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Recently, a “counterfactual” quantum-key-distribution scheme was proposed by T.-G. Noh [Phys. Rev. Lett.
103, 230501 (2009)]. In this scheme, two legitimate distant peers may share secret keys even when the information
carriers are not traveled in the quantum channel. We find that this protocol is equivalent to an entanglement
distillation protocol. According to this equivalence, a strict security proof and the asymptotic key bit rate are both
obtained when a perfect single-photon source is applied and a Trojan horse attack can be detected. We also find
that the security of this scheme is strongly related to not only the bit error rate but also the yields of photons. And
our security proof may shed light on the security of other two-way protocols.
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The quantum key distribution (QKD) [1–3] can enable two
distant peers (Alice and Bob) to share secret random string of
bits, called key. With the QKD and one time pad, unconditional
secure communication is possible. The most commonly used
QKD protocol is Bennett-Brassard 1984 (BB84), in which
Alice encodes the state of a single photon, transmits it to Bob
through a quantum channel that is accessed by an eavesdropper
Eve, and, finally, Bob projects this photon into some states.
Not just the BB84 protocol, but nearly all QKD protocols,
must transmit information carriers (usually a single photon) in
a public quantum channel. Many successful QKD experiments
[4–10] have been realized during the past decade.

Quite interestingly, T.-G. Noh proposed a QKD protocol
(N09) [11] in which the distribution of a secret key bit
can be accomplished even though a photon carrying secret
information is not in fact transmitted through the quantum
channel. Let us introduce the process of the N09 protocol
briefly.

In the N09 protocol, Alice randomly encodes a single-
photon in a horizontally polarized state |H 〉 as bit 0 or a
vertically polarized state |V 〉 as bit 1 and then inputs this
photon to port 2 of a beam splitter (BS), whose reflection
and transmission modes are written a and b, respectively. For
example, if Alice emits |H 〉, the quantum state of this photon
will be |ψH (V )〉 = [i|H (V )〉a|0〉b + |0〉a|H (V )〉b]/

√
2, where

we consider that a π/2 phase is always added to the reflection
case and there is no phase change to the transmission mode.
The key point is that mode a is kept by Alice, while mode b rep-
resents the quantum channel between Alice and Bob. Thus, Eve
can only access mode b, while mode a is unaffected by Eve.
Bob will choose either to detect |H 〉b with his single-photon
detector (SPD) D3 and just reflect other components of mode
b as bit 0 or to detect |V 〉b through D3 and just reflect other
components of mode b as bit 1. This operation can be viewed
as a random projection to |X〉b〈X|, which will be detected
by detector D3 and 1 − |X〉b〈X|, in which X = H or X = V .
Bob’s operation can be implemented with optical switches and
a polarization beam splitter (PBS). To detect the intrusion of
Eve, Alice and Bob may compare the initial polarization state
and the detected polarization state, if D3 clicks.
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Mode b reflected by Bob will return to Alice’s BS, and at
the same time mode a will also arrive at this BS due to the
reflection by a mirror owned by Alice. If the bit choices of
Alice and Bob are different, the photon will output from port 2
of Alice’s BS and then hit Alice’s SPD D2 due to quantum
interference. Conversely, if their bit choices are the same, Bob
will get a click in D3 with probability 1/2, which means that
the photon was in mode b. But, also with a probability of 1/2,
the photon is in mode a and thus will Bob get no click in D3,
and Alice will get one click in D2 or D1 with equal chances.
Therefore, a click from D1 means the generation of one secret
key bit. D1 clicks can only step from the photon in mode a,
not the quantum channel mode b. Thus we say that in N09
the task of distributing a secret key bit is finished when the
information carriers are not traveling in the quantum channel.

The security of N09 has not been proved, though there has
been some discussion of particular attacks. The security of
this protocol cannot be followed by the claim that Eve cannot
access the whole information carrier. However, some simple
attacks, such as Eve detecting the polarization of mode b, will
spoil the quantum interference and introduce a bit error rate
of key bits. Eve may entangle her ancilla with the information
carrier and apply different operations to the “go and return”
mode . Eve is able to get some key bits without introducing a bit
error. This is totally different from the BB84 protocol, in which
Eve cannot launch an effective attack without introducing a bit
error in the ideal case. Thus a strict security proof is urgently
needed for the N09 protocol.

In this paper, we put forward a security proof of the N09
protocol when a Trojan-horse-like attack [12] is prohibited.
We find that the security of N09 is highly related not only to
the bit error rate of the key, but also to the counting rates of D1

and D2. Inspired by Ref. [13], we propose an entanglement
distillation protocol (EDP) that is completely equivalent to the
N09 protocol. Here, the meaning of this equivalence between
the two protocols is as follows: To Alice and Bob, the generated
secret key is the same; to Eve, the available information is also
the same. The EDP is illustrated in Fig. 1 and the detailed steps
are as follows.

1. Alice prepares N pairs of entanglement states
|�〉A = (|H 〉A|ψH 〉 + |V 〉A|ψV 〉)/√2, in which |ψH (V )〉 =
[i|H (V )〉a|0〉b + |0〉a|H (V )〉b]/

√
2; H and V represent

single-photon horizontally polarized and vertically polarized
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FIG. 1. (Color online) A and ψ represent Alice’s initial entangled particles. Filter: a quantum operation controlled by Alice or Bob, which
can project mode b into the Hilbert space spanned by |0〉, |H 〉, and |V 〉. Failure of this filtering operation results in the abortion of the whole
protocol. B1 and B represent Bob’s initial particles. PD: polarization detector which detects particles with projectors |0〉〈0|, |H 〉〈H |, and
|V 〉〈V |. BS: beam splitter.

states, respectively; and |0〉 is a vacuum state. Particle A

and mode a are protected in Alice’s security zone, while
mode b will be transmitted to Bob by the channel between
Alice and Bob. Bob also prepares N pairs of states |�〉B =
(|H 〉B + |V 〉B)|0〉B1/

√
2, where particles B and B1 are all

ancillae owned by Bob, and Eve has no chance to access them.
Alice sends all of the modes b of the N pairs of entanglement
states and announces this fact publicly.

2. After passing through the quantum channel
controlled by Eve, mode b of the nth |�〉A will enter
Bob’s security zone. Bob will first project mode b with
projectors |0〉b〈0| + |H 〉b〈H | + |V 〉b〈V | and I − |0〉b〈0| −
|H 〉b〈H | − |V 〉b〈V |. If Bob detects mode b through the
projective measurement I − |0〉b〈0| − |H 〉b〈H | − |V 〉b〈V |,
he will abort the protocol. This operation is carried out by
the filter in Bob’s security zone as in Fig. 1. If not, Bob
will apply a unitary transformation UBob to this mode b
and particles B and B1 of the nth |�〉B . UBob is defined as
UBob|H 〉B |0〉B1|0〉b = |H 〉B |0〉B1|0〉b, UBob|H 〉B |0〉B1|H 〉b =
|H 〉B |H 〉B1|0〉b, UBob|H 〉B |0〉B1|V 〉b = |H 〉B |0〉B1|V 〉b,
UBob|V 〉B1|0〉B1|0〉b = |V 〉B |0〉B1|0〉b, UBob|V 〉B1|0〉B1|H 〉b =
|V 〉B |0〉B1|H 〉b, and UBob|V 〉B1|0〉B1|V 〉b = |V 〉B |V 〉B1|0〉b.
After this transformation, Bob will detect particle B1 with
projectors |0〉B1〈0|, |H 〉B1〈H |, and |V 〉B1〈V | and record the
result. After that, mode b will reenter the quantum channel.

3. After traveling along the quantum channel controlled
by Eve, the nth mode b will reenter Alice’s security zone.
Before Alice combines this mode a and mode b of the nth

|�〉A in a BS at the same time, she must apply the same
projection as for Bob’s projection in step 2 to detect any
possible Trojan horse attack. This is done by the filter in Alice’s
security zone as in Fig. 1. Consider that the normal attenuation
of mode a is η, the effective state of mode a after this
BS is |H (V )〉a −→ √

η[|H (V )〉1 + i|H (V )〉2]. For mode b,
|H (V )〉b −→ [|iH (V )〉1 + |H (V )〉2]/

√
2.

4. For each trial, Alice measures mode 2 with the following
projectors: |0〉2〈0|, |H 〉2〈H |, and |V 〉2〈V |. This operation
corresponds to the PD in Fig. 1. If a polarization state H or V of
mode 2 is observed by Alice, she will measure the polarization
of the corresponding particle A and record the result. If Alice
gets |0〉2 in her measurement, she will detect whether the
polarization of mode 1 and the corresponding particle A is
the same. This operation can be done by a unitary transform-
ation defined by UA|H (V )〉A|0〉1|s0〉s = |H (V )〉A|0〉1|s0〉s ,
UA|H (V )〉A|H 〉1|s0〉s = |H (V )〉A|H 〉1|s1(s2)〉s , and UA

|H (V )〉A|V 〉1|s0〉s = |H (V )〉A|V 〉1|s2(s1)〉s , where |s0〉s ,
|s1〉s , and |s2〉s are all quantum states of Alice’s ancilla
s and orthogonal to each other. Now Alice detects this
ancilla s with projectors |s0〉s〈s0|, |s1〉s〈s1| and |s2〉s〈s2|. If
the output of Alice’s measurement of a is |s1〉s , Alice will
preserve the corresponding particles A and 1 in the following
process. These A and 1 are called polarization-consistent
particles. If Alice obtains |s2〉s , she measures the polarization
state of the corresponding particles 1 and A, which are
called non-polarization-consistent particles, and records the
results.
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5. After the transmission of N particles is completed, Bob
tells Alice the results of detection of each B1. Alice and Bob
disregard all the particles corresponding to nonvacuum B1.
Now, the following steps are carried out only for cases where
B1 is in vacuum. Alice asks Bob to measure the polarization
of particles B corresponding to non-polarization-consistent
particles A. Then Alice and Bob randomly select half of the
polarization-consistent particles A and 1, and the correspond-
ing B, and measure them with the projectors |H 〉〈H | and
|V 〉〈V |. Hence, the probabilities Prob(XAYB0B1ZD), where
X,Y,Z = H,V and D = 1,2 are obtained by Alice and Bob.

6. According to all of the probabilities observed in step 5,
Alice and Bob may carry out EDP for the other half of the
polarization-consistent particles A and 1 and the correspond-
ing B.

Since Eve cannot access Alice and Bob’s ancillae, this
virtual entanglement protocol is equivalent to N09 from Eve’s
view. To Alice and Bob, the key generated by the two protocols
is completely the same. Therefore, the security analysis of the
N09 protocol can be carried out by this EDP. In contrast,
the EDP can be reduced to N09 using Shor and Preskill’s
method [13,14].

The initial state of Alice is given by

|�ini〉⊗N
A

=
(

1√
2
|φ+〉Aa|0〉b + 1

2
|H 〉Aa|H 〉b + 1

2
|V 〉Aa|V 〉b

)⊗N

,

(1)

where |φ+〉Aa = (i|H 〉A|H 〉a + i|V 〉A|V 〉a)/
√

2, |H 〉Aa =
|H 〉A|0〉a , and |V 〉Aa = |V 〉A|0〉a . We also define |0〉 =
(1,0,0)T , |H 〉 = (0,1,0)T , and |V 〉 = (0,0,1)T .

We must point out that only mode b can be input into
Alice and Bob, and the state of any modes b after Eve’s
operation must be in a Hilbert space spanned by |0〉b, |H 〉b,
and |V 〉b, since any state out of the Hilbert space may
be detected by Bob and Alice’s projection I − |0〉b〈0| −
|H 〉b〈H | − |V 〉b〈V |, which results in the abortion of the whole
protocol. The foregoing assumptions justify the negligence of
a Trojan attack, which makes the security of nearly all “go and
return” QKD protocols inexplicit. The most general attack
is as follows: First, Eve may apply a unitary transformation
UEve to all the N b modes and her ancilla e. In particular, we
consider the evolution of the lth communication. This step can
be described mathematically as

UEve|�ini〉⊗N
A |e〉

=
∑

T (n�=l)

[CT,T (l)=0|T ,T (l) = 0〉AaUEve|T ,T (l) = 0〉b|e0〉

+CT,T (l)=H |T ,T (l) = H 〉AaUEve|T ,T (l) = H 〉b|e0〉
+CT,T (l)=V |T ,T (l) = V 〉AaUEve|T ,T (l) = V 〉b|e0〉],

(2)

where T is a list like t1 . . . tn . . . tN , tn = 0,H,V , |T (l) =
0〉Aa = |φ+〉Aa , and C is constant. Consider any state |T =
t1 . . . .tl . . . tN 〉b|e0〉, which must be transformed to a superpo-
sition that consists of three classes: tl = 0, tl = H , and tl = V .
Note that for brevity we omit the bracket notations and use
the symbols φ+, H , V , 0, and � instead of |φ+〉, |H 〉, |V 〉,

|0〉, and |�〉, respectively, in the following. We can rewrite
Eq. (2) as

UEve|�ini〉⊗N
A |e〉 = 1√

2
φ+(l)Aa

[
�000(l)

b + �0HH
(l)
b + �0V V

(l)
b

]
+ 1

2
H

(l)
Aa

[
�H00(l)

b + �HHH
(l)
b + �HV V

(l)
b

]
+ 1

2
V

(l)
Aa

[
�V 00(l)

b + �V HH
(l)
b + �V V V

(l)
b

]
,

(3)

where the symbol (l) represents the lth mode we have
considered, and � represents the arbitrary state of all particles
of n �= l and Eve’s ancilla. The exact meaning of �XY ,
X,Y = 0,H,V is the quantum state of the whole system except
the lth mode b, A, and a, corresponding to the case where the
state of mode b is initially X and then changes to Y when it
enters Bob’s security zone.

We must point out that although Eve’s unitary operation
UEve on the N modes b and ancilla is arbitrary and impossible
to give in a definite mathematic form, Eq. (3) is still valid for
any possible attack since we consider that the quantum state
�XY , X,Y = 0,H,V can be arbitrary.

In the next step Bob applies UBob to the N b modes, B

and B1. The result of Bob’s operation can be rewritten like
this:

UBob

[
1√
2

(HB + VB)0B1

]⊗N

UEve|�ini〉⊗N
A |e0〉

= 1

2
φ

+(l)
Aa

{
�00

[
H

(l)
B + V

(l)
B

]
0(l)

B10(l)
b

+�0H

[
H

(l)
B H

(l)
B10(l)

b + V
(l)
B 0(l)

B1H
(l)
b

]
+�0V

[
H

(l)
B 0(l)

B1V
(l)
b + V

(l)
B V

(l)
B10(l)

b

]}
+ 1

2
√

2
H

(l)
Aa

{
�H0

[
H

(l)
B + V

(l)
B

]
0(l)

B10(l)
b

+�HH

[
H

(l)
B H

(l)
B10(l)

b + V
(l)
B 0(l)

B1H
(l)
b

]
+�HV

[
H

(l)
B 0(l)

B1V
(l)
b + V

(l)
B V

(l)
B10(l)

b

]}
+ 1

2
√

2
V

(l)
Aa

{
�V 0

[
H

(l)
B + V

(l)
B

]
0(l)

B10(l)
b

+�V H

[
H

(l)
B H

(l)
B10(l)

b + V
(l)
B 0(l)

B1H
(l)
b

]
+�V V

[
H

(l)
B 0(l)

B1V
(l)
b + V

(l)
B V

(l)
B10(l)

b

]}
. (4)

Third, another unitary transformation, U ′
Eve, will be

applied to all modes b and � by Eve. We note that
although U ′

Eve is arbitrary, without loss of generality we
can assume that U ′

Eve�XY Z
(l)
b = �XYZ00(l)

b + �XYZHH
(l)
b +

�XYZV V
(l)
b , where X,Y,Z = 0,H,V , since the state �ABCD

can be viewed as an arbitrary state. For simplicity, we
consider that Alice’s and Bob’s detectors never click twice
in one communication. This condition can be justified in
practical cases, due to the lower dark counts of the SPD.
Hence, we obtain that �0H and �0V must be a 0 vector,
and U ′

Eve�000(l)
b = �00000(l)

b , U ′
Eve�HH 0(l)

b = �HH000(l)
b ,

U ′
Eve�HV 0(l)

b = �HV 000(l)
b , U ′

Eve�V H 0(l)
b = �V H000(l)

b , and
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U ′
Eve�V V 0(l)

b = �V V 000(l)
b . With these assumptions, we can

give the state when the lth mode B returns to Alice’s security
zone:

|�〉ABE = U ′
EveUBob

[
1√
2

(HB +VB)0B1

]⊗N

UEve|�ini〉⊗N
A |e0〉

= 1

2
φ

+(l)
Aa �00

[
H

(l)
B + V

(l)
B

]
0(l)

B10(l)
b

+
∑

x

1

2
√

2
H

(l)
Aa

{[
H

(l)
B + V

(l)
B

]
0(l)

B1�H00xx
(l)
b

+H
(l)
B H

(l)
B1�HH000(l)

b + V
(l)
B 0(l)

B1�HHHxx
(l)
b

+H
(l)
B 0(l)

B1�HV V xx
(l)
b + V

(l)
B V

(l)
B1�HV 000(l)

b

}
+

∑
x

1

2
√

2
V

(l)
Aa

{[
H

(l)
B + V

(l)
B

]
0(l)

B1�V 00xx
(l)
b

+H
(l)
B H

(l)
B1�V H000(l)

b + V
(l)
B 0(l)

B1�V HHxx
(l)
b

+H
(l)
B 0(l)

B1�V V 0xx
(l)
b + V

(l)
B V

(l)
B1�V V 000(l)

b

}
. (5)

Here, P {X} = |X〉〈X| and x in the summation notation must
be 0,H,V .

We define |K〉� , K = 0,1,2, . . . , is a set of well-defined
basis for all � states, and CK (ABCD) =� 〈K|�ABCD〉,
A,B,C,D = 0,H,V . According to the foregoing assumptions
and Eq. (4), we may give the reduced density matrix for the
lth particles A, B, and B1 and modes a and b in the following
equation:

ρ
(l)
AB = tr�(|�〉ABE〈�|) =

∑
K

�〈K|�〉ABE〈�|K〉�

= 1

4

∑
K

P

{
φ

+(l)
Aa [(HB + VB)0B1CK (0000)0b]

+ 1√
2
HAa

∑
x

[(HB + VB)0B1CK (H00x)xb

+HBHB1CK (HH00)0b + VB0B1CK (HHHx)xb

+HB0B1CK (HV V x)xb + VBVB1CK (HV 00)0b]

+ 1√
2
VAa

∑
x

[(HB + VB)0B1CK (V 00x)xb

+HBHB1CK (V H00)0b + VB0B1CK (V HHx)xb

+HB0B1CK (V V V x)xb + VBVB1CK (V V 00)0b]

}
.

(6)

Note that the unitarity of Eve’s operation and the assumption
U ′

Eve�000(l)
b = �00000(l)

b must result in
∑

K |CK (0000)|2 = 1.
Now the effective operation done by Alice can be described
as H (V )a → √

η(H (V )1 + iH (V )2)/
√

2 and H (V )b →
[iH (V )1 + H (V )2]/

√
2.

For simplicity, we define α
(l)
K = CK (0000),

β
(l)
K = iCK (H00H ) + iCK (HV V H ), β

′(l)
K = iCK (V 00V ) +

iCK (V HHV ), ξ
(l)
K = iCK (H00H ) + iCK (HHHH ), and

ξ
′(l)
K = iCK (V 00V ) + iCK (V V V V ). If Bob gets |0〉B1 and

Alice gets |s1〉s in step 4 of the EDP, the subsystem of A, B,

and mode 1 will be projected into

ρ
′(l)
AB1 = 1

�(l)

∑
K

P
{
HAHBH1

(√
ηα

(l)
K + β

(l)
K

)
+VAVBV1

(√
ηα

(l)
K + β

′(l)
K

)
+HAVBH1

(√
ηα

(l)
K + ξ

(l)
K

)
+VAHBV1

(√
ηα

(l)
K + ξ

′(l)
K

)}
, (7)

where �(l) is the normalization constant. Now we can ana-
lyze the bit error rate and phase error rate of ρ

′(l)
AB1.

Define |φ+〉AB1 = (HAHBH1 + VAVBV1)/
√

2, |φ−〉AB1 =
(HAHBH1 − VAVBV1)/

√
2, |ψ+〉AB1 = (HAVBH1 + VAHB

V1)/
√

2, and |ψ−〉AB1 = (HAVBH1 − VAHBV1)/
√

2; we can
deduce the bit error rate, e

(l)
bit =AB1 〈ψ+|ρ ′(l)

AB1|ψ+〉AB1 +AB1

〈ψ−|ρ ′(l)
AB1|ψ−〉AB1, and the phase error rate, e

(l)
ph =AB1 〈φ−|

ρ
′(l)
AB1|φ−〉AB1 +AB1 〈ψ−|ρ ′(l)

AB1|ψ−〉AB1.
With the expression of ρ

(l)
AB we can deduce the following

probabilities for the lth communication:

2Prob(l)(HAVB0B1H1) = 1

16

∑
K

∣∣√ηα
(l)
K + ξ

(l)
K

∣∣2
,

Prob(l)(HAVB0B1H2) = 1

16

∑
K

∣∣√ηα
(l)
K − ξ

(l)
K

∣∣2
,

2Prob(l)(VAHB0B1V1) = 1

16

∑
K

∣∣√ηα
(l)
K + ξ

′(l)
K

∣∣2
,

Prob(l)(VAHB0B1V2) = 1

16

∑
K

∣∣√ηα
(l)
K − ξ

′(l)
K

∣∣2
,

(8)
2Prob(l)(HAHB0B1H1) = 1

16

∑
K

∣∣√ηα
(l)
K + β

(l)
K

∣∣2
,

Prob(l)(HAHB0B1H2) = 1

16

∑
K

∣∣√ηα
(l)
K − β

(l)
K

∣∣2
,

2Prob(l)(VAVB0B1V1) = 1

16

∑
K

∣∣√ηα
(l)
K + β

′(l)
K

∣∣2
,

Prob(l)(VAVB0B1V2) = 1

16

∑
K

∣∣√ηα
(l)
K − β

′(l)
K

∣∣2
.

Recall that
∑

K |αK |2 = 1,
∑

K |√ηα
(l)
K + β

(l)
K |2/16 =

2Prob(l)(HAHB0B1H1), and
∑

K |√ηα
(l)
K − β

(l)
K |2/16 =

Prob(l)(HAHB0B1H2), we obtain β(l) = ∑
K |β(l)

K |2 =
8[2Prob(l)(HAHB0B1H1) + Prob(l)(HAHB0B1H2)] − η. In
the same way, we obtain β ′(l) = ∑

K |β ′(l)
K |2 = 8[2Prob(l)

(VAVB0B1V1) + Prob(l)(VAVB0B1V2)] − η. Thanks to
Cauchy’s inequality, (

√∑
K |aK |2 − √∑

K |bK |2)2 �∑
K |aK + bK |2 � (

√∑
K |aK |2 + √∑

K |bK |2)2 always
holds for arbitrary complex numbers aK and bK . Because∑

K |ξ (l)
K − ξ

′(l)
K |2 = ∑

K |√ηα
(l)
K + ξ

(l)
K − √

ηα
(l)
K − ξ

′(l)
K |2/4,

we obtain that the upper bound of
∑

K |ξ (l)
K − ξ

′(l)
K |2 is
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ξ (l) = 8[
√

Prob(l)(HAVB0B1H1) +
√

Prob(l)(VAHB0B1V1)]2.
With these parameters, e

(l)
ph can be given by

e
(l)
ph = 1

2�(l)

∑
K

[∣∣β(l)
K − β

′(l)
K

∣∣2 + ∣∣ξ (l)
K − ξ

′(l)
k

∣∣2]

� 1

2�(l)
[(

√
β(l) +

√
β ′(l))2 + ξ (l)]. (9)

Though e
(l)
ph has been given, we cannot give the overall eph

since e
(l)
ph may be arbitrarily correlated with previous l − 1

events. Thanks to Azuma’s inequality [15,16], for sufficiently
large N pairs of A, B and 1, differences between eph and∑N

l=1 e
(l)
ph/N are arbitrary small. Therefore, we obtain the

overall phase error rate eph = ∑N
l=1 e

(l)
ph/N .

Also according to Azuma’s inequality, we have that β �∑N
l=1 β(l)/N = 8[2Prob(HAHB0B1H1) + Prob(HAHB0B1H2)]

− η, β ′ �
∑N

l=1 β ′(l)/N = 8[2Prob(VAHB0B1V1) +
Prob[VAHB0B1V2)] − η, and

∑N
l=1 ξ (l)/N �

8[
√

Prob(HAVB0B1H1) + √
Prob(VAHB0B1V1)]2 � ξ al-

ways hold when N is sufficiently large. Recalling that∑
K |α(l)

K |2 = 1, we obtain

�(l) =
∑
K

(∣∣√ηα
(l)
K + β

(l)
K

∣∣2 + ∣∣√ηα
(l)
K + β

′(l)
K

∣∣2

+ ∣∣√ηα
(l)
K + ξ

(l)
K

∣∣2 + ∣∣√ηα
(l)
K + ξ

′(l)
K

∣∣2)
(10)

� (
√

η −
√

β(l))2 + (
√

η −
√

β ′(l))2.

Therefore, the overall phase error rate can be bounded through
the inequality

eph =
N∑

l=1

e
(l)
ph/N

� 1

N

N∑
l=1

min

{
(
√

β(l) +
√

β ′(l))2 + ξ (l)

2[(
√

η −
√

β(l))2 + (
√

η −
√

β ′(l))2]
,1

}

� 1

N

N∑
l=1

[
min

{
β(l)

(
√

η −
√

β(l))2
,1

}

+ min

{
β ′(l)

(
√

η −
√

β ′(l))2
,1

}

+ min

{
ξ (l)

4(
√

η −
√

β(l))2
,1

}

+ min

{
ξ (l)

4(
√

η −
√

β ′(l))2
,1

}]
, (11)

where min{x,y} equals the smaller one of x and y. Now
the final problem is how to calculate the upper bound of
eph with constraints β = ∑N

l=1 β(l)/N , β ′ = ∑N
l=1 β ′(l)/N , and

ξ = ∑N
l=1 ξ (l)/N . Note that min{x/(

√
η − √

x)2,1} is a non-
convex function about x (x = β(l),β ′(l)). And it is easy to verify
that

∑N
l=1 min{ξ (l)/4(

√
η −

√
β(l))2,1} will be maximized

when all the denominators are equal. Hence, we can obtain
the following upper bound of eph:

eph � 4β + 4β ′

η
+ ξ

4(
√

η − √
β)2

+ ξ

4(
√

η − √
β ′)2

. (12)

In fact, if there is no Eve’s attack, and no channel noises,
Alice and Bob must find 2Prob(HAHB0B1H1) = η/16 and
Prob(HAHB0B1H2) = η/16, and thus β = 0. In the same way
we obtain β ′ = 0, ξ = 0. Thus pure maximal entanglement
states (HAHBH1 + VAVBV1)/

√
2 can be shared between Alice

and Bob. Due to the equivalence of the N09 and the EDP, we
conclude that N09 is unconditionally secure in the noiseless
case. We must point out that the unconditional security is
under the assumption that Eve cannot control the transmission
efficiency of Alice’s mode a and the quantum efficiency of
Alice and Bob’s SPDs. This is different from BB84, which is
secure even if the efficiency of the detectors is controlled by
Eve.

We also consider a typical noise channel case, in which the
visibility is V and the polarization flip probability when the
photon is flying in the quantum channel is p. Then we may
obtain Prob(HAHB0B1H1) = η/32, Prob(HAHB0B1H2) =
η/16, Prob(HAVB0B1H1) = (1 − V )(1 − p)η/16, and
Prob(VAHB0B1V1) = (1 − V )(1 − p)η/16, from which we
can deduce that ebit = 2(1 − V )(1 − p)/[1 + 2(1 − V )(1 −
p)] and eph = (1 − V )(1 − p)/2. For example, let V = 0.98,
p = 0; then we find ebit = 3.85%, while eph = 1%. It is
interesting that eph may be smaller than ebit.

In this paper, we have proved the unconditional security of
the N09 protocol by considering its equivalence to an EDP
process. According to Ref. [17], our security proof is also
composable. By estimating the upper bound of the eph, we
obtain the key bit rate. We find that the security of the N09
protocol relies not only on the bit error rate but also on some
of the counting rates of the SPDs. We must point out that our
security analysis is in an ideal situation, in which we assume
that a perfect single-photon source is applied, Alice and Bob
can detect any type of Trojan horse attacks, mode a’s evolution
is perfect, and the efficiencies of SPDs are all constant. We
believe that our security analysis has given a solid foundation
for the real-life N09. That the phase error rate is possibly
lower than the bit error rate may be an advantage of the N09
protocol.
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