collaboration
(on DA�NE) with an unprecedented precision, led to a lively
debate on the kaon-proton scattering length extraction proce-
dure [2]. The SIDDHARTA experiment started in early 2009,
with more precise measurement for Kp atoms, which would
be prepared for the kaonic-deuterium x-ray measurement [3].

The atomic cascade can reveal important information about
the properties of kaonic atoms such as x-ray yield, cascade
time, kinetic-energy distribution, and reaction with atoms in
excited states [4,5]. The atomic cascade models are essential
to understand the details of atomic transitions in various
experimental conditions such as density [4–6].

The distributions of n,l states and kinetic energy at
the instant of kaonic-atom formation are needed to calcu-
late the cascade dynamics. In most previous calculations,
some approximated distributions have been used [4]. Because
in the case of muonic and antiprotonic atoms, classical-
trajectory Monte Carlo calculations (CTMC) of collisional
processes were in fair agreement with the semiclassical ap-
proaches [7] at the intermediate states, we use this method for
kaonic atoms. Particularly, this method is more efficient than
either full quantum mechanics or semiclassical approaches in
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highly excited states, where the Bohr correspondence principle
is better satisfied.

The aim of this paper is to determine the cross sections
of kaon capture by hydrogen and deuterium atoms, excitation
and impact-ionization (processes 1), and collisional transitions
such as Coulomb transition, Stark mixing, and elastic scatter-
ing of kaonic atoms (processes 2) by the CTMC method.

K + X1s → (Kx)nl + e,

K + Xnl, (1)

K + x + e.

(Kx)ni li + X,X2 → (Kx)nf lf + X,

(Kx)nf lf + X2, (2)

(Kx)nf lf + X∗
2(X + X),

where x = p,d and X = H,D.
We are interested in the role of the Coulomb acceleration

in highly excited states and in the competition between
the accelerating process and slowing down in quasielastic
collisions. Both molecular and atomic targets are used in our
calculation in order to investigate the role of molecular and
isotopic effects. In each case we compare our results with
semiclassical approaches.

The paper is organized as follows. The CTMC method is
described in Sec. II, the results of the calculations of kaon
capture and collisional transitions for Kp and Kd atoms are
presented in Sec. III. Finally, the conclusions are summarized
in Sec. IV.

II. CTMC CALCULATION

At the beginning of the atomic cascade, where high nlm

states are involved in the collisions, classical mechanics is
expected to be a good approximation. By CTMC method, we
can simulate the collisions of exotic atoms with the atoms or
molecules of a target in the framework of classical trajectories.
To learn more details about this method, the pioneering work of
Percival and Arbines [8] and its applications in muon capture
[9] and stripping reactions [10] are recommended.

In this model, to study the scattering of kaonic atoms in
atomic or molecular targets, we consider the kaonic atoms
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and targets as classical particles. In the collisional transitions,
the electrons are assumed to be fixed charge distributions
corresponding to the 1s atomic state. The following degrees
of freedom are included in the model (Fig. 1): (Q1,Q2,Q3)
are coordinates of kaon relative to nucleus x in the Kx atom,
(Q4,Q5,Q6) are coordinates of the center of mass of the Kx

atom relative to the center of mass of the X2 molecule, and
(Q7,Q8,Q9) are coordinates of the nucleus X relative to the
other nucleus X in the X2 molecule.

A. Effective potential

The kaonic atoms are described as a classical two-body
system with potential

Vkx = − 1

rKx

, (3)

where rKx is the distance between the kaon and nucleus x.
The kaonic atom interacts with an atom of the target whose

electron distribution is assumed to be frozen in the ground
atomic state with the potential [7]

VKx-X =
(

1

RKX

+ 1

)
e−2RKX −

(
1

RxX

+ 1

)
e−2RxX , (4)

where RKX is the distance between the kaon and one nucleus
X of the X2 molecule, and RxX is the distance between nucleus
x in the Kx atom and one nucleus X of the X2 molecule. The
interaction between the atoms in the molecule is described by
the Morse potential [11]

VM (RXX) = De

(
e−α(RXX−R0) − 1

)2
, (5)

where RXX is the distance X in the molecule X2, De = 4.75
(4.74) eV, α = 1.03 (1.04), and R0 = 1.41a0 (1.42a0) for H2

(D2) [11]. The total effective potential is the summation of the
three parts.

B. Method of calculation

For the four-body system shown in Fig. 1, we have
used the generalized coordinates Qi and momenta Pi where
i = 1,2, . . . ,9. To obtain the classical equations of motion,
we should calculate the potentials (3)–(5) as a function of
the generalized coordinates Qi . For this purpose, distances
rKx,RKX,RxX, and RXX should be derived from the gen-
eralized coordinates Qi by a set of appropriate canonical
transformations from Cartesian coordinates of the kaon, x, and
X particles in Fig. 1, to the generalized coordinates Qi [10].

After eliminating the center-of-mass coordinates of the
entire system, the 18 coupled differential equations for gener-
alized coordinates and momenta can be obtained by Hamilton’s
equations. These equations of motion with the total effective
potential are solved using a fourth-order Runge-Kutta method
with variable step size. The quasiclassical initial conditions
are defined as follows. By considering the initial principal
quantum number ni and the orbital angular momentum li of
Kx atom, the initial classical states are generated as a classical
Kepler orbit with the bound energy Eni and the classical
angular momentum lc:

Eni
= − µK

2n2
i

, lc = li + 1

2
, (6)

Z

X

Y

X

X

x Vz

RXX

b

K-(Q1 ,Q2 ,Q3)

rKx

R(Q
4 ,Q

5 ,Q
6)

(Q7 ,Q8 ,Q9)

RKX

RxX

FIG. 1. (Color online) Classical four-body system with the
generalized coordinates Qi,i = 1, . . . ,9. b is an impact parameter,
and Vz is the initial relative velocity of the Kx atom and X2 molecule.

where µK is the reduced mass of Kx atom. The orbit is oriented
randomly in space, and the orbital Kx motion is set at a random
time within the period. The atoms in the target molecule are
set by distance RXX, which is randomly selected by one of the
turning points, R+ or R−. They are determined as follows:

VM (RXX) = E0,0, (7)

where E0,0 is the rotational-vibrational ground-state energy of
molecule. Consequently, Eq. (5) is easily solved by Newton’s
method. The values (R− = 1.2a0, R+ = 1.7a0) and (R− =
1.22a0, R+ = 1.61a0) have been obtained for H2 and D2,
respectively. The molecule is randomly oriented in space. The
impact parameter b of the Kx atom is selected with a uniform
distribution in the interval (0,bmax). For a given initial state
n of the Kx atom and laboratory kinetic energy Ei , a set
of impact parameters bi are generated, where i = 1, . . . ,N ,
and N is the total number of the classical trajectory of
the kaonic atom. The optimum value for bmax is found to
be equal to 5 + 2ni/µK . The conservation of total energy,
linear momentum, and angular momentum is checked in the
numerical procedure. Instead of requiring convergence for
every individual trajectory, we have used the global criteria
in which the cross sections for various processes were stable
in the statistical errors.

The final atomic state is determined when the distance
between the center of mass of the Kx atom and target molecule
after collision, R in Fig. 1, is larger than 10 a0. The final atomic
state nf lf with the energy EKx and the angular momentum lc
is identified by the following rules [12]:

n − 1

2
< nc � n + 1

2
, lf < lc

nf

nc

� lf + 1. (8)

The adjustment factor nf /nc ensures that the inequality
lf < nf will be satisfied. In addition to the quantum numbers
nf and lf , the scattering angle θ at the laboratory and the
excitation energy of the molecular target, �Etarget, are also
obtained. The cross sections are obtained from the computed
set of trajectories using the following procedure. If pc

i is
considered as the probability of the reaction (2) in channel c,
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which corresponds to either Coulomb transition, Stark mixing,
or elastic scattering in ith collision, i.e.,

pc
i =

{
1, if channel c occurred

0, otherwise
(9)

then the cross section for the reaction in channel c is given by

σc = 2πbmax
1

N

N∑
i=1

bip
c
i . (10)

It should be noted that the same procedure is used for
calculating the cross sections of kaon interactions with atoms
or molecules of the target in reaction (1).

III. RESULTS

Because the number of the calculated cross sections is very
large, only a small part of the results, such as l-averaged cross
sections, are shown here.

A. Kaon capture

To obtain reliable initial conditions for cascade calculations,
the cross sections of the processes 1 and 2 are determined in the
energy region 0.01 eV–10 keV. Our calculations show that the
contribution of capturing and elastic scattering is higher than
inelastic channels (ionization + excitation). Figure 2 shows
that the capturing cross section approaches zero by increasing
energy. Elastic scattering cross sections tend to value close to
the classical limit. Also due to the similarity in electronic
structure of hydrogen and deuterium targets, the isotopic
effect is negligible. Values of inelastic scattering cross sections
(ionization and excitation) are increased at the above ionization
potential, while they are smaller than elastic scattering cross
sections.

On the basis of the capturing cross section, the ni and li
distributions are obtained for kaon kinetic energy E0 = 1.0 eV.
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FIG. 2. (Color online) Capturing and elastic-scattering cross
sections of kaon in H and D targets for different initial kinetic energies
of kaon (E0).
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FIG. 3. (Color online) The ni distribution of the capture of kaon
in H and D targets. The results of the quantum DS approach for H
have also been shown [13].

Also, they can be compared with the results of quantum
diabatic-state approach (DS) [13] in Figs. 3 and 4. The values
in agreement with the DS approach at least at the peak
of the n distribution for the Kp case. Another comparison
can be made with the values corresponding to a statistical
distribution, which is used for most atomic cascade models.
Furthermore, the peaks of the ni distributions confirm the
classical crude estimation,

√
µK/me, which are 25 and 27

for Kp and Kd atoms, respectively. Finally, in this energy
region, n, l and the kinetic-energy distributions of the formed
kaonic atoms are independent of kinetic energy of kaon. Figure
5 shows the kinetic-energy distributions of the formed Kp

and Kd atoms. It is shown that the average kinetic energy of
kaonic atoms is not very sensitive to the initial kinetic energy
of kaons.
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FIG. 4. (Color online) The li distribution of the capture of kaon
in H and D targets. The results of quantum DS approach for H have
also been shown [13].
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FIG. 5. (Color online) The kinetic-energy distribution of the
formed Kp and Kd atoms for different initial kinetic energies of
kaon (E0). The mean values of the kinetic energy of kaonic atoms are
also indicated.

B. Collisional processes

1. Stark mixing and elastic scattering

A neutral Kx atom penetrates into the target, where the
electric field mixes the sublevels with the same n and different
l (linear Stark effect). Stark mixing affects the population
of the nl sublevels. It is particularly important since it
results in strong absorption during the cascade by feeding the
ns states [4]. The first detailed calculation of the Stark-mixing
cross section was done semiclassically by Leon and Bethe [14];
then, it was extended by Terada and Hayano [15]. In this article
we have calculated Stark-mixing cross sections of Kp atoms
by the CTMC method. In Fig. 6, the n dependence of the
CTMC Stark-mixing cross sections is shown in comparison
with semiclassical results at Ei = 1.0 eV. It shows that the
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FIG. 6. (Color online) The n-dependence of Stark-mixing cross
sections for atomic and molecular targets at Ei = 1.0 eV. The
semiclassical results for Kp atoms are also shown by filled circles.
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FIG. 7. The energy dependence of elastic-scattering cross sec-
tions for atomic and molecular targets at n = 15.

molecular effects are important for all of the levels, because
the electric field due to the two proton or deuteron nuclei in
the molecule is greater than that in atoms. Our calculations
show that for low states, our results are good in agreement
with semiclassical results. But at large n they are different,
because the large n belongs to the classical limit in which the
semiclassical results are not precise. Therefore, the results of
CTMC for Stark-mixing cross sections can be used for cascade
calculations in any n states.

The elastic scattering leads to the deceleration of kaonic
atoms if the kinetic energy is larger than the average kinetic
energy of the target atoms. This mechanism, together with
the Stark transition, influences the kinetic-energy distribution
of Kp atoms during the cascade transitions. The CTMC
results for the energy dependence of the elastic-scattering
cross sections, averaged on l states for n = 15, are shown
in Fig. 7. It shows that the elastic-scattering cross section has a
decreasing behavior with respect to energy. The isotopic effects
are negligible, while the atomic and molecular structures are
important especially at low energies. As expected, at high
energies, the cross sections tend to their classical limits.

2. Coulomb deexcitation

The mechanism of this process is similar to Stark mixing.
If a stronger electric field is applied on the neutral Kx atom
by atomic or molecular targets during the collision, it can
mix states with different values of n. In this process, the
transition energy of the exotic atom is shared between the
colliding particles. It is an important accelerating mechanism
that produces high kinetic energy of kaonic atoms. It has been
shown experimentally for muonic [16] and pionic hydrogen
[17]. Therefore, it may broaden the widths of the x-ray
spectrum at low states due to a Doppler broadening effect [5].
At first, a Coulomb transition of the Kp atom and dissociation
of the hydrogen molecule in the center of mass of the entire
system have been simulated by CTMC method. The results are
shown in Fig. 8. It can be seen that the Kp atom with an initial
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FIG. 8. (Color online) An example of a (Kp)i + H2 → (Kp)f +
H + H collision with impact parameter b = 0.5a0 resulting in
Coulomb deexcitation.

state of ni = 20, li = 19, and Ei = 1.0 eV moves from the left,
and the hydrogen molecule moves from the right. In the final
state, the Kp atom has nf = 16, li = 13, and Ef = 3.41 eV.

In Fig. 9, the nf dependence of the Coulomb deexcitation
cross sections has been shown for kaonic hydrogen with ni =
15 and 25 and Ei = 1.0 eV. This shows that the distribution
of the cross sections versus the final state nf is completely
different for the molecular and atomic targets for high-ni states,
particularly at high-nf states. Figure 9 also shows that the
transitions with �n > 1, which are ignored for µp and πp

atoms, are important for Kx atoms.
The ni dependence of the total cross sections of the

Coulomb deexcitation at Ei = 1.0 eV is compared with
other works in Fig. 10. Initially, Leon and Bethe estimated
phenomenologically the cross section of this process for the H2
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FIG. 9. The nf dependence of Coulomb deexcitation cross
section in H and H2 targets with ni = 15,25 and the laboratory kinetic
energy of Kp atoms being Ei = 1.0 eV.
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FIG. 10. (Color online) The comparison of the n-dependence
of Coulomb deexcitation cross sections for different approaches in
laboratory kinetic energy Ei = 1.0 eV.

molecule with its so-called chemical dissociation [14], which
was used in many cascade calculations. Their estimation was
in order of the size of the exotic atoms (πa2

n/2, where an is the
nth Bohr radius of the exotic atom). It is not a good estimation,
as Fig. 10 shows that CTMC results for collision with H2 are
greater than the Leon and Bethe estimation. Therefore, we
expect that the chemical dissociation has a greater contribution
to cascade dynamics in high excited states. Then, Bracci and
Fiorentini applied a semiclassical approach to the collision of
muonic hydrogen with a H atom [18]. They showed that this
approach is better justified by increasing the mass of the exotic
particle. As expected, it is in fair agreement with the CTMC
results for kaonic atoms.

The isotopic effect, as indicated in Figs. 11 and 12, is
not large, since the cross sections are not very different from
each other. Figures 10 and 11 show that the Coulomb cross
sections increase by increasing ni . Our calculations show that
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FIG. 11. The ni-dependence of Coulomb deexcitation cross
sections for atomic and molecular targets at Ei = 1.0 eV.
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FIG. 12. The energy dependence of Coulomb deexcitation cross
sections for atomic and molecular targets at n = 15.

the Coulomb cross sections have a decreasing behavior with
collision energy (Fig. 12). Semiclassical calculations have
predicted a 1√

E
behavior of the cross sections [18] which

can be confirmed by CTMC calculation in high energies
(Fig. 12), because in high energy the values of the cross
sections from semiclassical calculations get close to classical
calculated values.

IV. CONCLUSIONS

The CTMC method was applied to study kaon capture on H
and D atoms and the collisional processes of the kaonic atoms
with atomic and molecular targets which are important for
atomic cascade calculations. In general, the following results
were obtained.

(I) Kaon capture: The cross section of kaon capture is
important around the ionization energy of the target. In this
energy region ni , li , and the kinetic-energy distribution of the
formed kaonic atoms are independent of kaon kinetic energy.
The calculations show that the most probable of the principal

quantum numbers n are 25 and 28 for Kp and Kd atoms,
respectively, which are in agreement with the quantum DS
approach and classical crude estimation. The l distributions are
also close to traditional statistical values. These results confirm
some initial conditions that have been used in most atomic
cascade models with some tuning parameters. However, more
precise calculations using our n distribution for the formed Kp

and Kd atoms are suggested.
(II) Collisional processes: Stark mixing that leads to mixing

sublevels for different l is effectively important at high-n states
and intermediate kinetic energies of kaonic atoms. The cross
sections of Kd atoms are more than those of Kp atoms. This
is due to the smaller size of the Kd atom compared with the
Kp atom. The Stark mixing in Kx atoms by molecules is
more important than that by atoms, because the electric field
is produced more by the molecule on the penetrated Kx atom.
Our results agree with semiclassical results; however, they are
different at large ni . Since the large ni is the classical limit, the
CTMC results are more precise at large ni . Thus, our results
can be used in any ni states.

The Coulomb deexcitation process is important at high-n
states and low collisional energies that agree fairly well with
the semiclassical results. We have shown that the Coulomb
transitions with �n > 1 are also important for Kx atoms.
The transitions with �n > 1 may result in atoms with
higher kinetic energy. Also the molecular structure effects are
dominant compared with isotopic effects.

The cross sections of elastic scattering have a smooth
decreasing behavior versus the kinetic energy of Kx atoms.
The isotopic effects are negligible, while the molecular
structure is important for elastic scattering cross section at
low energies.

The CTMC method can be improved by including the
electron degrees of freedom in the calculations, which will
allow us to calculate cross sections for ionization of the target.
It is the same as the Auger transition in quantum mechanics.
For this purpose we should use an updated version of the
CTMC-Fermion molecular dynamic (FMD) method [19],
which offers a constrained potential preventing the system
from occupying quantum mechanically forbidden regions of
phase space.
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