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A digital signature is a mathematical scheme for demonstrating the authenticity of a digital message or
document. For signing quantum messages, some arbitrated quantum signature (AQS) schemes have been
proposed. It was claimed that these AQS schemes could guarantee unconditional security. However, we show
that they can be repudiated by the receiver Bob. To conquer this shortcoming, we construct an AQS scheme using
a public board. The AQS scheme not only avoids being disavowed by the receiver but also preserves all merits in
the existing schemes. Furthermore, we discover that entanglement is not necessary while all these existing AQS
schemes depend on entanglement. Therefore, we present another AQS scheme without utilizing entangled states
in the signing phase and the verifying phase. This scheme has three advantages: it does not utilize entangled
states and it preserves all merits in the existing schemes; the signature can avoid being disavowed by the receiver;
and it provides a higher efficiency in transmission and reduces the complexity of implementation.
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I. INTRODUCTION

The most spectacular discovery in quantum computing to
date is that a quantum computer can efficiently perform some
tasks which are likely not feasible on a classical computer. For
example, Shor’s quantum algorithm [1] can solve efficiently
two enormously important problems: the problem of finding
the prime factors of an integer and the discrete logarithm prob-
lem. This means most of the classical public key cryptography
would not be secure if quantum computers were available
someday. Fortunately, quantum cryptography depends on
fundamental laws of quantum physics to provide unconditional
security [2–10]. Quantum key distribution (QKD) is the core
of quantum cryptography.

Digital signature and authentication is an essential ingredi-
ent of classical cryptography and has been employed in various
applications. Similar to classical public key cryptography,
most classical digital signature schemes based on the public
key cryptography can be broken by Shor’s algorithm [1].
So, many researchers and scholars have begun to investigate
quantum signature and authentication, which is supposed to
provide an alternative scheme with unconditional security.
Recently, some progress has been made on quantum signature
[11–23]. In particular, an arbitrated quantum signature (AQS)
scheme providing many merits had been proposed by Zeng
and Keitel [13]. Indeed, this AQS scheme has been further
discussed in the corresponding comments [24,25]. The scheme
can sign both known and unknown quantum states. Also, it is
claimed that the unconditional security is ensured by using
the correlation of Greenberger-Horne-Zeilinger (GHZ) triplet
states [26] and quantum one-time pads [27].

Very recently, Li et al. [14] have presented an arbitrated
quantum signature scheme using two-particle entangled Bell
states instead of GHZ states. The scheme using Bell states can
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preserve the merits in the original scheme [13] while providing
a higher efficiency in transmission and reducing the complexity
of implementation.

A secure arbitrated (quantum) signature scheme should
satisfy two conditions: one is that the signature should not be
forged by the attacker (including the malicious receiver) and
the other is the impossibility of disavowal by the signatory and
the receiver [13,14,25]. However, we find that the existing AQS
schemes [13,14,25] can be repudiated by the receiver Bob. To
conquer this shortcoming, we construct an AQS scheme using
a public board. The AQS scheme can not only avoid being
disavowed by the receiver but also can preserve all merits in
the existing schemes.

Furthermore, we observe that the main functions of quan-
tum entangled states (GHZ states and Bell states) in the
schemes of Refs. [13,14,25] and in the foregoing scheme are to
assist Alice to transfer quantum states to Bob. However, Alice
transfers quantum states to the arbitrator by the ciphertext
encrypted with the secret key KA. Similarly, Alice can
transfer quantum states to Bob with a shared secret key.
Considering that the preparation, distribution, and keeping of
entangled states are not easily implemented by the present-day
technologies, we construct an AQS scheme without using
quantum entangled states.

The remainder of this article is organized as follows. First, in
Sec. II, we briefly recall some notions and notations concerning
AQS schemes. In particular, we review the technique of
comparing two unknown quantum states presented in Ref. [28]
and discuss related properties. Then, in Sec. III, we show
that the existing AQS schemes [13,14,25] can be repudiated
by the receiver Bob. Afterward, in Sec. IV, we construct
an AQS scheme similar to the scheme in Ref. [14] which
cannot be repudiated by the receiver Bob, and we discover
that this technique can be used to improve the AQS scheme
using GHZ states [13,25]. Subsequently, in Sec. V, we discuss
the security of the AQS scheme proposed in the previous
section. In particular, in Sec. VI, we show that entanglement is
not necessary and construct an AQS scheme without using
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entangled states. Furthermore, in Sec. VII, we discuss the
security of the second presented AQS scheme. In addition,
in Sec. VIII, we compare the second AQS scheme presented
with the existing schemes and outline its main merits. Finally,
in Sec. IX, we draw conclusions.

II. PRELIMINARIES

In this section, we first briefly recall some notions and
notations concerning AQS. In general, the other notations used
in this article will be explained whenever new symbols appear.
Then, we review the technique of comparing two unknown
quantum states which was first presented in Ref. [28] and
improved in Ref. [14]. Finally, we give an example that we
need to use the arbitrated signature.

A. Some notions and notations concerning AQS

The digital signature is an analogy to handwritten signature,
and the quantum signature is a quantum version of the classical
signature. Similarly, the arbitrated signature scheme is a
signature finished with the help of an arbitrator, where an
arbitrator is a disinterested third party trusted to complete a
protocol [29]. Here “trusted” means that all people involved in
the protocol accept what he says as true and what he does as
correct, as well as that he will complete his part of the protocol.

The notations, which are necessary to better understand the
subsequent results, are given as follows.

We use Pauli matrices σx and σz to denote X and Z gates,
respectively. Let |P 〉 be a quantum message as |P 〉 = |P1〉 ⊗
|P2〉 ⊗ · · · ⊗ |Pn〉 with |Pi〉 = αi |0〉 + βi |1〉.

For convenience, EK denotes the quantum one-time pads
encryption, proposed by Boykin and Roychowdhury [27],
according to some key K ∈ {0,1}∗ satisfying |K| � 2n as
follows:

EK (|P 〉) =
n⊗

i=1

σK2i−1
x σK2i

z |Pi〉, (1)

where Kj denotes the j th bit of K . Similarly, MK denotes the
unitary transformation

MK (|P 〉) =
n⊗

i=1

σKi

x σKi+1
z |Pi〉. (2)

B. The technique of comparing two unknown quantum states

The comparison of known quantum states can be definitely
made while the comparison of unknown quantum states
cannot. Nevertheless, the error probability of determining
whether two quantum bit strings are identical can be made
small enough by adopting the approach in Ref. [28]. In
particular, this method has been improved and specified in
Ref. [14].

Now, we review the technique of comparing two unknown
quantum states [28] and study related properties. Suppose
we need to compare whether or not two states |φ〉 and
|ψ〉 are identical. This is accomplished with one-sided error
probability by the procedure that measures and outputs the first
qubit of the state

(H ⊗ I )(CSWAP)(H ⊗ I )|0〉|φ〉|ψ〉.

0 H H

SWAP

FIG. 1. The circuit of comparing two unknown quantum states.

Here H is the Hadamard transform, which maps |b〉 →
1√
2
[|0〉 + (−1)b|1〉], SWAP is the operation |φ〉|ψ〉 → |ψ〉|φ〉,

and CSWAP is the controlled SWAP (controlled by the first qubit).
The circuit for this procedure is illustrated in Fig. 1. By tracing
through the execution of this circuit, one can determine that
the final state before the measurement is

1
2 |0〉(|φ〉|ψ〉 + |ψ〉|φ〉) + 1

2 |1〉(|φ〉|ψ〉 − |ψ〉|φ〉). (3)

Measuring the first qubit of this state produces outcome |1〉
with probability 1

2 − 1
2 (〈φ|ψ〉)2. This probability is 0 if |φ〉 =

|ψ〉 and is at least 1
2 (1 − δ2) > 0 if 〈φ|ψ〉 = δ. Thus, the test

determines which case holds with one-sided error 1
2 (1 + δ2).

If we compare |φ〉⊗m and |ψ〉⊗m, we only need to
perform independent comparison of |φ〉 and |ψ〉 m times.
For any ε > 0, the error probability of the comparison can
be reduced to [ 1

2 (1 + δ2)]m < ε, if we choose a suitable m and
compare |φ〉⊗m and |ψ〉⊗m. This case was discussed further in
Ref. [14].

Refs. [14,28] discussed only the comparison of two pure
states. However, in the AQS scheme, we cannot affirm that the
quantum states compared do not entangle with other quantum
states. Eve (or Alice) may use some auxiliary quantum states
which are entangled with one of the compared quantum
states. Eve (or Alice) can manipulate the quantum states by
operating on the auxiliary quantum states after Bob accepting
the signature. So, we need to consider the situation described in
Fig. 2, where |φ〉 is a pure state and |α〉 a two-particle entangled
state. We need to compare the state |φ〉 and the state of the first
particle in |α〉. Without loss of generality, we can suppose
|α〉 = a|φ〉|x〉 + b|φ⊥〉|y〉, where |φ⊥〉 is the orthogonal pure
state to |φ〉, a and b are two nonzero complex numbers with
|a|2 + |b|2 = 1, and |x〉 and |y〉 are two unknown pure states.
This is accomplished with one-sided error probability by the
procedure that measures and outputs the first qubit of the state

(H ⊗ I234)(CSWAP ⊗ I4)(H ⊗ I234)|0〉|φ〉|α〉.

Here H is the Hadamard transform performing on the first
particle and CSWAP is the controlled SWAP (controlled by the
first particle) performing on the second particle and the third

0 H H

ybxa

SWAP

FIG. 2. The comparing circuit where one particle is in an
entangled state.
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particle. By tracing through the execution of this circuit, one
can determine that the final state before the measurement is

a|0〉|φ〉|φ〉|x〉 + b

2
|0〉(|φ〉|φ⊥〉 + |φ⊥〉|φ〉)|y〉

+ b

2
|1〉(|φ〉|φ⊥〉 − |φ⊥〉|φ〉)|y〉. (4)

Measuring the first qubit of this state produces outcome |1〉
with probability |b|2

2 . This probability is 0 if and only if b = 0,
that is, |α〉 = |φ〉|x ′〉. Thus, the test determines which case
holds with the one-sided error 1 − |b|2

2 .

C. An example using the arbitrated signature

Now, we give an example that we need the arbitrated
signature in our real life (a similar example can be found
in Ref. [29]).

Example 1. Bob is selling a car to Alice, a stranger. Alice
wants to pay by check, but Bob has no way of knowing if the
check is good. Bob wants the check to be cleared before he
turns the title over to Alice. Alice, who does not trust Bob any
more than he trusts her, does not want to hand over a check
without receiving a title.

Bankers trusted by both of them can arbitrate protocols.
Alice can use a certified check to buy a car from Bob:

(1) Alice writes a check and gives it to the bank.
(2) After putting enough of Alice’s money on hold to cover

the check, the bank certifies the check and gives it back to
Alice.

(3) Bob gives the title to Alice and Alice gives the certified
check to Bob.

(4) Bob deposits the check.
This protocol works because Bob trusts the banker’s

certification. Bob trusts the bank to hold Alice’s money for
him.

III. SECURITY ANALYSIS OF THE EXISTING
AQS SCHEMES

A secure arbitrated (quantum) signature scheme should
satisfy two conditions: one is that the signature should not
be forged by the attacker (including the malicious receiver)
and the other is the impossibility of disavowal by the signatory
and the receiver [13,14,25]. However, in the following, we will
show that the signature of the existing schemes [13,14,25] can
be disavowed by the receiver Bob.

A. The AQS scheme using Bell states [14]

In the interest of readability, we briefly recall the AQS
scheme using Bell states [14], and the details can be found in
Ref. [14]. The scheme involves three participants, namely, the
signatory Alice, the receiver Bob, and the arbitrator Trent, and
includes three phases, the initializing phase, the signing phase,
and the verifying phase.

1. Initializing phase

Step I1. Alice shares her secret key KA with the arbitrator
through quantum key distribution protocols [2–4], which were

proved to be unconditionally secure [5,6]. Likewise, Bob
obtains his secret key KB shared with the arbitrator.

Step I2. The arbitrator that should be trusted by both Alice
and Bob generates n Bell states |ψ〉 = (|ψ1〉,|ψ2〉, . . . ,|ψn〉)
with |ψi〉 = 1√

2
(|00〉AB + |11〉AB), where the subscripts A

and B correspond to Alice and Bob, respectively. Then the
arbitrator distributes one particle of each Bell state to Alice
and the other to Bob employing a secure and authenticated
method [11,12].

2. Signing phase

Step S1. Alice obtains a qubit string |P 〉 =
(|P1〉,|P2〉, . . . ,|Pn〉) related to the message |Pi〉 =
αi |0〉 + βi |1〉. Here note that if the known quantum
states are to be signed, then an arbitrary number of copies
of |P 〉 can be prepared, whereas, if the quantum states to be
signed are unknown, then three copies of |P 〉 are necessary
(one to be combined with the Bell states, one to produce the
secret qubit string |RA〉, and the other to be sent to Bob).
However, if the dimension of |P 〉 is not sufficiently large,
more copies are needed to obtain a lower error probability of
comparison tests for unknown quantum states and then reduce
the failure probability of the verifying phase.

Step S2. Alice transforms the qubit string |P 〉 into a secret
qubit string |RA〉 in terms of the key KA. For instance,

|RA〉 = MKA
(|P 〉).

Step S3. Alice combines each message state and the Bell
state by carrying out a joint measurement on both states and
obtains the three-particle entangled state,

|φi〉 = |Pi〉 ⊗ |ψi〉 (5)
= 1

2 [|�+
12〉A(αi |0〉B + βi |1〉B)

+ |�−
12〉A(αi |0〉B − βi |1〉B)

+ |	+
12〉A(αi |1〉B + βi |0〉B)

+ |	−
12〉A(αi |1〉B − βi |0〉B)], (6)

where |�+
12〉A,|�−

12〉A,|	+
12〉A, and |	+

12〉A are the four Bell
states [30].

Step S4. Alice implements Bell measurement on each
three-particle entangled state |φi〉 and obtains MA =
(M1

A,M2
A, . . . ,Mn

A), where Mi
A represents one of the four

Bell states.
Step S5. Alice generates the signature |S〉 =

EKA
(MA,|RA〉) of the message |P 〉 by encrypting MA

and |RA〉 with the secret key KA using the quantum one-time
pad algorithm [27]. Note that MA, even if sometimes
depicted by classical bits, can be transformed into qubits
|MA〉 according to the Bell basis. Then both |MA〉 and |RA〉
can be encrypted by quantum one-time pad algorithms [27].

Step S6. Alice transmits the signature |S〉 followed by the
message |P 〉 to Bob.

3. Verifying phase

Step V1. Bob encrypts |S〉 and |P 〉 using the key KB

and sends the resultant outcomes |YB〉 = EKB
(|S〉,|P 〉) to the

arbitrator.
Step V2.The arbitrator decrypts |YB〉 with KB and gets |S〉

and |P 〉. Then he decrypts |S〉 using KA and obtains MA
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and |R′
A〉 which should be compared with |RA〉 = MKA

(|P 〉).
If |R′

A〉 = |RA〉, the arbitrator sets the verification parameter
V = 1; otherwise he sets V = 0.

Notice that this step includes quantum state comparison
which was discussed in detail in Ref. [14] and Sec. II.

Step V3. The arbitrator obtains |P 〉 from |RA〉 according to
the key KA.

Step V4. The arbitrator sends the encrypted results |YT B〉 =
EKB

(MA,|S〉,|P 〉,V ) to Bob.
Step V5. Bob decrypts |YT B〉 and obtains MA, |S〉, |P 〉,

and V . If V = 0, Bob considers that the signature has been
obviously forged and rejects it; otherwise, Bob goes on to the
further verification.

Step V6. According to Alice’s measurement outcomes
MA and Eq. (6), Bob obtains |P ′〉 by implementing the
corresponding transformations denoted as Eq. (7) on his
particles of the Bell states:

|�+
12〉 → I,|�−

12〉 → σz,|	+
12〉 → σx,|	−

12〉 → σzσx. (7)

For example, if Alice’s measurement result is |�+
12〉A, then

the state in Bob’s hand must be αi |0〉B + βi |1〉B . Thus Bob
can obtain |P ′〉 by applying the identity transformation I . The
other transformations can be elaborated in a similar way. Then
he makes comparisons between |P ′〉 and |P 〉. Here the way of
comparing |P ′〉 and |P 〉 is the same as that of comparing |R′

A〉
and |RA〉 in Step V2. If |P ′〉 = |P 〉, Bob accepts the signature
|S〉 of the message |P 〉; otherwise he rejects it.

B. Security analysis of the AQS schemes using Bell
states in Ref. [14]

Here, we show that the signature of the AQS scheme using
Bell states in Ref. [14] can be disavowed by Bob. Suppose
the receiver Bob repudiates the receipt of the signature. Then,
the arbitrator Trent also can confirm that Bob has received
the signature |S〉 since he needs the assistance of Trent to
verify the signature. For instance, the information of his key
KB is included in |YB〉 = EKB

(|S〉,|P 〉). Therefore Bob cannot
disavow that he has received |S〉.

However, Bob can repudiate the integrality of the signature
|S〉 because he can reject the signature in Step V6. Repudiating
the integrality of the signature means that Bob admits receiving
some signature |S〉 but denies the signature |S〉 being correct,
that is, Bob can claim |P ′〉 
= |P 〉 and reject the signature |S〉
when |P ′〉 = |P 〉. The case |P ′〉 
= |P 〉 can happen if Alice
generates |φi〉 by another message |P ′〉 with |P ′〉 
= |P 〉 in
Step S3 or lets |S〉 = EKA

(M′
A,|RA〉) withM′

A 
= MA in Step
S5. Note that the arbitrator Trent could not check whether the
MA in |S〉 is correct or not.

When Bob claims |P ′〉 
= |P 〉 in Step V6, one or more of
the following three cases must have happened:

(1) Bob told a lie;
(2) Alice generated |φi〉 by another message |P ′〉 with

|P ′〉 
= |P 〉 in Step S3 or made |S〉 = EKA
(M′

A,|RA〉) with
M′

A 
= MA in Step S5;
(3) Eve disturbed |S〉, |YB〉 or |YT B〉.

However, Trent and all the other people cannot confirm which
case has happened indeed. Therefore, Bob can disavow the
signature in the AQS scheme [14].

Example 2. As in Example 1, Bob is selling a car to Alice.
Alice wants to pay by check, but Bob has no way of knowing
if the check is good. Bob wants the check to be cleared before
he turns the title over to Alice. Alice, who does not trust Bob
any more than he trusts her, does not want to hand over a check
without receiving a title. The banker Trent trusted by both of
them arbitrates the scheme. When it is in the quantum era,
Alice may use a quantum digital check to buy a car from Bob.
If they trade by the AQS scheme in Ref. [14], the following
case maybe happen.

Alice says she has signed a quantum check |P 〉 for Bob. But,
Bob says he has not received the correct quantum signature
|S〉 of the quantum check |P 〉 from Alice because he found
|P ′〉 
= |P 〉 in Step V6. Due to the shortcoming of the AQS
scheme in Ref. [14], the arbitrator Trent and all the other
people cannot judge which one of the following cases has
happened:

(1) Bob received Alice’s correct signature for |P 〉 but told
a lie;

(2) Alice deliberately did not send the correct signature
|S〉;

(3) Eve disturbed |S〉, |YB〉, or |YT B〉.
From the preceding discussion and Example 2, Bob can

repudiate the integrality of the signature in the AQS schemes
in Ref. [14]. Similarly, the signature of the AQS schemes in
Refs. [13,25] can be disavowed by Bob.

C. The AQS scheme using GHZ states [13,25]

Also, we simply recall the AQS scheme using GHZ states
[13,25], and the details can be found in Refs. [13,25]. The
scheme involves three participants, namely, the signatory
Alice, the receiver Bob, and the arbitrator Trent, and includes
three phases, the initializing phase, the signing phase, and the
verifying phase.

1. Initializing phase

Step I1. Alice shares the secret key KA with the arbitrator
Trent by the quantum key distribution protocols [2–4] that
were proved to be unconditionally secure [5–9]. Similarly,
Bob shares the secret key KB with Trent. The lengths of these
keys depend on the chosen cryptographic algorithms in the
signing and verifying phases.

Step I2. The arbitrator Trent that should be trusted
by both Alice and Bob generates n GHZ states |ψ〉 =
(|ψ1〉,|ψ2〉, . . . ,|ψn〉) with |ψi〉 = 1√

2
(|000〉ABT + |111〉ABT ),

where the subscripts A, B, and T correspond to Alice,
Bob, and Trent, respectively. Then, Trent distributes the
first particle of each GHZ state to Alice and the second to
Bob.

2. Signing phase

Step S1. Alice presents three copies of the message state
|P 〉 = (|P1〉,|P2〉, . . . ,|Pn〉) related to the message |Pi〉 =
αi |0〉 + βi |1〉.

Step S2. Alice generates a random string |R〉 =
MKA

(|P 〉) = (|R1〉,|R2〉, . . . ,|Rn〉).
Step S3. Alice obtains a four-particle state |φi〉 via entan-

gling the message state |Pi〉 and the GHZ state |ψ〉 according
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to the equation

|φi〉 = |Pi〉 ⊗ |ψi〉 (8)
= 1

2 [|�+
12〉A(αi |00〉T B + βi |11〉T B)

+ |�−
12〉A(αi |00〉T B − βi |11〉T B)

+ |	+
12〉A(αi |11〉T B + βi |00〉T B)

+ |	−
12〉A(αi |11〉T B − βi |00〉T B)]. (9)

Step S4. Alice executes Bell measurement on |φi〉 and
obtains the results MA = (M1

A,M2
A, . . . ,Mn

A), where Mi
A

may be any of the four Bell states in {|�+
12〉,|�−

12〉,|	+
12〉,|	−

12〉}.
Step S5. Alice creates the signature |S〉 = KA(MA,|R〉) of

the message |P 〉 using a quantum symmetrical key cryptosys-
tem, for example, the quantum one-time pad algorithm [27].

Step S6. Alice sends the string of message |P 〉 followed by
the signature |S〉 to Bob.

3. Verifying phase

Step V1. Bob measures his GHZ particles and obtains the
results MB , then he encrypts MB , |S〉, and |P 〉 with his key
KB to obtain |YB〉 = KB(MB,|S〉,|P 〉). After that Bob sends
|YB〉 to the arbitrator.

Step V2. The arbitrator getsMB , |S〉, and |P 〉 via decrypting
the received |YB〉. Then, he gets MA and |R′〉 via decrypting
|S〉. Furthermore, he generates a verification parameter V as

V =
{

1, if |R′〉 = |R〉 = MKA
(|P 〉);

0, if |R′〉 
= |R〉 = MKA
(|P 〉). (10)

Step V3. The arbitrator sends his GHZ particles, |P 〉, and
the encrypted result |YT B〉 = KB(MA,MB,V,|S〉) to Bob.

Step V4. Bob obtains the arbitrator’s GHZ particles. In
addition, Bob obtains MA, MB , |S〉, and V via decrypting
the received |YT B〉.

Step V5. Bob undertakes the first verification for Alice’s
signature |S〉 via the parameter V . If V = 0, the signature has
obviously been forged and Bob may reject the message |P 〉
immediately. If V = 1, Bob goes on to further verification in
the next step.

Step V6. Bob performs the further verification via com-
paring |P 〉 and |P ′〉, where |P ′〉 is obtained according to the
correlation of the GHZ triplet state. If |P ′〉 = |P 〉, the signature
is completely correct and Bob accepts |P 〉; otherwise, he
should reject it.

D. Security analysis of the AQS schemes using GHZ
states in Refs. [13,25]

Similar to the signature of the AQS scheme using Bell
states [14], the signature of the AQS scheme using GHZ states
[13,25] can be disavowed by the receiver Bob too.

Suppose receiver Bob repudiates the receipt of the signa-
ture. Then, the arbitrator Trent also can confirm that Bob has
received the signature |S〉 since he needs the assistance of Trent
to verify the signature. For instance, the information of his key
KB is included in |YB〉 = KB(MB,|S〉,|P 〉). So Bob cannot
disavow that he has received |S〉. However, Bob can repudiate
the integrality of the signature |S〉 because he can reject the
signature in Step V6, that is, Bob can claim |P ′〉 
= |P 〉 and

reject the signature |S〉 when |P ′〉 = |P 〉. The case |P ′〉 
= |P 〉
can happen if Alice generates |φi〉 by another message |P ′〉
with |P ′〉 
= |P 〉 in Step S3 or lets |S〉 = KA(M′

A,|R〉) with
M′

A 
= MA in Step S5. Note that the arbitrator Trent could
not check whether the MA in |S〉 is correct or not.

When Bob claims |P ′〉 
= |P 〉 in Step V6, one or more of
the following three cases must have happened:

(1) Bob received Alice’s correct signature for |P 〉 but told
a lie;

(2) Alice deliberately did not send the correct signature |S〉;
(3) Eve disturbed |S〉, |YB〉, or |YT B〉.

However, Trent and all the other people cannot confirm which
case has happened indeed. Therefore, Bob can disavow the
signature in the AQS scheme [13,25].

From the analysis above, we know that the existing AQS
schemes cannot be applied because the signature can be
disavowed by the receiver. Are there some techniques to
improve the AQS schemes to avoid being disavowed for
the integrality of the signature by the receiver Bob? In the
following section, we will give a new AQS scheme which
cannot be disavowed by the receiver.

IV. AQS SCHEME 1: AN AQS SCHEME CANNOT
BE DISAVOWED BY BOB

We have known that the existing AQS schemes [13,14]
cannot avoid being disavowed for the integrality of the
signature by Bob. In this section, we will present a new AQS
scheme that can avoid being disavowed for the integrality of
the signature by the receiver Bob.

Note that the QKD schemes [2–4] utilize generally a
public board or a classical public communications channel
that cannot be blocked. Lee et al. [16] proposed an AQS
scheme with a public board which can be adapted to sign
classical messages. Also, we use a public board or a classical
channel that cannot be blocked to improve the AQS schemes
to avoid being disavowed for the integrality of the signature
by Bob. Note that a public board and a classical public
communications channel are assumed to be susceptible to
eavesdropping but not to the injection or alteration of messages
[2–4]. To avoid being disavowed by Bob, we must set that
he cannot obtain whole signature when he verifies Alice’s
signature.

From Ref. [14], we know that the AQS scheme using Bell
states [14] can preserve the merits in the AQS scheme using
GHZ states [13,25] while providing a higher efficiency in
transmission and reducing the complexity of implementation.
Therefore, we improve the AQS scheme using Bell states such
that its signature cannot be disavowed by Bob.

The presented scheme also involves three participants,
namely, the signatory Alice, the receiver Bob, and the arbitrator
Trent, and includes three phases, the initializing phase, the
signing phase, and the verifying phase.

Suppose Alice needs to sign the quantum message |P 〉 =
|P1〉 ⊗ |P2〉 ⊗ · · · ⊗ |Pn〉 with |Pi〉 = αi |0〉 + βi |1〉 and has
at least three copies of |P 〉. To obtain a low enough error
probability in the verifying phase, we can suppose that n is
large enough; otherwise, we can use |P 〉⊗m instead of |P 〉,
where m is a large enough integer.

The AQS scheme is specified in the following.
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A. Initializing phase

Step I1. Alice shares the secret key KA with the arbitrator
Trent by the quantum key distribution protocols [2–4] that
were proved to be unconditionally secure [5–9]. Similarly,
Bob shares the secret key KB with Trent.

Step I2. Alice generates n Bell states |ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗
· · · ⊗ |ψn〉 with |ψi〉 = 1√

2
(|00〉AB + |11〉AB), where the sub-

scripts A and B correspond to Alice and Bob, respectively.
Then, Alice distributes one particle of each Bell state to Bob
by employing a secure and authenticated method [11,12]. Alice
and Bob can share n Bell sates of almost perfect fidelity
even if they are far away from each other [5] through the
use of quantum repeaters [31,32] and fault-tolerant quantum
computation [33,34].

B. Signing phase

Step S1. Alice randomly chooses a number r ∈ {0,1}2n and
transforms all |P 〉 into secret qubit strings |P ′〉 = Er (|P 〉).

Step S2. Alice generates |SA〉 = EKA
(|P ′〉).

Step S3. Alice combines each secret message state |P ′
i 〉

and the Bell state and obtains the three-particle entangled
state,

|φi〉 = |P ′
i 〉 ⊗ |ψi〉 (11)

= 1
2 [|�+

12〉A(α′
i |0〉B + β ′

i |1〉B)

+ |�−
12〉A(α′

i |0〉B − β ′
i |1〉B)

+ |	+
12〉A(α′

i |1〉B + β ′
i |0〉B)

+ |	−
12〉A(α′

i |1〉B − β ′
i |0〉B)], (12)

where |�+
12〉A,|�−

12〉A,|	+
12〉A, and |	+

12〉A are the four Bell
states [30] and |P ′〉 = α′

i |0〉B + β ′
i |1〉B .

Step S4. Alice implements Bell measurement on her two
particles of each three-particle entangled state |φi〉 and obtains
|MA〉 = (|M1

A〉,|M2
A〉, . . . ,|Mn

A〉), where |Mi
A〉 represents

one of the four Bell states. We would use quantum one-time
pads encryption in the following, so, for convenience, we use
the notation |MA〉 instead of MA.

Step S5. Alice transfers |S〉 = (|P ′〉,|SA〉,|MA〉) to Bob.

C. Verifying phase

Step V1. Bob encrypts |P ′〉 and |SA〉 using the key KB and
sends the result |YB〉 = EKB

(|P ′〉,|SA〉) to Trent.
Step V2. Trent decrypts |YB〉 with KB and gets |P ′〉 and

|SA〉. Then he encrypts |P ′〉 using KA and obtains |ST 〉
which should be consistent with |SA〉. If |ST 〉 = |SA〉, he
sets the verification parameter V = 1; otherwise, he sets
V = 0.

This step includes quantum state comparison. The tech-
nique of comparing two unknown quantum states was first
presented in Ref. [28]. Then, this method was improved and
specified in Ref. [14].

Step V3. Trent gets back |P ′〉 from one of |SA〉 (i.e., |ST 〉).
Then, he sends the encrypted results |YT 〉 = EKB

(|P ′〉,|SA〉,V )
to Bob.

Step V4. Bob decrypts |YT 〉 and obtains |SA〉, |P ′〉, and V .
If V = 0, Bob considers that the signature has been obviously

The public board

Bob

TrentAlice

S BY

TY

A notice

r

FIG. 3. The communications of the AQS Scheme 1.

forged and rejects it; otherwise, Bob goes on to the further
verification.

Step V5. According to Alice’s measurement outcomes MA

and the principle of teleportation, Bob obtains |P ′
B〉 [10,14].

Then he makes comparisons between |P ′
B〉 and |P ′〉. Here

the way of comparing |P ′
B〉 and |P ′〉 is the same as that of

comparing |ST 〉 and |SA〉 in Step V2. If |P ′
B〉 
= |P ′〉, Bob

rejects the signature; otherwise, he informs Alice by the public
board to publish r .

Step V6. Alice publishes r by the public board.
Step V7. Bob gets back |P 〉 from |P ′〉 by r and holds (|SA〉,r)

as Alice’s signature for the quantum message |P 〉.
The communications in AQS Scheme 1 are described in

Fig. 3.
We have given an AQS scheme using Bell states such

that its signature cannot be disavowed by Bob. Similarly,
we can improve the AQS scheme using GHZ states [13,25]
such that its signature cannot be disavowed by Bob. To make
the signature of the AQS scheme which uses GHZ states and
cannot be disavowed by Bob, we only need to do the following
two things:

(1) In the signing phase, Alice first chooses a random
number r ∈ {0,1}2n and transforms all |P 〉 into secret qubit
strings |P ′〉 = Er (|P 〉). Then, we use |P ′〉 instead of |P 〉 in all
following steps.

(2) In the verifying phase, Bob informs Alice by the public
board to publish r after he finishes his verifying. Then, Alice
publishes r by the public board. Finally, Bob gets back |P 〉
from |P ′〉 by r and holds (|SA〉,r) as Alice’s signature for the
quantum message |P 〉.

In order to achieve a higher efficiency in transmission, we
can do the following improvement:

(3) In Step V1, Bob does not send his measuring result
|MB〉 to the arbitrator (i.e., |YB〉 = KB(|S〉,|P 〉)) and Trent
need not send it back (i.e., |YT B〉 = KB(|MA〉,V ,|S〉)). In
addition, the arbitrator informs Alice and Bob by the public
board to abort the scheme if he found the signature being
forged.

V. SECURITY ANALYSIS OF AQS SCHEME 1

A secure quantum signature scheme should satisfy two
requirements [13,14,25]: the signature should not be forged by
the attacker (including the malicious receiver); the signature
should not be disavowed by the signatory and the receiver.
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We can show that the proposed AQS scheme can satisfy the
two requirements.

A. Impossibility of forgery

If the attacker Eve tries to forge Alice’s signature |SA〉 for
her own sake, she should know the secret keys KA. However,
this is impossible due to the unconditional security of quantum
key distribution [5–9]. Besides, the use of a quantum one-time
pad algorithm [27] enhances the security. Hence, the forgery
for Eve is impossible.

If the malicious receiver Bob attempts to counterfeit Alice’s
signature |SA〉 = EKA

(|P ′〉) to his own benefit, he also has to
know Alice’s secret key KA to construct |SA〉. However, the
information that he can obtain betrays nothing about the secret
keys KA. Thus, Bob cannot get the correct |SA〉. Therefore, he
cannot forge Alice’s signature.

In the worse situation, for instance, in which the secret
key KA is exposed to Eve, Eve still cannot forge the signature
since she cannot create the appropriate |MA〉 related to the new
message. Bob would find such forgery using the correlation of
the Bell states because the further verification about |P ′

B〉 =
|P ′〉 could not hold without the correct |MA〉. But note that if
Bob knows the key KA, such forgery will not be avoided.

B. Impossibility of disavowal by the signatory and the receiver

If the signatory Alice and the receiver Bob disagree with
each other, the arbitrator Trent trusted by both of them should
be required to make a judgment.

Assume that Alice disavows her signature. Then, Trent
can confirm that Alice has signed the message since the
information of Alice’s secret key KA is involved in |SA〉 of the
signature |SA〉 = EKA

(|P ′〉). Hence Alice cannot deny having
signed the message.

Now, we show the signature cannot be disavowed by
the receiver. It is clear that Bob must have received |S〉 =
(|P ′〉,|SA〉,|MA〉) and known the secret key KB by Step V2 and
Step V5. By Step V4 and Step V5, we know |SA〉 = EKA

(|P ′〉)
and Bob can get |P ′

B〉 with |P ′
B〉 = |P ′〉 by using |MA〉. In

addition, Bob can get r by Step V6 because the public board (or
a classical public communications channel) cannot be blocked
and is assumed not to be the injection or alteration of messages.
From the aforementioned analysis, Bob can not disavow the
receipt of |S〉 = (|P ′〉,|SA〉,|MA〉) and the random number r .
This means that Bob cannot disavow the signature.

Especially, Bob could not claim |P ′
B〉 
= |P ′〉 when |P ′

B〉 =
|P ′〉 because he needs to recover the message |P 〉. If Bob
claims |P ′

B〉 
= |P ′〉, then he has not received the correct
message (|P ′〉,|SA〉,|MA〉).

C. Further discussion

Eve (or Alice) may use the following attack strategy to
modify the quantum message |P 〉. Eve (or Alice) uses some
auxiliary quantum state |Q〉 that is entangled with |P ′〉 which
is the state sent to Bob in Step S5. After Bob finishes his
verifying, Eve (or Alice) manipulates |P ′〉 by operating on
|Q〉. Can this strategy be a threat to the proposed scheme?
The attack strategy is the same as the situation described in
Fig. 2. From the discussion in Sec. II B, the probability of the

measuring result being |1〉 is 0 if and only if |α〉 = |φ〉|x ′〉.
This means |α〉 is a product state. Therefore, Trent and Bob
could find that there exists entanglement in Steps V2 and V5,
respectively, if Eve (or Alice) attacked the presented AQS
scheme by the strategy. Thereby, Eve (or Alice) cannot control
|P ′〉 by quantum entanglement if she wants to escape being
found. This means that the proposed AQS scheme is robust
against this strategy.

In the AQS scheme, Alice should publish the parameter
r in the public board after Bob has finished his operations
for verification. Somebody may worry that Alice does not put
the correct r in the public board and Bob could not obtain
the correct message |P 〉. Yes, our AQS scheme gives Alice a
chance to put any parameter r ′ (it may be not equal to r) in
the public board. However, it is possible only that Alice can
sign any quantum message. We could not limit Alice to sign
any quantum message. If Alice puts a parameter r ′ with r ′ 
= r

in the public board, the receiver Bob and the arbitrator Trent
only accept Alice’s signature (|SA〉,r ′) for E−1

r ′ (Er (|P 〉)) but
not for |P 〉. If Alice wants to send the message |P 〉 with her
signature of |P 〉 to Bob, then she could only publish the correct
parameter r .

Can any attacker change the parameter r to make it so
Bob cannot receive the correct message |P 〉? Note that, the
public board (or the classical public communications channel)
is assumed not to be blocked and not to be the injection or
alteration of messages [2–4]. So, it would not happen.

Statement 1. It is necessary that Alice only send |P ′〉 in the
scheme. Bob can confirm that |SA〉 is Alice’s signature and get
|P 〉 in Step V5 if we use |P 〉 instead of |P ′〉 in the scheme.
So, Bob does not need the random number r . This means that
Bob has a chance to disavow the integrality of the signature as
in the AQS schemes in Refs. [13,14].

Statement 2. If Bob does not receive the random number
r , he cannot recover the message |P 〉 by the security of the
quantum one-time pad [27].

From the preceding discussion, the proposed AQS scheme
is secure.

VI. AQS SCHEME 2: A SCHEME WITHOUT
USING ENTANGLED STATES

Using present-day technologies, the preparation, distribu-
tion, and keeping of quantum entangled states are not easily
implemented. It can be considered as some improvement that,
to achieve some functions, a quantum scheme uses less or
simpler quantum entangled states than the original scheme.
For example, to construct an AQS scheme, Ref. [14] uses
simpler two-particle entangled Bell states to replace three-
particle entangled GHZ states in Ref. [13]. From the arbitrated
quantum signature schemes in Refs. [13,14,25], we discover
that the main functions of quantum entangled states, GHZ
states and Bell states, are to assist Alice to transfer quantum
states to Bob. However, Alice transfers quantum states to the
arbitrator by the ciphertext encrypted with the secret key KA.
Similarly, Alice can transfer quantum states to Bob with a
shared secret key. By this idea, we construct a new AQS
scheme using a public board which does not use entangled
quantum states in the signing phase and the verifying phase.
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To avoid being disavowed by Bob, similar to AQS Scheme
1, the new AQS scheme utilizes a public board or a classical
public communications channel that cannot be blocked. Note
that a public board and a classical public communications
channel are assumed to be susceptible to eavesdropping but
not to the injection or alteration of messages [2–4].

This new scheme also involves three participants, namely,
the signatory Alice, the receiver Bob, and the arbitrator Trent,
and includes three phases, the initializing phase, the signing
phase, and the verifying phase. Similarly, suppose Alice needs
to sign the quantum message |P 〉 = |P1〉 ⊗ |P2〉 ⊗ · · · ⊗ |Pn〉
with |Pi〉 = αi |0〉 + βi |1〉 and has at least three copies of |P 〉.
To obtain a low enough error probability in the verifying phase,
we also suppose that n is large enough; otherwise, we use
|P 〉⊗m instead of |P 〉, where m is a large enough integer.

A. Initializing phase

Step I1′. Alice shares the secret keys KAT and KAB

with Trent and Bob, respectively, by using the quantum
key distribution protocols [2–4] that were proved to be
unconditionally secure [5–9]. Similarly, Bob shares the secret
key KBT with Trent.

B. Signing phase

Step S1′. Alice randomly chooses a number r ∈ {0,1}2n and
computes |P ′〉 = Er (|P 〉) and |RAB〉 = MKAB

(|P ′〉).
Step S2′. Alice generates |SA〉 = EKAT

(|P ′〉).
Step S3′. Alice generates her signature |S〉 =

EKAB
(|P ′〉,|RAB〉,|SA〉) and sends it to Bob. If they are far

away from each other, they can use quantum repeaters [31,32]
and fault-tolerant quantum computation [33,34] to ensure the
signature |S〉 is being transferred perfectly.

C. Verifying phase

Step V1′. Bob decrypts |S〉 with KAB and gets |P ′〉,
|RAB〉, and |SA〉. Then, he generates and sends |YB〉 =
EKBT

(|P ′〉,|SA〉) to Trent.
Step V2′. Trent decrypts |YB〉 and obtains |P ′〉 and |SA〉

depending on the secret key KBT .
Step V3 ′. Trent obtains |P ′

T 〉 = E−1
KAT

(|SA〉) and compares it
with |P ′〉 using the approach in Refs. [14,28]. If |P ′

T 〉 = |P ′〉,
he sets the verification parameter VT = 1; otherwise he sets
VT = 0. He announces the verification parameter VT by the
public board. If VT = 0, he regenerates |YB〉 and sends it back
to Bob.

Step V4′. If VT = 0, Bob rejects the signature; otherwise,
Bob decrypts |YB〉 and obtains |P ′〉 and |SA〉. Then, he
gets |P ′

B〉 = M−1
KAB

(|RAB〉) and compares it with |P ′〉 using
the approach in Refs. [14,28]. If |P ′

B〉 = |P ′〉, he sets the
verification parameter VB = 1; otherwise he sets VB = 0. He
announces the verification parameter VB by the public board.

Step V5′. If VB = 0, Alice and Trent abort the scheme;
otherwise, Alice publishes r by the public board.

Step V6′. Bob gets back |P 〉 from |P ′〉 by r and holds
(|ST 〉,r) as Alice’s signature for the quantum message |P 〉.

The communications in AQS Scheme 2 are described in
Fig. 4.

The public board

Bob

TrentAlice

S BY

r
TV

BY

BV

FIG. 4. The communications of AQS Scheme 2.

VII. SECURITY ANALYSIS OF AQS SCHEME 2

The impossibility of forgery of AQS Scheme 2 can be
discussed as that of AQS Scheme 1. The quantum key
distribution [2–9] and quantum one-time pad algorithm [27]
enhance the security of KAT . Thus, Bob and Eve do not
know the secret keys KAT . Hence, the forgery is impossible.
Similarly, we can prove the impossibility of being disavowed
by Alice because the information of Alice’s secret key KAT

is involved in |SA〉. Here, we only discuss the impossibility of
being disavowed by the receiver Bob.

If AQS Scheme 2 has ended normally, it is clear that
Bob must know the secret key KAB by Step V2′ and |P ′〉 =
M−1

KAB
(|RAB〉) by Step V4′. Furthermore, Bob must have the

secret key KBT and |P ′〉 = E−1
KAB

(|ST 〉) by Step V2′ and Step
V3′. In addition, Bob can obtain the random parameter r and
get back |P 〉 from |P ′〉 by Step V6′ and Step V7′ because the
public board (or the classical public communications channel)
cannot be blocked and is assumed not to be the injection or
alteration of messages. By the unconditional security of the
QKD [5–9] and the quantum one-time pad [27], other people
could not know both KAB and KBT . So, Bob cannot disavow
the receipt of the signature |S〉 and the random number r .

Especially, Bob could not claim |P ′
B〉 
= |P ′〉 when |P ′

B〉 =
|P ′〉 because he needs the random parameter r to recover
the message |P 〉. If Bob claims |P ′

B〉 
= |P ′〉, then he has not
received the correct signature |S〉.

Because we use the same technique to compare unknown
quantum states, Eve (or Alice) cannot use auxiliary quantum
states to control |P ′〉 by quantum entanglement if she wants
to escape being found. Therefore, AQS Scheme 2 is robust
against this strategy, too.

Similar to AQS Scheme 1, Alice should publish the
parameter r in the public board after Bob’s verification. AQS
Scheme 2 gives Alice a chance to put any parameter r ′ (it
may be not equal to r) in the public board. However, this only
seems that Alice can sign any quantum message. We could
not limit Alice to sign any quantum message. If Alice puts
a parameter r ′ with r ′ 
= r in the public board, the receiver
Bob and the arbitrator Trent only accept Alice’s signature for
E−1

r ′ (Er (|P 〉)) but not the signature for |P 〉. If Alice wants to
send the message |P 〉 with her signature of |P 〉 to Bob, she
could only publish the correct parameter r .

Note that the public board (or a classical public communi-
cations channel) is assumed not to be blocked and not to be
the injection or alteration of messages [2–4]. Therefore, any
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TABLE I. Comparison of the transmitted qubits’ quantity.

The scheme using The second
Transmission Bell states [14] proposed scheme

Alice→Bob 4n 3n

Bob→Trent 4n 2n

Trent→Bob 6n + 1 2n

Trent publishes 0 1
Bob publishes 0 1
Alice publishes 0 2n

Total amount 14n + 1 9n + 2

attacker cannot change the parameter r to make Bob not able
to receive the correct message |P 〉.

Statement 3. Similar to AQS Scheme 1, it is necessary that
we only send |P ′〉 in the scheme. Bob can confirm that |S〉 is
Alice’s signature and get |P 〉 in Step V4′ if we use |P 〉 instead
of |P ′〉 in the scheme. So, Bob need not ask Alice to publish
the random number r that means Bob has a chance to disavow
the receipt of the correct signature |S〉.

VIII. COMPARING AQS SCHEME 2
WITH OTHER AQS SCHEMES

AQS Scheme 2 without using entangled states cannot be
disavowed by the receiver Bob while it maintains all other
merits of the AQS scheme using Bell states in Ref. [14]
and the AQS scheme using GHZ states in Refs. [13,25]. The
scheme can be adapted to both known and unknown quantum
states and still provides unconditional security by employing
QKD techniques [2–10] and quantum one-time pads [27].
Furthermore, AQS Scheme 2 is more efficient in the following
two aspects.

One is that the total number of the transmitted qubits (bits),
when n-qubit message is signed, is decreased as described
in Table I. By Ref. [14], we know that the AQS scheme
using Bell states is more efficient than that using GHZ states.
So, we only need to compare it with the scheme using Bell
states in Ref. [14]. Though Alice needs to publish the 2n-bit
random string r , the total number of the transmitted qubits
(bits) decreases more than 35 percent.

Statement 4. When the n-qubit message is signed by AQS
Scheme 1, the total number of the transmitted qubits (bits) is
10n + c, where c is a constant. Therefore, the total number
of the transmitted qubits (bits) is less than that of the AQS
schemes in Refs. [13,14]. Because we find that |MA〉 is not
useful to the arbitrator Trent, Bob does not send |MA〉 to Trent
in ASQ Scheme 1.

The other is that the complexity of implementing the
scheme is reduced. Though the proposed scheme with a public
board needs some local operations, it need not prepare and send

Bell states and GHZ states because it does not use entangled
states.

From the previous discussions, we conclude that AQS
Scheme 2 achieves a higher efficiency in transmission and
can be implemented easily.

IX. CONCLUSIONS

In this article, we have shown that the existing AQS schemes
[13,14] can be repudiated by the receiver Bob. To conquer this
shortcoming, we have constructed two AQS schemes. These
two schemes can be adapted to both known and unknown
quantum states and still provide unconditional security by
employing QKD techniques [2–10] and quantum one-time
pads [27]. The proposed AQS schemes use a public board or
a classical public communications channel that are assumed
to be susceptible to eavesdropping but not to the injection or
alteration of messages [2–4].

To avoid being disavowed by Bob, we should set that he
cannot obtain the whole signature when he verifies Alice’s sig-
nature. In the first AQS scheme, Alice only signs an encrypted
quantum message. To recover this encrypted message, Bob
has to ask Alice to publish the encryption key r . This means
Bob has no chance to repudiate the signature. Furthermore, we
have found that the measuring result |MA〉 is not useful to the
arbitrator Trent in the first presented schemes. Therefore, Bob
does not send |MA〉 to Trent in the AQS scheme. This makes
the traffic of the scheme be decreased.

In particular, we have discovered that quantum entangle-
ment is not necessary whereas the AQS schemes in Refs. [13,
14] and the first proposed AQS scheme depend on entangle-
ment. Therefore, we have presented the second AQS scheme
which does not use quantum entangled states in the signing
phase and the verifying phase. The second AQS scheme has
three advantages. First, it does not utilize entangled states
while it can preserve all merits in the first scheme and the ex-
isting schemes [13,14]. Second, the signature can avoid being
disavowed by the receiver. Third, it provides a higher efficiency
in transmission and reduces the complexity of implementation.
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