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Bell inequality tests of four-photon six-qubit graph states
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We now experimentally demonstrate a Y-shaped graph state with photons’ polarization and spatial modes as
qubits. Based on this state and a linear-type graph state, we report on the experimental realization of two different
Bell inequality tests, which represent higher violation than previous Bell tests.
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I. INTRODUCTION

Graph states are basic resources for one-way quantum
computation [1], quantum error correction [2], and studying
multiparticle entanglement [3]. Moreover, they provide a
test bed to investigate quantum nonlocality, that is, the
inconsistency between local hidden variable (LHV) theories
and quantum mechanics [4–8]. Considerable effort has been
devoted to designing different Bell inequalities for graph states
with many particles. Here, the aim is to find inequalities with
a high quantum mechanical violation, as this is related to
the detection efficiency required to perform a loophole-free
testing of Bell inequality; moreover, the Bell inequality with
a higher violation is more robust against noise. In these
studies, it has turned out that, for many kinds of graph
states, the violation of local realism increases exponentially
with the number of particles [7,8]. Experimental Bell tests
with four-qubit cluster or Greenberger-Horne-Zeilinger (GHZ)
states, which are examples of graph states, have been reported
recently [9–12].

In this paper, we report an experimental realization of
Y-shaped graph states Y6, which are produced using the
polarization and the spatial modes of four photons. Such states
are also called hyperentangled states and can be generated
with good quality and a high generation rate [11,13–18].
Based on this state and a linear-type one LC6, we demonstrate
two six-qubit Bell tests, which remarkably represent higher
violation than previous experiments on Bell tests. In addition,
we give a simple theoretical proof that they give the same high
violation of local realism as the six-qubit GHZ state with the
Mermin inequality [7], but their violation can be more robust
against decoherence in principle.

II. STATE PREPARATION

Let us first recall the notion of graph states. A graph state
|G〉 is specified by its stabilizer [3] (i.e., a complete set of
operators gi of which it is the unique joint eigenstate gi |G〉 =
|G〉 for all i), where

gi = Xi

⊗

j∈N(i)

Zj . (1)

Here, i is some vertex in a graph [see also Fig. 1(a)], and N (i)
denotes its neighborhood, that is, all vertices connected with
i. Furthermore, Xi and Zj denote the usual Pauli operators
acting on qubits i or j .

In the following, we demonstrate the creation of the
desired state. The graph corresponding to the Y-shaped graph
state is given in Fig. 1(a) (right), and the experimental setup
is shown in Fig. 1(b). First, we use spontaneous parametric
down-conversion [19,20] to create one entangled photon
pair (|H 〉1 |H 〉2 + |V 〉1 |V 〉2)/

√
2 and two single photons

|+〉 = (|H 〉 + |V 〉)/√2, where H,V denote horizontal and
vertical polarizations, and 1, 2 label the spatial modes of the
photons. Earlier, by using operations similar to fusion-II gates
between photons [21], we generate a state in

|LC4〉 = 1
2 [|H 〉1|H 〉3(|H 〉2|H 〉4 + |V 〉2|V 〉4)

+ |V 〉1|V 〉3(|H 〉2|H 〉4 − |V 〉2|V 〉4)], (2)

which is equivalent to a four-photon linear-type cluster state
under local unitary transformations, and here LC refers to the
linear-type cluster state [22]. Based on the state |LC4〉, we
apply two Hadamard gates on photons 2 and 4. Then, another
two qubits in spatial modes are added to construct the six-qubit
state. If a beam of photons enters a polarizing beam splitter
(PBS), the H -polarized one will follow one path, while the
V -polarized one will follow the other path. Here, we define
the first path as the photon’s H ′ spatial mode, and the latter one
as its V ′ spatial mode. After we place two PBSs in the outputs
of photons 1 and 4, the whole state will be converted to

|Y6〉 = 1
2 {|H 〉1|H 〉3|H 〉2|H 〉4|H ′〉1|H ′〉4

+ |H 〉1|H 〉3|V 〉2|V 〉4|H ′〉1|V ′〉4

+ |V 〉1|V 〉3|H 〉2|V 〉4|V ′〉1|V ′〉4

+ |V 〉1|V 〉3|V 〉2|H 〉4|V ′〉1|H ′〉4}
= 1

2 {|0〉1|0〉3|0〉2|0〉4|0〉5|0〉6

+ |0〉1|0〉3|1〉2|1〉4|0〉5|1〉6 + |1〉1|1〉3|0〉2|1〉4|1〉5|1〉6

+ |1〉1|1〉3|1〉2|0〉4|1〉5|0〉6}. (3)

This is equivalent to a Y-shaped six-qubit graph state up to
single-qubit unitary transformations.
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FIG. 1. (Color online) (a) The two graph states created. Pi

represents (polarization) qubit i, and S1 and S4 represent (spatial)
qubits 5 and 6, respectively. (b) Scheme of the experimental setup to
generate the desired graph states. Femtosecond laser pulses (≈200 fs,
76 MHz, 788 nm) are converted to ultraviolet and are transmitted
through two β-barium-borate crystals (2 mm), where two photon
pairs are generated. The observed twofold coincident count rate is
about 2.6 × 104/s. Two additional polarizers are inserted into the
arms of the second pair to prepare two single-photon states. (c) The
measurement setups for the desired observables. The first setup is for
x measurement of spatial qubits when φ = 0, and for y measurement
of spatial qubits when φ = 90◦. The second one is for z measurement
of spatial qubits by using blocks in the two paths of the beam splitter
(BS). The third one is for X,Y,Z measurements of polarization qubits
by using half-wave plates (HWPs), quarter-wave plates (QWPs), and
PBSs.

In the earlier procedure, if we apply twoH gates on photons
1 and 4 instead of 2 and 4, the state will be a linear-type graph
state [23] [see Fig. 1(a) (right)],

|LC6〉 = 1√
8
{[|0〉5|0〉1 + |1〉5|1〉1]|0〉3 ⊗ [|0̃〉2|0〉4|0〉6

+ |1̃〉2|1〉4|1〉6] + [|0〉5|0〉1 − |1〉5|1〉1]|1〉3

⊗ [|1̃〉2|0〉4|0〉6 + |0̃〉2|1〉4|1〉6]}, (4)

where |0̃〉 = (|0〉 + |1〉)/√2, and |1̃〉 = (|0〉 − |1〉)/√2. |LC6〉
is equivalent to a six-qubit linear-type graph state up to single-
qubit unitary transformations.

III. RESULTS OF THE STATE FIDELITY

In order to measure the states’ fidelities and to test
the Bell inequalities, we need to implement the desired
local measurements. The measurement setups are shown in
Fig. 1(c), which are similar to Refs. [11,16]. Here, and
in the following, x,y,z refer to the Pauli matrices for the
spatial modes, and X,Y,Z refer to the Pauli matrices of the
polarization modes. The measurements of x,y observables are
implemented by overlapping different modes of a photon on
a BS, and the measurement of z observable is implemented
by blocking one or the other input path of the BS. The
observables of polarization qubits are measured by placing
a combination of a QWP, an HWP, and a PBS in front of
the single-photon detectors. Although a photon’s polarization
and spatial information are read out simultaneously, they are
independent measurements and have no influence on each
other.

The measurements of spatial modes require single-photon
interferometers as shown in Fig. 2(a). This interferometer
is very easily affected by its environment and can only be
stable for a few minutes. In our experiment, an ultrastable
Sagnac-ring technique [24,25] is applied to satisfy the required
stability. First, we design a crystal combining a PBS and a BS
as shown in Fig. 2(c). Then, we construct the single-photon
interferometer in a Sagnac-ring configuration [see Fig. 2(b)].
The H -polarized component is transmitted and propagated
through the interferometer in the counterclockwise direction,
while the V -polarized component is reflected and propagated
through the interferometer in the clockwise direction. Then,
the interference happens when the two components meet
at the BS. Such an interferometer can be stable for at
least 10 h [18].

To estimate the fidelity of the prepared states, we consider
an observable B with the property 〈φ|B|φ〉 � 〈φ|Y6〉〈Y6|φ〉 =
FY6 for any |φ〉. This means 〈B〉expt is a lower bound
of the fidelity of the experimentally produced state [26].
In the experiment, we have chosen the observable B in
Ref. [27] and find 〈B〉expt = 0.63 ± 0.04, clearly exceeding
1/2 and, thus, proving the genuine six-qubit entanglement of
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FIG. 2. (Color online) Apparatuses for constructing a Sagnac-
ring interferometer in order to measure all the necessary observables
of spatial modes. (a) The original scheme of the single-photon
interferometer, which is easily affected by the environment and
can be stable for only several minutes. (b) Our single-photon
interferometer in the Sagnac-ring model. Two special prism glasses
are inserted to change optical path delay in order to obtain the
desired phase. (c) A special crystal combining the function of
BS and PBS.
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TABLE I. Experimental values of the observables on |LC6〉
required in the test of the optimal Bell inequality. Each experimental
value is obtained by measuring in an average time of 400 s and
considers the Poissonian counting statistics of the raw detection
events for the experimental errors. The order of the qubits is
5-1-3-2-4-6.

Observable Value Observable Value

xXZZXx 0.61 ± 0.04 −xXZZYy 0.60 ± 0.04
xXIYYx 0.63 ± 0.04 xXIYXy 0.62 ± 0.04
−yYZZXx 0.55 ± 0.04 yYZZYy 0.56 ± 0.04
−yYIYYx 0.65 ± 0.03 −yYIYXy 0.56 ± 0.04
xYYIXx 0.58 ± 0.04 −xYYIYy 0.63 ± 0.04
xYXXYx 0.58 ± 0.04 xYXXXy 0.60 ± 0.04
yXYIXx 0.55 ± 0.04 −yXYIYy 0.56 ± 0.04
yXXXYx 0.57 ± 0.04 yXXXXy 0.60 ± 0.04

the state [26]. The fidelity of the linear-type graph state is
above 0.61 ± 0.01 [23], also proving the genuine six-qubit
entanglement.

IV. RESULTS OF OPTIMAL BELL INEQUALITIES

The optimal Bell inequality (i.e., the one having the highest
resistance to noise) involving only stabilizing observables for
the LC6 state in the form of Eq. (4) is

〈
BLC6

〉 = 〈(1 + g5)g1(1 + g3)(1 + g2)g4(1 + g6)〉 � 4, (5)

where g5 = z5Z1, g1 = x5X1Z3, g3 = Z1X3Z2, g2 =
Z3X2Z4, g4 = Z2X4x6, and g6 = Z4z6 [6]. These gi are
stabilizing operators of the linear-type graph state (i.e., the
graph state is an eigenstate of all the gi with eigenvalue +1),
as one can easily check. This writing of the Bell operator is
only a shorthand notation, and the required measurements for
the Bell test are the ones that arise after multiplying out BLC6

(see Table I). As all the terms in the Bell operator are products
of stabilizing operators, the cluster state is an eigenstate of
all these terms, and the value for the ideal cluster state is the
algebraic maximum 〈BLC6〉 = 16.

TABLE II. Experimental values of all the observables on |Y6〉 for
the optimal Bell inequality measurement. Each experimental value is
obtained by measuring in an average time of 400 s, and propagated
Poissonian statistics of the raw detection events are also considered.
The order of the qubits is 1-3-2-4-5-6.

Observable Value Observable Value

−XXIYxy 0.62 ± 0.04 XYIYyy 0.59 ± 0.05
YYIYxy 0.58 ± 0.05 YXIYyy 0.61 ± 0.05
XXIXxx 0.56 ± 0.04 −XYIXyx 0.54 ± 0.04
−YYIXxx 0.61 ± 0.04 −YXIXyx 0.63 ± 0.04
−YXZXxy 0.57 ± 0.05 YYZXyy 0.62 ± 0.04
−XYZXxy 0.55 ± 0.04 −XXZXyy 0.58 ± 0.04
−YXZYxx 0.54 ± 0.04 YYZYyx 0.57 ± 0.05
−XYZYxx 0.59 ± 0.04 −XXZYyx 0.54 ± 0.04

Similarly, the optimal stabilizer Bell inequality for the Y6

state is [6]
〈
BY6

〉 = 〈(1 + g3)g1(1 + g5)(1 + g2)g4(1 + g6)〉 � 4, (6)

where now g3 = Z1Z3, g1 = X1X3X2x5, g5 = Z1z5, g2 =
Z1Z2Z4, g4 = Z2Z4z6, and g6 = Z4z6. Again, the value for
the pure Y6 state is 〈BY6〉 = 16.

A remarkable feature of these Bell inequalities is that the
LC6 state and the Y6 state violate local realism by a factor
of 4, which is also the violation for the six-qubit GHZ state,
if only stabilizing elements are considered (the optimal Bell
inequality is then the Mermin inequality [6]). However, the
LC6 and Y6 states are more resistant to decoherence than
the GHZ6 state [28]. In fact, one can directly see that if
decoherence acts as a depolarizing channel on each qubit,
the violation of the Mermin inequality for the GHZ6 state
decreases faster than for the graph states considered here.
Namely, if noise such as � 	→ p� + (1 − p)1/2 is acting on
each qubit separately, the value of the Mermin inequality
decreases with p6, as the Mermin inequality consists only of
full correlation terms. In our Bell inequalities, however, half
of the terms contain the identity on one qubit (see Tables I and
II), which means that they decay only with p5, and the total
violation decreases such as (p6 + p5)/2. This proves that the
nonlocality vs decoherence ratio of GHZ states is not universal:
There are states with a similar violation, which are more robust
against decoherence.

The experimental results are given in Tables I and II. From
these data, we find

〈
BLC6

〉
expt = 9.40 ± 0.16,

(7)〈
BY6

〉
expt = 9.30 ± 0.17,

which violate the classical bound by 34 and 31 standard
deviations.

Let us consider the ratioD between the quantum value of the
Bell operator and its bound in LHV theories. Experimentally,
we have

DLC6 = 〈
BLC6

〉
expt

/〈
BLC6

〉
LHV = 2.35 ± 0.04,

(8)
DY6 = 〈

BY6

〉
expt

/〈
BY6

〉
LHV = 2.33 ± 0.04.

These are larger values compared to previous experiments with
similar Bell inequalities for four-qubit cluster states: There,
values of D from 1.29 to 1.70 have been achieved [9–11];
using a Bell inequality with nonstabilizer observables for the
four-qubit GHZ state, D = 2.22 has been reached [12]. To
our knowledge, these were the best values obtained so far.
Therefore, despite having a lower fidelity than in the four-qubit
experiments, we find a higher violation of local realism, which
demonstrates that the amount of nonlocality can increase with
the number of qubits. This might help in designing loophole-
free Bell inequality tests [29].

We would like to add that the generation of the graph
states and the observation of the Bell inequality violations
using hyperentanglement implies that some of the qubits are
carried by the same photon, and, therefore cannot, be spatially
separated. So our setup cannot be used to close the locality
loophole. However, as the measurements on the polarization

042334-3



WEI-BO GAO et al. PHYSICAL REVIEW A 82, 042334 (2010)

qubit and the spatial qubit are independent, such experiments
can be viewed as a test of the Kochen-Specker theorem [30,31]
in order to refute noncontextual hidden variable models.

V. CONCLUSION

We have created a Y-shaped four-photon six-qubit graph
state entangled in the photons’ polarization and spatial modes
and proved its genuine six-qubit entanglement. Furthermore,
we have implemented two multiqubit Bell tests based on them,
which show the highest violation of Bell inequality so far. It is
interesting to investigate the relationship between decoherence

and nonlocality further. The aim is to characterize states, which
show a high violation of local realism, while still being robust
against decoherence.
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