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Quantum-walk-based search and centrality
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We study the discrete-time quantum-walk-based search for a marked vertex on a graph. By considering various
structures in which not all vertices are equivalent, we investigate the relationship between the successful search
probability and the position of the marked vertex, in particular, its centrality. We find that the maximum value of
the search probability does not necessarily increase as the marked vertex becomes more central, and we investigate
an interesting relationship between the frequency of the successful search probability and the centrality of the
marked vertex.
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I. INTRODUCTION

Quantum walks are the quantum analog of classical random
walks. Rather than stepping with a certain probability between
adjacent vertices of a graph, a quantum walker is characterized
by a set of probability amplitudes associated with vertices of
the graph [1]. The strikingly different behavior of quantum
walks from their classical counterparts has already been
harnessed in the formulation of quantum-walk-based algo-
rithms that can outperform corresponding classical algorithms
[2–4]. While the continued interest in quantum walks is
largely due to these algorithmic applications in the context
of quantum computation, the quantum walk also forms a
powerful and flexible model of the evolution of a coherent (or
partially decoherent) quantum system [5–9]. Since analytical
techniques are currently being developed to analyze quantum
walks, their application to diverse problems in physics will
likely become increasingly common. Given also the usefulness
of classical random walks in studying transport on complex
structures, it is interesting from a physical standpoint to
continue to characterize quantum walks on graphs.

Searching is one of the major problems in computer science
and a large amount of research in the field of theoretical
quantum computation has been in the development of general
algorithms for fast searching of databases. Quantum search
algorithms were first introduced by Grover to search an
unsorted database [10,11] and later extended to quantum-walk-
based search algorithms for specific database topologies in
both the discrete-time [12–14] and the continuous-time [15]
cases. These studies focused on highly symmetric structures
such as hypercubic lattices, complete graphs, and bipartite
graphs and found that the topology of the database was crucial
in determining the efficiency of the search. An important
difference between the discrete- and the continuous-time
formulations of quantum walks is the extra “coin” degrees of
freedom in the discrete-time case. Ambainis et al. [13] demon-
strated that discrete-time search can achieve full quadratic
speedup relative to classical search for hypercubic lattices in
three or more dimensions and it outperforms continuous-time
search for lattices in two spatial dimensions. As shown
by Childs and Goldstone [15], continuous-time search on
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the hypercube only achieves the full quadratic speedup for
d-dimensional lattices where d > 4.

A recent paper by Agliari et al. [16] considers continuous-
time quantum-walk-based search on fractals and thus rep-
resents the first effort to characterize the search procedure
on structures that are not vertex-transitive. An interesting
phenomenon which arises when studying structures where
not all vertices are equivalent is that the successful search
probability depends on the location of the marked vertex. In
their study of quantum search on Cayley trees, T fractals,
and dual Sierpiński gaskets, Agliari et al. assumed that a
peripheral vertex would be more difficult to find than a more
central vertex, that is, the maximum success probability for a
central vertex would be greater than for a peripheral vertex. In
this work, we analyze this idea in more detail by studying how
the maximum success probability varies with the centrality
of the marked vertex. We find that in some simple cases,
the maximum success probability does indeed increase with
increasing centrality. However, we show that, in general, such
a relationship does not hold.

The efficiency of quantum-walk-based search relative to
classical search is determined not only by the maximum
success probability, but also by the time taken to reach the
maximum. We therefore analyze the lowest frequency of the
success probability as an indicator of the time complexity of
the search. Our results suggest that this frequency is correlated
with the centrality for a larger class of graphs than the
maximum success probability and we discuss exceptions in
terms of local structure of these graphs.

In this article, we study discrete-time quantum-walk-based
search on non-vertex-transitive structures and show that the
frequencies present in the success probability are determined
by the global structure of the graph as well as the centrality
and local structure surrounding the marked vertex. Our
derivation in the Appendix contains an analytical solution for
discrete-time quantum-walk-based search on a finite line with
two reflecting boundaries, which provides the characteristic
frequencies of the success probability.

The article is organized as follows. Section II provides
an introduction to quantum walks and quantum-walk-based
search. Section III describes the measure of centrality used. In
Sec. IV we describe the structures considered and in Secs. V,
VI, and VII we present our analytical and numerical results.
Finally, Sec. VIII contains discussion and conclusions. In the
Appendix we provide details of our analytical calculations.
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II. QUANTUM-WALK-BASED SEARCH ON GRAPHS

Let G(V,E) be an undirected graph with vertex set
V = {v1,v2,v3, . . .} and edge set E = {(vi,vj ),(vk,vl), . . .}
consisting of unordered pairs of connected vertices. If there
are d edges incident on a vertex vi , we say that vi has degree d.
As described in [17] and [18], HP is defined as the position
Hilbert space, which is spanned by an orthonormal basis of
vertex states {|vi〉 : vi ∈ V }. For a graph of maximum degree d,
HC is defined as the d-dimensional coin Hilbert space spanned
by the orthonormal basis of coin states {|ci〉 : i = 1, . . . ,d},
representing the outgoing edges at a vertex vi . The discrete-
time quantum walk considered here takes place on the
subnodes of the graph, which are represented by product states
of the form |v〉 ⊗ |c〉 = |v,c〉 ∈ HP ⊗ HC . Note that if G is
not d-regular, then there are vertices of degree di < d. In this
case the states {|vi,c〉 : c > di} do not physically represent
subnodes of the graph G and are not occupied at any stage of
a quantum walk on G.

Let one step of the discrete-time quantum walk on the graph
be the application of the unitary time-evolution operator U =
S(1 ⊗ C), where S is the shift operator and C is the coin
operator. S acts on the extended position space HP ⊗ HC as

S|vi,cj 〉 = |vj ,ci〉, (1)

where |vi,cj 〉 is the subnode state corresponding to the edge
(vi,vj ) at vertex vi . The coin operator C at a vertex vi of
degree di can be represented by a di × di matrix, which mixes
the probability amplitudes of the subnode states of vi . We
mainly consider symmetric coin matrices, so that the ordering
of the subnodes at a particular vertex is unimportant. In the
Appendix, when we reduce the quantum walk on a Cayley
tree to a one-dimensional walk, we need a biased coin. The
labeling will then become important and will be made explicit.

We follow the procedure introduced by Shenvi et al. [12]
for the discrete-time quantum-walk-based search for a marked
item. The quantum walker initially has equal probability to
be found at each vertex; that is, the state |�0〉 is an equal
superposition of all vertex states |vi〉 ∈ HP . The probability
amplitude at each vertex is then divided equally between all
subnodes. It should be noted that for a graph which is not
degree-regular, this is not the same as an equal superposition
of all subnode states. Formally, the initial state is given by

|�0〉 = 1√
N

N∑
i=1

di∑
j=1

1√
di

|vi,cj 〉. (2)

Now consider a subset M ⊂ V of marked vertices. The
marking is intended to represent a “quantum oracle” and
is implemented as a perturbation to the coin operator at
the marked vertices. A precise description of an oracle in
this context is given in [12]. The quantum search procedure
proceeds via the repeated application of the perturbed time-
evolution operator, U ′ = S(1 ⊗ C ′), where the coin operator
at vertex vi is given by

(C ′
i)mn =

{ −δmn + 2/di, vi /∈ M,

−δmn, vi ∈ M,
(3)

for m,n = 1, . . . ,di .

The coin operator in Eq. (3) for vi /∈ M is referred to as
the Grover coin. For all examples in this paper, the set M

will contain only one vertex. The success probability Ps(t) is
defined as the probability of finding the quantum walker at the
marked vertex vm at time t . This is given by

Ps(t) := |〈vm|�(t)〉|2 = |〈vm|(U ′)t |�0〉|2, where vm ∈ M.

(4)

The time-averaged success probability is denoted 〈Ps〉. As
shown in Eq. (4), Ps(t) is determined by unitary time evolution
from the initial state. Reversibility of unitary processes implies
that Ps(t) does not converge for large t but instead oscillates,
which allows us to define the search frequency ωs as the
lowest frequency present in the success probability. In graphs
for which quantum walks are not exactly periodic, this is
computed from the power spectrum of Ps(t) by selecting the
lowest frequency above noise. Assuming that the sample time
is sufficient that the Fourier transform has converged, we define
the threshold as 10% of the highest peak present in the power
spectrum. For the simple graphs studied here the power spectra
computed contain only a few frequencies and this functional
definition is adequate. We expect, however, that for graphs
with less symmetry the threshold may need to be modified.

Using ωs it is possible to determine the “period” of Ps(t),
that is, the approximate integer time difference between
minima in Ps(t). To be of any use in the search context the
search probability must reach a high value during the first
period. We therefore quantify the success of the search as
Pmax := max{Ps(t) : 1 � t � 2π/ωs,t ∈ Z}.

The quantum search procedure resembles the wavelike
propagation of a (phase-inverted) perturbation over a graph.
The perturbation originates from the marked vertex at each
time step and results in time-dependent amplitude amplifica-
tion at the marked vertex, measured by Ps(t). The maxima
in Ps(t) occur when the probability amplitudes constructively
interfere at the marked vertex, which is highly dependent on
the structure of the graph. The amplitude and time dependence
of Ps(t) are therefore determined by both the local and
the global structure of the graph. In turn, these quantities may
be used to provide information about this underlying structure.
Indeed, using a similar procedure, Douglas and Wang [19] gave
evidence that the information contained in these amplitudes
was sufficient to distinguish pairs of nonisomorphic graphs
for all cases tested. It is reasonable therefore to expect that the
centrality of a vertex should affect both Pmax and ωs .

III. CENTRALITY

We now define the measure of centrality considered in
this paper. The random walk centrality (RWC), introduced
by Noh and Reiger [20], is a measure of centrality designed
to represent the relative speed with which a given vertex can
receive and send information over a network. Pij (t) is defined
as the probability of a classical random walker starting at vertex
vi to be at vertex vj after a time t . The RWC of a vertex vj is
then defined as

RWCj := P ∞
j

τj

, (5)
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where τj = ∑∞
t=0{Pjj (t) − P ∞

j } and P ∞
j := limt→∞ Pij (t),

which is the same for all i. Pij (t) is calculated using the master
equation,

Pij (t + 1) =
∑

k

Akj

dk

Pik(t). (6)

Here A is the adjacency matrix of the graph and dk is the
degree of vertex vk . This definition was proposed in the context
of complex networks and there is an implicit assumption that
the expression for τj converges, that is, limt→∞ Pij (t) exists.
The master equation [Eq. (6)] describes a random walker that
changes its location at each time step. Therefore, for graphs
which contain closed walks of only even length, only sites at
even distances from the start site are occupied after even times.
In this case the probability distribution does not converge,
which prevents the calculation of τj [Eq. (5)]. This difficulty
is easily overcome by redefining the master equation in terms
of the lazy random walk, such that the lazy random walker
only moves at each time step with a probability of 1/2. This
leads to the following master equation:

Pij (t + 1) = 1

2

∑
k

(
δkj + Akj

dk

)
Pik(t). (7)

In this case, limt→∞ Pij (t) = dj/N for all connected graphs
regardless of the initial state [21]. On the Sierpiński gasket,
where both the lazy RWC and the normal RWC are defined,
we find that they show the same qualitative behavior. For the
remainder of the paper, RWC refers to the lazy RWC. RWC
is an example of a closeness centrality measure, in that larger
values of RWC are associated with closeness to the center of
a network [22].

IV. TOPOLOGY AND CONNECTIVITY
OF GRAPHS CONSIDERED

We now describe the structures considered in this study.
The nth generation d-Cayley tree (as shown in Fig. 1) is
a tree of n levels in which all vertices in the interior have
degree di = d. The outermost layer of the tree is called the
surface. All vertices on the surface are called leaves and
have di = 1. The total number of vertices in a Cayley tree is
N = [d(d − 1)n − 2]/(d − 2). The structure is defined more

1
2

5

11

FIG. 1. The third generation 3-Cayley tree. Vertices are ranked
and labeled according to their random walk centrality. Nonlabeled
vertices are structurally equivalent to one of the labeled vertices.

16

15
14

FIG. 2. (Color online) Third-generation regular hyperbranched
fractal of functionality f = 3 (RHF3,3). Cul-de-sac vertices are
highlighted.

rigorously in the Appendix. Quantum walks on Cayley trees,
or the closely related “glued-trees” graph of Childs et al. have
been extensively studied in continuous time [16,23–26], and
discrete time [27–29], but not yet for discrete-time quantum
search using marking operators.

A first-generation regular hyperbranched fractal (RHF)
(as shown in Fig. 2) of functionality f is a star graph consisting
of a central vertex connected through f edges to f surface
vertices. To construct a second-generation RHF, f copies of the
first-generation RHF are connected to the core first-generation
RHF through a single leaf-leaf edge. This procedure is repeated
n times for an nth-generation RHF. The number of vertices in
an RHF therefore grows exponentially with the generation and
is given by the formula N = (f + 1)n. The maximum degree
of a vertex in an RHF is f . Star graphs (RHF1,f ) and other
RHFn,f have been studied previously for continuous-time
quantum walks in [30] and [31] but not for discrete-time
quantum walks.

While the first-generation Cayley trees and RHF1,f are
identical, the structures are distinct for n > 1. An important
difference in the context of this study is that for n > 2, RHFs
contain so-called cul-de-sac vertices, which are leaves that are
connected to main paths. Note that we do not consider the
leaves of the Cayley tree to be cul-de-sac vertices since their
neighbors do not lie on main paths.

We also study structures that contain more than one simple
path between all pairs of vertices. Specifically, we consider
the joined Cayley tree, the Husimi cactus, and the Sierpiński
gasket. The joined Cayley tree is obtained from the Cayley
tree by adding edges between surface vertices (as shown
in Fig. 3). For trees with d = 3 this results in a 3-regular
graph. The Husimi cactus (Fig. 4) is a dual structure to the
Cayley tree, constructed by placing a vertex at each edge
of the corresponding Cayley tree and connecting vertices
that represent adjacent edges in the Cayley tree [32]. The
second-generation Sierpinśki gasket is shown in Fig. 5 and
the structural details are explained in detail in [33]. The
number of vertices of an nth-generation Sierpiński gasket is
N = 3

2 (3n + 1).

V. QUANTUM SEARCH ON CAYLEY TREES

First, we provide an example of the success probabilities
obtained for two inequivalent vertices in a Cayley tree. We then
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FIG. 3. Third-generation joined 3-Cayley tree obtained from the
equivalent Cayley tree by connecting surface vertices. Vertices are
labeled as for the equivalent Cayley tree. Nonlabeled vertices are
structurally equivalent to one of the labeled vertices.

present analytical results for the success probability Ps(t) for
the d-Cayley tree when the central vertex is marked. Numerical
results are then presented for Pmax and ωs on various Cayley
trees when a noncentral vertex is marked. These results are
compared with the centrality of the marked vertex. For all
simulations in Secs. V, VI, and VII, the initial state is given
by Eq. (2).

A. Quantum-walk-based search characteristics

We begin with an example of the success probability
obtained on the third-generation 3-Cayley tree (structure
shown in Fig. 1). Figure 6(a) shows the success probability
Ps(t) as a function of time when the central vertex is marked.
Figure 6(b) shows Ps(t) for a peripheral marked vertex in the
same graph. Comparing these plots, it can be seen that Ps(t)
is quasiperiodic in both cases, with a smaller “period” when
the central vertex is marked in comparison with a peripheral
marked vertex. Ps(t) also has a greater maximum and average
amplitude for the central marked vertex. In the following,
we examine how the lowest frequency ωs and the maximum
amplitude Pmax vary on Cayley trees.

B. Central marked vertex

In the Appendix we show that a quantum walk on an nth
generation d-Cayley tree can be mapped to a one-dimensional

1

4
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22

FIG. 4. The N = 45 Husimi cactus obtained as a dual structure to
the fourth-generation 3-Cayley tree. Vertices are ranked and labeled
according to their random walk centrality. Nonlabeled vertices are
structurally equivalent to one of the labeled vertices.
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FIG. 5. (Color online) Second-generation Sierpiński gasket.
Vertices are ranked and labeled according to their random walk
centrality (RWC). Nonlabeled vertices are structurally equivalent to
one of the labeled vertices. Highlighted vertices are peripheral (least
central as measured by the RWC).

quantum walk. We then study a finite one-dimensional walk
with two reflecting boundaries to derive the following expres-
sion for ωs :

ωs = ωs(n,d) := arctan

(
2
√

dn−1 − 1

dn−1 − 2

)
(8)

for n = 2,3 and 3 � d < ∞.

This expression is plotted in Fig. 7(a) together with our
numerical results obtained by direct simulation of discrete-
time quantum search. The numerical and analytical results
are in perfect agreement. Finding analytical solutions for ωs

becomes more difficult for n � 4, as large matrices must be
diagonalized. For the second-generation Cayley tree (n = 2),
we are able to derive (see Appendix) the following expression
for Ps(t), valid for 3 � d < ∞:

|〈1|�(t)〉|2 = 1

4(1 + d2)
{1 + d2 + (d − 1)2 cos(πt)

− (d2 − 1) cos(ωst) + 2
√

d(d − 1) sin(ωst)

− (d2 − 2d − 1) cos[(π − ωs)t]

− 2
√

d(d − 1) sin[(π − ωs)t]}. (9)

As can be seen from Eq. (9), Ps(t) contains only three
frequencies: π , ωs , and π − ωs . It is interesting to note that
ωs(2,4) = π/3, which means that the only frequencies present
in Ps(t) are {π/3,2π/3,π}. Thus Ps(t) is exactly periodic with
period 6.

The search frequencies ωs(2,d) and ωs(3,d) are plotted in
Fig. 7(a). Although for fixed n the distance between the central
node and the surface is fixed, it can be seen from Fig. 7(a) that
ωs(n,d) decreases monotonically with increasing branching
rate. According to Eq. (8), for large d, ωs tends toward 0.
This is consistent with the results of Carneiro et al. [29], who
generalized a discrete-time formulation of Childs’ glued-trees
algorithm [23] to include arbitrary branching rate d and found
that as d → ∞, a quantum walker initially localized at the
central node of the tree oscillates between the central node
and the first level of the tree. While it is not strictly valid to
compare absolute values of RWC among different graphs, we
find numerically that the RWC of the central vertex of a Cayley
tree is also a monotonically decreasing function of d for fixed
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FIG. 6. (Color online) (a) Numerical results for the success probability Ps(t) for the third-generation 3-Cayley tree (structure shown in
Fig. 1) when the central vertex is marked (vertex 1). (b) Ps(t) for a peripheral marked vertex (vertex 11) on the same graph.

n, as shown in Fig. 7(b). In this sense, ωs shows the same
behavior as RWC for the central marked vertex of a Cayley
tree.

For n � 4 we have numerical results only for ωs , which
are shown in Fig. 8(a). The search frequency ωs on a Cayley
tree with a central marked vertex decreases as the number
of generations in the tree increases. Thinking of the search
procedure as generating a phase-inverted perturbation at the
center of the graph at each time step, these perturbations
must constructively interfere at the center of the graph to
produce a maximum in Ps(t). To constructively interfere, these
perturbations must be reflected at the surface, and thus the time
between maxima in Ps(t) depends on the distance between the
central vertex and the surface of the graph, which increases
with the number of generations, n. As shown in Fig. 8(b), the
RWC of the central vertex decreases monotonically with n for
fixed d and thus displays the same behavior as ωs for the Cayley
tree.

We now study how Pmax varies with d for a central marked
vertex in the second-generation Cayley tree. By evaluating
Eq. (9) at integers t ≈ π/ωs(2,d), we can find Pmax for
arbitrary d. The results are shown in Fig. 9 for 3 � d � 40.
Numerical results agree with our analytical results for 3 �
d � 10. Figure 9 shows that Pmax has a much more complex
dependence on d than was seen for ωs . This complex
dependence on d arises because the frequencies π , ωs(d), and

π − ωs(d) present in Ps(t) do not necessarily constructively
interfere within the first period for all d. While the RWC
and ωs both decrease with increasing branching rate, we see
that Pmax generally becomes larger as d increases. This can
be understood as arising from the greater localization of the
quantum walk close the central vertex as the branching rate
increases.

C. Noncentral marked vertices

The analysis in the Appendix is dependent on being able to
map the quantum walk on a Cayley tree to a walk on a line.
When a noncentral vertex is marked, the same mapping cannot
be used and we do not have analytical results.

Instead we present numerical results for Pmax and ωs

on Cayley trees where the marked vertex is not necessarily
central. Ps(t) was computed via direct application of U to
the probability amplitudes of the subnode states |vi,cj 〉 on
which the quantum walk takes place. Numerical methods
were then used to compute the discrete Fourier transform
and ωs was obtained as defined in Sec II. For a given graph,
this was repeated for all possible positions of the marked
vertex. Figure 10 shows the dependence of Pmax and ωs on
the centrality of the marked vertex for the third-generation
Cayley tree with d = 3 (structure shown in Fig. 1). As shown
in Fig. 10, a more central vertex in a Cayley tree gives rise

b
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FIG. 7. (Color online) (a) Analytically obtained curves for the search frequency ωs(n,d) on a Cayley tree of n = 2 and 3 levels with a central
marked vertex. Also plotted are numerical data obtained by direct simulation of discrete-time quantum search. (b) random-walk centrality for
the central vertex in the same Cayley trees.
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FIG. 8. (Color online) (a) Numerical results for the search frequency ωs on a Cayley tree with a central marked vertex. ωs is plotted as a
function of the number of generations n, for d = 3 (solid line with circles) and d = 4 (dashed line with squares). (b) random-walk centrality
for the central vertex in the same Cayley trees.

to a success probability Ps(t) which has a larger minimum
frequency ωs and attains a greater maximum amplitude Pmax.
The results for all other Cayley trees studied were analogous.

On Cayley trees, the RWC becomes smaller for vertices
which are farther from the central vertex because a random
walker starting from a less central vertex takes, on average,
longer to visit all vertices. We studied numerically the follow-
ing Cayley trees: {d = 3, n ∈ [2,8]}, {d ∈ [4,5],n ∈ [2,5]},
and {d ∈ [6,10],n ∈ [2,3]}. For all Cayley trees tested we
found that Pmax, 〈Ps〉 , and ωs decrease monotonically with
RWC.

These results are consistent with those observed by Mülken
et al. [24], who modeled exciton transport on Cayley trees
by continuous-time quantum walk and found that excitations
which were initially centrally located propagated throughout
the structure much more rapidly than excitations which were
initially peripheral.

VI. QUANTUM SEARCH ON REGULAR
HYPERBRANCHED FRACTALS

We now study RHFs to investigate how greater structural
complexity affects both Pmax and ωs . First, we consider the
simple case of n = 2,f = 3 (RHF2,3). As shown in Fig. 11, the
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FIG. 9. (Color online) Analytical results for Pmax on a second-
generation Cayley tree with a central marked node as a function
of branching rate d (solid line). Also plotted are numerical results
(circles) obtained by direct simulation of quantum search for 3 �
d � 10.

only difference between this fractal and the second-generation
3-Cayley tree is extra vertices of degree 2 on each branch,
between the central vertex and level 1. In this case, as for Cay-
ley trees, we find that ωs decreases monotonically with RWC.
However, as shown in Fig. 12, neither Pmax nor 〈Ps〉 decrease
with centrality. In fact there are noncentral vertices in RHF2,3

at which Pmax and 〈Ps〉 attain a greater value than at the central
vertex. This implies that Pmax and 〈Ps〉 are not determined
by the centrality of the vertex. It is remarkable to consider
that the addition of these six vertices symmetrically about the
central vertex can perturb the quantum walk dynamics to such
an extent that the the relationship between centrality and Pmax

seen for Cayley trees is no longer maintained.
Figure 13 shows the results of the calculations for n = 3,

f = 3 (RHF3,3; structure shown in Fig. 2). These results show
that the overall trend is, again, decreasing ωs with RWC but
that the decrease is not monotonic. This implies that the search
frequency on RHF is not determined solely by the centrality
for some vertices. The vertices which break the trend have a
particular structure; they are vertices which are connected by a
single edge to a vertex which lies on a main path of the graph,
so-called cul-de-sac vertices (highlighted in Fig. 2). The much
smaller than expected values for ωs at these cul-de-sac vertices
is the first evidence that the local structure surrounding the
marked vertex can greatly affect the frequency of the success
probability. We now investigate this further.
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FIG. 10. (Color online) Numerical results for Pmax, ωs , and
RWC on the third-generation 3-Cayley tree (all data normalized for
comparison). Data plotted as a function of vertex number vi .
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FIG. 11. A comparison of the structures of (a) the second-
generation 3-Cayley tree and (b) RHF2,3. Vertices are ranked and
labeled in order of decreasing random walk centrality.

We construct the graph RHF+
3,3 by adding a single extra

vertex to RHF3,3 attached through a single edge to vertex 16,
which is one of the cul-de-sac vertices in RHF3,3 (see Fig. 2).
The calculated results for Pmax, ωs , and RWC for RHF3,3 and
RHF+

3,3 are listed in Table I. Note that in RHF3,3, vertices 14,
15, and 16 are structurally equivalent and have the same values
for Pmax, ωs , and RWC. The additional vertex attached to vertex
16 in RHF+

3,3 results in a decreasing RWC for that vertex.
Given that the RWC is calculated using the relaxation time,
this is expected. Since centrality is a relative measure among
vertices, it is more informative to compare values within the
same graph. We therefore compare values for vertex 16 with
those for vertices 14 and 15, which are all equivalent in RHF3,3.
For RHF+

3,3, we compute the ratios

P (16)
max

P
(14,15)
max

= 1.02,

ω(16)
s

ω
(14,15)
s

= 0.99,

RWC(16)

RWC(14,15)
= 0.96,

2 4 6 8 10 12 14 16
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lu

es

RWC
ωs

Ps

Pmax

FIG. 12. (Color online) Numerical results for Pmax, ωs , and 〈Ps〉
on RHF2,3. All data are normalized for comparison and vertices vi

are ordered with decreasing random walk centrality.

and we see that, in real terms, the effect of the node addition to
vertex 16 is to decrease both ωs and RWC. So we see, again,
that ωs appears to behave like RWC.

These data suggest that, for symmetric trees, ωs is largely
determined by RWC but the local structure surrounding the
marked vertex can have a dramatic effect. It should be noted
that all vertices in RHF which are observed to break the trend
of decreasing ωs with centrality have degree 1.

VII. QUANTUM SEARCH ON STRUCTURES
WITH SIMPLE CYCLES

We now move away from trees to consider quantum-walk-
based search on structures which contain simple cycles. In
particular, we consider the Husimi cactus, the joined Cayley
tree, and a Sierpiński gasket.

While a tree contains no simple cycles, a cactus is a graph
in which any edge belongs to at most one simple cycle. In

0 10 20 30 40 50 60
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es

Pmax

Ωs

RWC

FIG. 13. (Color online) Numerical results for Pmax, ωs , and RWC on RHF3,3. All data are normalized for comparison and vertices vi are
ordered with decreasing random walk centrality. The asterisk denotes sets of cul-de-sac vertices.
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TABLE I. Changes in the values of Pmax, ωs , and RWC between
RHF3,3 and RHF+

3,3, which has an extra vertex added to vertex 16 (see
Fig. 2 for the structure of RHF3,3).

RHF3,3 RHF+
3,3 Change

vi = 14,15
Pmax 2.065 × 10−1 2.023 × 10−1 −2.0%
ωs 4.533 × 10−2 4.574 × 10−2 +0.9%
RWC 1.166 × 10−3 1.147 × 10−3 −1.7%
vi = 16
Pmax 2.065 × 10−1 2.077 × 10−1 +0.6%
ωs 4.533 × 10−2 4.533 × 10−2 0.0%
RWC 1.166 × 10−3 1.106 × 10−3 −5.4%

this sense, cacti are the most “treelike” graphs which contain
simple cycles. In Husimi cacti derived from 3-Cayley trees,
all simple cycles have length = 3. Studies of continuous-time
quantum walks on these Husimi cacti have found that they
display dynamics similar to that of Cayley trees [32]. Figure 14
shows ωs , Pmax, and RWC for the N = 45 Husimi cactus
(structure shown in Fig. 4). As for the Cayley tree, it can be
seen that the search frequency ωs decreases with the centrality
of the marked vertex. However, in contrast to the Cayley tree,
Pmax does not monotonically decrease with RWC. The results
for the N = 21 Husimi cactus are analogous.

Figure 15 shows ωs , Pmax, and RWC for the joined Cayley
tree of generation 3, with d = 3. We again see that ωs and
Pmax generally decrease with centrality in a similar manner
to the unjoined Cayley tree. In the joined graph (Fig. 3),
vertices 11 and 12 are no longer structurally equivalent since
vertex 11 lies in simple cycles of length = {3,7} and vertex 12
lies in simple cycles of length = {3,5}. It is shown in Fig. 15
that the search procedure for marked vertices 11 and 12 now
produces different values for RWC, Pmax, and ωs . It should
be noted that, for these vertices, Pmax and RWC display the
opposite trend to ωs . This is different from the correlation
observed on trees and Husimi cacti, where we saw that ωs was
usually highly correlated with RWC.

The results in Fig. 16 for the Sierpiński gasket show
a relationship among Pmax, ωs , and centrality much more
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ωs
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FIG. 14. (Color online) Numerical results for Pmax, ωs , and RWC
on the Husimi cactus on N = 45 vertices. All data are normalized
for comparison and vertices vi are ordered according to decreasing
RWC.
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FIG. 15. (Color online) Numerical results for Pmax, ωs , and RWC
on the third-generation joined 3-Cayley tree (all data normalized for
comparison). Data plotted as a function of vertex number vi , which
is derived from the numbering of the unjoined Cayley tree. Note
that vertices 11 and 12 are no longer equivalent in the joined Cayley
tree.

complex than that seen for the other structures studied. We
expect that the presence of simple cycles of various lengths
in the structure results in interesting interference effects in
quantum walks on these graphs. This interference produces
much more complex behavior of Ps(t), which makes any
relationship between Ps(t) and the centrality of the marked
vertex harder to observe. As shown in in Fig. 16 that the
peripheral (least central) vertices do not produce the smallest
values of Pmax or ωs in this case.

VIII. DISCUSSION AND CONCLUSIONS

We have demonstrated that the quantum search procedure
for a marked vertex in a Cayley tree results in a time-dependent
success probability Ps(t) that attains a greater maximum value
and has a higher minimum frequency for marked vertices
which are more central. Our study was extended to RHFs,
where it was found that the maximum value of Ps(t) does
not necessarily decrease with centrality. We also found that
the minimum frequency of the search probability ωs on RHFs

2 4 6 8 10 12 14
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FIG. 16. (Color online) Numerical results for Pmax, ωs , and RWC
on the second-generation Sierpiński gasket. All data are normalized
for comparison and vertices vi are ordered according to decreasing
RWC.
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is strongly related to centrality and that exceptions to this
trend are caused by the local structure surrounding the marked
vertex. We therefore conclude that the success probability
Ps(t) for a marked vertex in a highly symmetric tree contains
information about the global structure of the tree and the
overall position of the marked vertex within the tree. It also
contains information regarding the local structure surrounding
the marked vertex.

We say that two vertices are structurally equivalent if they
have the same structural relationship to all of the other vertices
of the graph (e.g., in a Cayley tree, all vertices which are a given
distance from the center are equivalent). We then note that all
equivalent vertices in the graphs studied in this work have
the same values of Pmax and ωs and all inequivalent vertices
have different values, suggesting that Pmax and ωs could be
used to partition the vertex set into structural equivalence
classes. It should be noted, however, that this partitioning
would not be possible for all graphs, since strongly regular
graphs contain inequivalent vertices that produce identical
success probabilities. These graphs therefore give identical
values for ωs and Pmax for inequivalent vertices. We find that
for all vertices of degree >1 in the trees and cacti studied here,
ωs can be used to order the vertices with decreasing centrality,
as measured by the RWC.

The RWC considered in this paper is an example of a
closeness centrality measure; that is, it measures the closeness
of a vertex to the center of the graph. There are, however,
other classes of centrality measures [22]. One of these is
betweenness centrality, which represents the capacity of a
vertex in a network to withhold information if it were removed
from the network [22]. While betweenness and closeness
are equivalent for Cayley trees, this is not true for RHFs.
As seen in the studies on RHFs, the values of ωs obtained
for the cul-de-sac vertices were unusually low compared
with the corresponding values of the RWC. This could be
related to the low betweenness centrality of these vertices. It
would be an interesting subject for further study to investigate
the relationship between characteristics of Ps(t) and other
measures of centrality.

It is also worth noting that Ps(t) can be classically computed
with time complexity O(tN2 log N ), where t is the simulation
time and N is the number of vertices. Therefore, ωs can be clas-
sically computed with time complexity O(t2 log(tN2) log N).
Numerically, we find that for a 1% error in ωs for typical
values of ωs on a 3-Cayley tree, t ≈ O(N0.7) and thus the time
complexity becomes O(N3.4(log N )2). This is comparable
with the complexity of the equivalent RWC calculation, which
scales as O(tN2) ≈ O(N3.1).

It is evident that a tremendous amount of information
about the structure of the graph and the overall position
of the marked vertex is present in Ps(t), and we suggest
that the “lowest frequency” considered here is perhaps the
simplest example of extracting this information. We propose
that it would be extremely interesting to consider more
detailed Fourier analysis of Ps(t) to uncover the origin of
the other frequencies present and hence determine what other
information is obtainable. It would also be interesting to
determine if the centrality information, which was easy to
obtain via ωs in the case of simple symmetric trees, can be
extracted for more complex cases.

FIG. 17. Second-generation 3-Cayley tree, shown with the vertex
states |g〉 ∈ HP and the subnode states |g,ε〉 ∈ HP ⊗ HC . Shaded
regions enclose groups of subnode states that make up {|x〉out,|x〉in},
shown on the right.
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APPENDIX: ANALYTICAL RESULTS FOR ωs

ON CAYLEY TREES

We map the quantum walk on a Cayley tree to a finite
one-dimensional quantum walk and derive an expression for
ωs when the central vertex is marked for n = 2,3. The first
part of the analysis follows the method of Chisaki et al. [27],
however, the time-evolution operator used here is modified to
incorporate the marking operator and reflection at the surface
vertices (Chisaki et al. consider an infinite tree). The initial
state is also different, therefore the complete derivation is
presented.

1. Defining the discrete-time quantum walk on a Cayley tree

An nth-generation Cayley tree of order d is an undirected
graph in which every vertex is connected to d others except
for vertices at a distance n from the center. The vertex set V

is defined as the group of elements generated by the set � =
{ε0, . . . ,εd−1} with the constraint εi

2 = 1, i = 0, . . . ,d − 1,

V = {
εik εik−1 . . . εi2εi1 : 0 � k � n, εij ∈ �,

and ij+1 �= ij for j = 1,2, . . . ,k − 1
}
.

The reduced word length |g| of a vertex g is the number
of elements used when g is written as a reduced product of
εi ∈ � (e.g., |ε2ε2ε1ε0ε2| = |1ε1ε0ε2| = |ε1ε0ε2| = 3). Using
this construction, the vertices at level k in the tree have |g| = k.
Vertices g and h are connected if and only if gh−1 ∈ �. This
is illustrated in Fig. 17.

The quantum walk takes place on the subnodes of the
graph which belong to the Hilbert space HP ⊗ HC . We write
these states {|g,εj 〉 : g ∈ V,εj ∈ �}. In this basis the action
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of the unitary Grover coin and shift operators which drive the
quantum walk can be written as

(1 ⊗ C)|g,ε〉 =
{∑

τ∈�(−δετ + 2/d)|g,τ 〉, |g| < n,

|g,ε〉, |g| = n,
(A1)

S|g,ε〉 = |εg,ε〉. (A2)

The coin operator [Eq. (A1)] applies a Grover coin to
all vertices except those at the surface, which are left
unchanged, while the shift operator [Eq. (A2)] swaps the
probability amplitudes between connected subnodes. With
the perturbed time evolution operator U ′ := S(1 ⊗ C ′), one
step of the discrete-time quantum walk on the Cayley tree
becomes

U ′|g,ε〉 =

⎧⎪⎨⎪⎩
∑

τ∈�(−δετ + 2/d)|τg,τ 〉, |g| < n, g /∈ M,

|εg,ε〉, |g| = n, g /∈ M,

− |εg,ε〉, g ∈ M.

(A3)

2. Mapping the quantum walk on a Cayley tree to
a quantum walk on a finite line

As described in [23], [24], [27], and [29], in certain
cases, the symmetry of the initial state allows us to map the
quantum walk on a Cayley tree to a walk on a line. Define
the sets

E+(x) = {(g,ε) ∈ V × � : |g| = x,|εg| = x + 1},
E−(x) = {(g,ε) ∈ V × � : |g| = x,|εg| = x − 1},

and consider the subspace H′ ⊂ H spanned by the states

|x〉out = 1√
d(d − 1)x

∑
(g,ε)∈E+(x)

|g,ε〉, 0 � x � n − 1,

|x〉in = 1√
d(d − 1)x−1

∑
(g,ε)∈E−(x)

|g,ε〉, 1 � x � n,

as shown in Fig. 17. If the initial state |�0〉 of the quantum
walk on a Cayley tree is an equal superposition of all vertex
states, equally divided among the subnodes of each vertex,

|�0〉 =
√

d − 2

(d × (d − 1)n − 2)

∑
g∈V

∑
ε:|εg|<n

1√
d(g)

|g,ε〉,

(A4)

where d(g) is the degree of the vertex, then |�0〉 can be written
as a superposition of {|x〉out,|x〉in}:

|�0〉 =
√

d − 2

d × (d − 1)n − 2

(
n−1∑
x=0

√
(d − 1)x |x〉out

+
n−1∑
x=1

√
(d − 1)x−1|x〉in +

√
d(d − 1)n−1|n〉in

)
.

(A5)

We now specialize to the case where there is a single marked
vertex at the center of the tree (M = {1}) and consider the
action of U ′ on the subspace H′ ⊂ HP ⊗ HC .

For 1 � x � n,

U ′|x〉in =
(

2

d
− 1

)
|x − 1〉out + 2

√
d − 1

d
|x + 1〉in,

(A6)

U ′|x〉out = −
(

2

d
− 1

)
|x + 1〉in + 2

√
d − 1

d
|x − 1〉out,

(A7)

and on the boundaries,

U ′|0〉out = −|1〉in, (A8)

U ′|n〉in = |n − 1〉out. (A9)

Note that |�0〉 ∈ H′ ⇒ |�(t)〉 = (U ′)t |�0〉 ∈ H′, ∀ t ∈ Z+.
From this subspace the quantum walk on the tree can

be mapped to a quantum walk on a finite line with re-
flecting boundaries. Define the Hilbert space H̃ = {|x,A〉 :
x ∈ Z+,A ∈ {L,R}} and the subspace H̃′ ⊂ H̃ spanned
by {|0,L〉,|1,R〉,|1,L〉, . . . ,|n − 1,R〉,|n − 1,L〉,|n,R〉}. Now
consider the 1-1 association H′ ↔ H̃′ defined by

|x〉out ↔ |x,L〉, |x〉in ↔ |x,R〉. (A10)

We also map the operator U ′ ↔ Ũ ′ so that the action of U ′
on the states {|x〉in,|x〉out} is equivalent to the action of Ũ ′ on
the states {|x,R〉,|x,L〉}. The quantum walk on a Cayley tree
subject to the foregoing conditions is then seen to be equivalent
to a finite one-dimensional quantum walk with a biased coin
and asymmetric initial distribution.

Using the mapping (A10), we can express (A6)–(A9)
in the new basis by defining Ũ ′ := S̃(1 ⊗ C̃), where C̃ =
C̃(x) is defined by

(1 ⊗ C̃)|x,A〉 = |x〉 ⊗ H (x)|A〉, (A11)

where

H (x) =

⎧⎪⎨⎪⎩
−σ1, x = 0,

h, 0 < x < n,

σ1, x = n,

h =
⎛⎝ 2

√
d−1
d

2
d

− 1

−(
2
d

− 1
) 2

√
d−1
d

⎞⎠ , σ1 =
(

0 1

1 0

)
.

S̃ acts on H̃′ as follows:

S̃|x,A〉 =
{ |x + 1,R〉, A = R,

|x − 1,L〉, A = L.
(A12)

It can thus be seen that the quantum walk on the Cayley tree
with a central marked vertex starting with equal probability at
all vertices is equivalent to a quantum walk on a finite line
with a perfectly reflecting boundary at x = n and a π phase
shift upon reflection at x = 0. The reflections are achieved by
careful choice of the coin operator.

3. Analytical results for Ps(t) and ωs for the
second-generation Cayley tree

Consider the second-generation d-Cayley tree with a central
marked vertex. Let B be a matrix representation of Ũ ′ on the
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complete, orthonormal basis {|0,L〉,|1,R〉,|1,L〉,|2,R〉} of H̃′.
Let |φi〉 ∈ {|0,L〉,|1,R〉,|1,L〉,|2,R〉}; then

(Bij ) = (〈φi |Ũ ′|φj 〉) =

⎛⎜⎜⎜⎜⎝
0 2

d
− 1 2

√
d−1
d

0

−1 0 0 0

0 0 0 1

0 2
√

d−1
d

1 − 2
d

0

⎞⎟⎟⎟⎟⎠ ,

where the states are ordered as above.
We would like to find a closed-form expression for |�(t)〉 =

(Ũ ′)t |�0〉. In particular, we are interested in the probability of
finding the walker at the central marked vertex as a function
of time,

|�(t)〉 = (Ũ ′)t |�0〉,
〈φi |�(t)〉 =

∑
j

〈φi |(Ũ ′)t |φj 〉〈φj |�0〉,

which can be written in matrix form as

ci(t) = (Bij )t cj (0), (A13)

where ci(t) := 〈φi |�(t)〉 are column vectors. Since Ũ ′ is a
unitary operator and the basis |φi〉 is orthonormal, it follows
that B is a 4 × 4 unitary matrix and therefore has four distinct
eigenvalues of unit norm corresponding to four orthonormal
eigenvectors [34]. Furthermore, B is unitary similar to the
diagonal matrix D, which contains the eigenvalues of B as
its diagonal elements. Let P be the unitary matrix containing
the eigenvectors of B as its columns. From Eq. (A13) and the
unitarity of P,

P †
kici(t) = P †

ki(Bij )tPjlP
†
lj cj (0),

P †
kici(t) = (P †

kiBijPjl)
tP †

lj cj (0),

P †
kici(t) = (Dkl)

tP †
lj cj (0).

Now, writing P †
kici(t) =: vk(t), we have

vk(t) = (Dkl)
t vl(0). (A14)

But D = diag(λk), where λk are the eigenvalues of B. So
Dkl = 0 for k �= l ⇒ vk(t) = (Dkk)t vk(0) or, equivalently,

vk(t) = λk
tvk(0). (A15)

The eigenvalues of B are

λk = ±e±�/2, where � = arctan

(
2
√

d − 1

d − 2

)
. (A16)

We can now solve for the time evolution of vk(t) for k =
1, . . . ,4 and use P to find ck(t) := 〈φk|�(t)〉, from which we

obtain 〈1|�(t)〉. The eigenvalues are found by diagonalizing
B; that is,

D = P †BP = diag(−e−i�/2,−ei�/2,ei�/2,e−i�/2), (A17)

where the unitary change of basis matrix P contains the
orthonormal eigenvectors of B as its columns:

P = 1

2

⎛⎜⎝
i −i −i i

iei�/2 −ie−i�/2 ie−i�/2 −iei�/2

−ei�/2 −e−i�/2 e−i�/2 ei�/2

1 1 1 1

⎞⎟⎠ . (A18)

The probability amplitude at the central (marked) vertex is
thus

〈1|�(t)〉 ≡ 〈0,L|�(t)〉 = c1(t) =
∑

i

P1ivi(t)

= 1

2
[i(−e−i�/2)t v1(0) − i(−ei�/2)t v2(0)

− iei�t/2v3(0) + ie−i�t/2v4(0)],

where vi(0) represent the initial state in the eigenvector basis
and are found using Eq. (A5) and the unitary transformation
P †. Taking the absolute value squared,

|〈1|�(t)〉|2 = 1
4 {|v|2 + 2Re(v1v̄4 + v2v̄3) cos(πt)

− 2Re(v1v̄2 + v̄3v4) cos(�t)

− 2Im(v1v̄2 + v̄3v4) sin(�t)

− 2Re(v1v̄3 + v̄2v4) cos[(π − �)t]

+ 2Im(v1v̄3 + v̄2v4) sin[(π − �)t]}.
We now see that the lowest frequency in the success probability
ωs = �. The initial condition [Eq. (A5)] can be converted to
the eigenvector basis and the expression [Eq. (A16)] for �(d)
can then be used to solve for vi . Upon simplification, we obtain
Eq. (9) (Sec. V B), valid for 3 � d < ∞.

4. Analytical results for Ps(t) and ωs for the
third-generation Cayley tree

We perform the same analysis for the case n = 3, where
this time Ũ ′ induces a 6 × 6 matrix B. We find that the
eigenvalues of B are

λk = ±i, ± e±�/2, where � = arctan

(
2
√

d2 − 1

d2 − 2

)
.

(A19)

As in the previous case, the eigenvalues of B uniquely
determine the frequencies present in Ps(t). Since i = eiπ/2

and � < π/2 for 3 � d < ∞, it follows that ωs = �.
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