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Unifying parameter estimation and the Deutsch-Jozsa algorithm for continuous variables
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We reveal a close relationship between quantum metrology and the Deutsch-Jozsa algorithm on continuous-
variable quantum systems. We develop a general procedure, characterized by two parameters, that unifies
parameter estimation and the Deutsch-Jozsa algorithm. Depending on which parameter we keep constant,
the procedure implements either the parameter-estimation protocol or the Deutsch-Jozsa algorithm. The
parameter-estimation part of the procedure attains the Heisenberg limit and is therefore optimal. Due to the
use of approximate normalizable continuous-variable eigenstates, the Deutsch-Jozsa algorithm is probabilistic.
The procedure estimates a value of an unknown parameter and solves the Deutsch-Jozsa problem without the use
of any entanglement.
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I. INTRODUCTION

Quantum metrology promises many advances in science
and technology. Continuous variables (CVs) are natural
candidates for optical implementations of quantum metrology
protocols [1–3]. The importance of CVs for quantum metrol-
ogy stems from the unconditional and efficient character of
CV preparation, manipulation, and detection techniques [4,5].
In this article, we devise an optimal parameter-estimation
procedure for CVs. Our procedure employs a single CV and
estimates a value of an unknown parameter with Heisenberg-
limited precision. Furthermore, for a particular, fixed value
of the parameter in question the procedure behaves as the
Deutsch-Jozsa algorithm for CVs. In fact, our protocol extends
the Deutsch-Jozsa algorithm over CVs presented by Pati and
Braunstein [6]. Instead of idealized, non-normalizable, and
unphysical states, we employ Gaussian states to represent CVs.
Moreover, we define Gaussian states on a finite domain, thus
removing an unphysical, infinite speed-up over any classical
procedure offered by the idealized states. An extensive analysis
of the Deutsch-Jozsa algorithm over CVs was given by
Adcock, Høyer, and Sanders [7].

The Deutsch-Jozsa algorithm is one of the first quantum
algorithms, preceded only by the original Deutsch algo-
rithm [8]. Even though the Deutsch-Jozsa problem is rather
artificial, the algorithm drew enormous attention due to
the computational speed-up over any classical procedure.
The structure of the algorithm is simple enough to determine
the source of this speed-up. The quantum superposition prin-
ciple and consequent quantum parallelism that lie at the heart
of quantum mechanics allows for the interference of many
distinct computational paths and allows the correct answer
to the problem to emerge in a single query. In other words,
the Deutsch-Jozsa algorithm probes a global property of an
unknown function f (x) and returns the result in a single run.

The article is organized as follows. In Sec. II, we review the
Deutsch-Jozsa algorithm over CVs and present its simplified
version. In Sec. III, we review basic concepts in quantum
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metrology. In Sec. IV, we introduce a general procedure
that unifies parameter estimation with the Deutsch-Jozsa
algorithm, and we analyze it in detail. Finally, we make some
concluding remarks in Sec. V.

II. DEUTSCH-JOZSA ALGORITHM OVER
CONTINUOUS VARIABLES

The generalization of the Deutsch-Jozsa algorithm to CVs
was devised by Pati and Braunstein [6]. This generalization
was implemented with idealized CVs defined on an infinite
domain. However, we need to stress that any practical CV
implementation of the Deutsch-Jozsa problem can be realized
only in a finite domain. Nevertheless, for simplicity, we first
recall the Deutsch-Jozsa algorithm over CVs as originally
stated in Ref. [6].

The objective of the Deutsch-Jozsa problem is to determine
whether some function f (x) is constant or balanced. This
is achieved by Alice and Bob playing the following game.
Alice submits a value of x from −∞ to +∞ to Bob. Then
Bob evaluates f (x), which can take only two values: 0
or 1. Bob also promises Alice to use either balanced or
constant functions. A constant function is either 0 or 1 for
all values of x ∈ (−∞, + ∞). A balanced function is 0 for
half of the values of x and 1 for the remaining values of x.
This is defined in terms of the Lebesgue measure µ on R:
µ(x ∈ R|f (x) = 0) = µ(x ∈ R|f (x) = 1) [6]. The goal of
this game is the same as the objective of the Deutsch-Jozsa
problem, that is, to establish if the function used by Bob is
constant or balanced. Classically, Alice would have to submit
infinitely many values of x to learn the global property of f (x)
with certainty. However, if Bob can use a unitary black-box
operation to calculate function f (x), then a single function
evaluation reveals the global property of f (x). In the setting
of idealized CVs, this would imply an infinite speed-up over
any classical procedure.

Let us now introduce in some detail the ideal Deutsch-Jozsa
algorithm over CVs shown in Fig. 1. This implementation of
the Deutsch-Jozsa algorithm employs two CVs, the so-called
register and target CVs. Alice stores her query in the register
CV, and the target CV is used by Bob during function evalua-
tion. The register CV is prepared in the position eigenstate |x0〉
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FIG. 1. A quantum circuit representing the Deutsch-Jozsa algo-
rithm over CVs. The quantum network NDJ consists of the Fourier
transforms F and controlled black-box gate Uf applied to the register
and target CVs prepared in the idealized position eigenstates |x0〉 and
|π/2〉, respectively. The last operation is an inverse Fourier transform
that enables the interference of different computational paths.

and the target in the eigenstate |π/2〉. The quantum network
NDJ implementing the Deutsch-Jozsa algorithm is given by the
following unitary transformation:

NDJ = F−1
r Uf FrFt , (1)

where F is the Fourier transform and r and t indicate the
register and target CV, respectively. The Fourier transform
applied to a CV in some position eigenstate |x〉 creates a
superposition of all position eigenstates according to

F |x〉 = 1√
π

∫ ∞

−∞
dye2ixy |y〉, (2)

where we used photon number units in which h̄ = 1
2 . The

unitary black-box operator Uf evaluates a value of function
f (x) and stores it in the state of the target CV: |x〉|y〉 →
|x〉|y + f (x)〉. Let us analyze the Deutsch-Jozsa algorithm
step by step. (i) Prepare the register and target CVs in an ideal
position eigenstate |x0〉 and |π/2〉, respectively. (ii) Apply the
Fourier transform F to the register and target CVs,

|s〉 = FrFt |x0〉|π/2〉 = 1

π

∫ ∞

−∞
dx dy e2ixx0+iπy |x〉|y〉.

(iii) Following the action of a unitary black-box operator Uf ,
the state of the CVs is given by

Uf |s〉 = 1√
π

∫ ∞

−∞
dx e2ixx0e−iπf (x)|x〉Ft |π/2〉.

(iv) The quantum network NDJ is finalized with an inverse
Fourier transform F−1 applied to the register CV. Therefore,
the state of the CVs can be written as

F−1
r Uf |s〉 = 1

π

∫ ∞

−∞
dx dx ′ e2ix(x0−x ′)e−iπf (x)|x ′〉Ft |π/2〉.

(v) Following the quantum network NDJ, the property of
function f (x) is determined by projecting the state of the
register CV onto the original position eigenstate |x0〉. The
CV projection operator for idealized states can be written
as

Px0 =
∫ x0+ε

x0−ε

dy|y〉〈y|, (3)

where ε is the spread around x0 value; that is, the CV
measurement cannot be performed with infinite precision. The
orthogonal complement of Px0 is given by

Px̄0 = I − Px0 = I −
∫ x0+ε

x0−ε

dy|y〉〈y|. (4)

By construction, a complete set of orthogonal projectors Pm

satisfies the completeness relations
∑

m Pm = I and PmPm′ =
δmm′Pm. If f (x) is constant, then the measurement statistics
based on the preceding set of orthogonal projection operators
and assuming ε → 0 is given by

p(x0) = Tr
[
P̂x0ρDJ

] = 1, (5)

p(x̄0) = Tr
[
P̂x̄0ρDJ

] = 0, (6)

where p(x0) is the probability of measurement outcome to be
x0, p(x̄0) is the probability of a measurement outcome different
than x0, and ρDJ = NDJ|r〉|t〉〈t |〈r|N−1

DJ . Conversely, if f (x) is
balanced, then the measurement statistics assuming ε → 0 is
given by

p(x0) = Tr
[
P̂x0ρDJ

] = 0, (7)

p(x̄0) = Tr
[
P̂x̄0ρDJ

] = 1. (8)

Therefore, if the state of the register CV remains unchanged,
then the function f (x) is definitely constant, and if the state
of the register CV is not |x0〉, then the function f (x) is bal-
anced. A single function evaluation solves the Deutsch-Jozsa
problem.

The core of the preceding implementation of the Deutsch-
Jozsa algorithm is represented by a unitary, controlled black-
box operator Uf applied between the Fourier-transformed
register and target CVs. Here, the Fourier-transformed tar-
get CV, together with a black-box operator, induces a
phase shift, which depends on the global property of
the function f (x): Uf (|x〉Ft |π/2〉) = e−2if (x̂)p̂t |x〉Ft |π/2〉 =
e−iπf (x)|x〉Ft |π/2〉. Notice that the state of the target CV is
not changed following the action of Uf . In fact, Ft |π/2〉
is an eigenstate of Uf with an eigenvalue e−iπf (x) “kicked
back” in front of the register CV [9]. Conventionally, the
Deutsch-Jozsa algorithm employs multiple quantum systems;
however, as the preceding simple analysis of the action of
Uf indicates, the target CV can be omitted. It is easy to
show that a single register CV together with a redefined
black-box operator Uf ≡ e−2iπ/2f (x̂) is enough to implement
the Deutsch-Jozsa algorithm over CVs. In Ref. [7], the authors
arrived at the same conclusion; however, they used a slightly
different approach. We emphasize that a direct consequence of
employing a single system is that this protocol does not use any
entanglement to determine the global property of the function
in a single run. Moreover, the preceding implementation of the
Deutsch-Jozsa algorithm is expressed in terms of the idealized
position eigenstates. However, a more realistic and physically
meaningful representation of a CV is given by, for example,
Gaussian states.

Similar to the setting of discrete quantum systems (e.g.,
qubits), some features of the Deutsch-Jozsa algorithm can
serve as a starting point for developing other quantum
algorithms. A slightly modified black-box operator Uf ≡
e−2iπ/2f (x̂) for a simplified Deutsch-Jozsa algorithm can be
used as the core of a protocol capable of estimating an
unknown parameter that under appropriate conditions still
retains the capabilities of the Deutsch-Jozsa algorithm. Before
introducing this protocol, let us recall some basic concepts in
quantum parameter-estimation theory.
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FIG. 2. The general parameter-estimation procedure involving
state preparation P , evolution U (ϕ), and generalized measurement M
with outcomes x, which produces a probability distribution p(x|ϕ).

III. PARAMETER ESTIMATION

The most general parameter-estimation procedure is shown
in Fig. 2, and consists of three elementary steps: (i) prepare
a probe system in an initial quantum state ρ(0); (ii) evolve
it to a state ρ(ϕ) by a unitary evolution U (ϕ) = exp(−iϕH);
(iii) subject the probe system to a generalized measurement M ,
described by a positive operator valued measure (POVM) that
consists of elements Êx , where x denotes the measurement
outcome. Here, the Hermitian operator H is the generator
of translations in ϕ, the parameter we wish to estimate. The
amount of information about ϕ that can be extracted by a
measurement of the probe system is given by the Fisher
information,

F (ϕ) =
∑

x

1

p(x|ϕ)

(
∂p(x|ϕ)

∂ϕ

)2

, (9)

where p(x|ϕ) = Tr[Êxρ(ϕ)] is the probability distribution
given by the Born rule that describes the measurement data,
and x is a discrete measurement outcome. Based on the Fisher
information, one can bound a minimal value of the uncertainty
in ϕ with the quantum Cramér-Rao bound [10–12],

(δϕ)2 � 1

T F (ϕ)
, (10)

where (δϕ)2 is the mean squared error in the parameter ϕ,
and T is the number of times the procedure is repeated. The
ultimate limit of the quantum Cramér-Rao bound depends on
how the Fisher information is bounded from above. The Fisher
information can be bounded in two ways: by the variance of
H [13] or by the expectation value of H [14,15],

F (ϕ) � 16(�H)2 and F (ϕ) � 4 |〈H 〉|2 , (11)

where we again used h̄ = 1
2 . Since both bounds are completely

general and complement each other, any parameter-estimation
procedure must respect them. Typically, the Fisher information
is related to an appropriate resource count such as the average
photon number, the average energy of the probe system, or
the number of unitary evolution gates that are used in the
estimation procedure. The expectation value of H plays the
role of the resource count [14]. We usually consider two scaling
regimes of the quantum Cramér-Rao bound. The first regime,
the so-called standard quantum limit (SQL) [16] or shot-noise
limit, is obtained when the Fisher information is a constant
with respect to T and the resource count. The SQL is typically
given by

δϕ � 1√
T

. (12)

|G(x0)〉 F Uf ( ) F−1

FIG. 3. A quantum circuit representing the general protocol over
CVs. The quantum network consists of the Fourier transform F

and black-box gate Uf (ϕ) applied to a single register CV prepared
in the Gaussian state |G(x0)〉. The last operation is an inverse
Fourier transformation that enables the interference of different
computational paths.

The second regime, the so-called Heisenberg limit [17], is
obtained in a single-shot experiment (T = 1) when the Fisher
information scales quadratically with the resource count. The
Heisenberg limit is then given by

δϕ � 1√
F (ϕ)

. (13)

Therefore, the uncertainty in the parameter ϕ scales linearly
inversely with the resource count. Both scaling regimes of the
quantum Cramér-Rao bound can be compared directly in terms
of an appropriate resource count [14].

IV. GENERAL PROCEDURE WITH GAUSSIAN STATES

In this section, we present a general procedure capable of
determining the value of a single parameter ϕ ∈ [0,2π ) or
implementing the Deutsch-Jozsa algorithm (see Fig. 3). Here,
the black-box operator is defined in the following way:

Uf (ϕ) ≡ exp[−2iϕf (x̂)], (14)

where f (x̂)|x〉 = f (x)|x〉. The function f (x) again takes
only two values: 0 and 1. Without loss of generality, ideal,
non-normalizable CV states are regularized to Gaussian input
states. Similar to the case of the Deutsch-Jozsa algorithm,
any physical CV parameter-estimation protocol can be imple-
mented only on a finite domain. Therefore, we introduce the
semi-Gaussian input state defined on a finite domain given by

|G(x0)〉 =
∫ T

−T

dx

Nx

exp

[
− (x − x0)2

2�2

]
|x〉, (15)

where � is the variance of the state and Nx is the normalization
constant given by N2

x =
√

π�2/2[erf( T +x0
�

) + erf( T −x0
�

)]. We
note that for � 	 T we recover the normalization constant
in the form of N2

x =
√

π�2, which is characteristic for a
Gaussian state defined on an infinite domain, that is, from −∞
to +∞. The Fourier-transformed semi-Gaussian state defined
on a finite domain can be written as

|G(p0)〉 =
∫ P

−P

dp

Np

exp[−2�2(p − p0)2]|p〉, (16)

where 1/(2�) is the variance of the Fourier-transformed semi-
Gaussian state and Np is given by

N2
p =

√
π/4�2

2
{erf [2(P + p0)�] + erf[2(P − p0)�]} .

For P 
 1/(2�) the normalization constant takes the form
of N2

p =
√

π/4�2, characteristic for a Fourier-transformed
Gaussian state define on an infinite domain. The relationship
between domains of the semi-Gaussian input state and its
Fourier-transformed counterpart is given by P = 1/(2T ).

042320-3
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The general procedure consists of the following instruc-
tions. (i) Prepare the register CV in the normalized semi-
Gaussian state |r〉 = |G(x0)〉, and apply the Fourier transform
F defined by

F |x〉 = |x〉p = 1√
2T

∫ T

−T

dye2ixy |y〉, (17)

where |x〉p is the Fourier-transformed position eigenstate, that
is, the momentum eigenstate. (ii) Subsequently, a black-box
operator Uf (ϕ) is applied. Then the state of the system is

Uf (ϕ)F |r〉 =
∫ T

−T

dx

Nx

exp

[
− (x − x0)2

2�2

]
e−2iϕf (x̂)|x〉p

= 1√
2T

∫ T

−T

dx dy

Nx

exp

[
− (x − x0)2

2�2

]

×e2iyxe−2iϕf (y)|y〉.
(iii) Finally, an inverse Fourier transform F−1 is applied
followed by a measurement. The state of the register CV is
measured by projecting onto the original semi-Gaussian state
centered around x0. Measurement is described by a POVM set
{Px0 ,Px̄0}, where

Px0 =
∫ T

−T

dx dy gxy |x〉〈y| and Px̄0 = I − Px0 , (18)

with

gxy = 1

N2
ε

exp

[
− (x − x0)2

2ε2

]
exp

[
− (y − x0)2

2ε2

]
, (19)

and ε is the intrinsic precision of the measurement apparatus;
that is, any CV measurement must have finite precision if
it is to be physical, and Nε is the normalization constant
given by N2

ε =
√

πε2/2[erf( T +x0
ε

) + erf( T −x0
ε

)]. The optimal
measurement which corresponds to the initial semi-Gaussian
register state has ε = �; thus Nε = Nx .

Now let us calculate the measurement statistics. Analytical
expressions for the measurement statistics are hard to find due
to the presence of error functions erf(x). However, for the
semi-Gaussian states with � 	 T the calculations simplify
considerably. Under this regime, the limits of integration for
the integrals containing terms that depend on � range from
−∞ to +∞. Necessarily, the normalization constants have
to be changed and are expressed as

√
2T Nx = √

π
4
√

π�2. In
other words, a semi-Gaussian input state defined on a finite
domain is approximated with a Gaussian state defined on an
infinite domain. Therefore, the measurement statistics based
on the preceding POVM are given by the following expression:

p(x0|ϕ) = 4�2

π

∫ P

−P

dz dy e−4�2(z2+y2)e2iϕ[f (z)−f (y)],

p(x̄0|ϕ) = 1 − p(x0|ϕ). (20)

Here, the interval (−P,P ) is a finite domain of the Fourier-
transformed semi-Gaussian state |G(x0)〉 and denotes the
interval where for this particular procedure function f (x) is
defined.

At this point, we have to give an explicit definition of the
function. Functions f (x) defined on a finite domain returning
only two values ({0,1}) fall into three distinct categories:

constant, balanced, and neither constant nor balanced. We
recall that the objective of the Deutsch-Jozsa algorithm is
to probe whether an unknown function f (x) is constant or
balanced. We parametrize the three possibilities for defining
f (x) by introducing a parameter r . The preceding integrals
can then be evaluated for any function f (x) behaving as a step
function, with the parameter r marking the point where f (x)
changes its value. Hence, for r = 0 and r = ±P the function
f (x) is balanced and constant, respectively. For 0 < r < P

(or −P < r < 0), the function f (x) is neither constant nor
balanced. We consider only positive values of r due to the
symmetry of the setup. This leads to

p(x0|ϕ) = 1
2 [erf 2(2P�) + erf 2(2r�)]

+ 1
2 [erf 2(2P�) − erf 2(2r�)] cos(2ϕ),

p(x̄0|ϕ) = 1 − p(x0|ϕ),

where p(x0|ϕ) is the probability of measurement outcome to
be in the interval x0 ± ε and p(x̄0|ϕ) is the probability of
measurement outcome not to be in the interval x0 ± ε.

A. Representations of f (x)

Our choice to represent f (x) as a step function simplified
our calculations. However, we can imagine more elaborate
behavior patterns for f (x). In principle, since in the case of the
Fourier-transformed idealized CVs all terms have amplitudes
of equal magnitude, all finite subintervals where the function
takes value 0, can be added up to a single interval. The
same applies to all subintervals where function takes value 1.
Therefore, one ends up with two intervals and a relationship
between them given by the parameter r . However, in the
setting of semi-Gaussian states defined on a finite domain,
the preceding reasoning is not quite as straightforward. The
amplitudes of the Fourier-transformed Gaussian states have
a slightly different magnitude. One may notice this feature
by inspecting Eq. (20). Since in our calculations we favor a
step-function representation over any other, let us estimate
the maximum error we make with this assumption. Due
to a trivial nature of a constant function, in the following
analysis we consider a balanced function. We consider the
step-function representation of a balanced function with r = 0.
The biggest deviation from this representation is offered by
a balanced function that changes its value twice at points
r1 = −P/2 and r2 = P/2. Both representations produce two
distinct probability distributions, pstep(x0|ϕ) and phat(x0|ϕ),
respectively, that differ by the error εP� given by

εP� = |1 − cos(2ϕ)|
∣∣∣∣− 8

π
(P�)6 + 24

π
(P�)8 + O((P�)10)

∣∣∣∣.
The error tends to zero with P� → 0. This is natural
since when � → 0 all amplitudes of the Fourier-transformed
idealized position eigenstate have the same magnitude; that is,
the spectrum is flat.

B. Analysis

Our procedure can be analyzed in two ways. As expected,
from one perspective it behaves as a parameter-estimation
protocol. From the other, it behaves as the Deutsch-Jozsa
algorithm. First, we analyze the behavior of the parameter
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estimation part of the procedure. Based on the preceding
measurement statistics, we calculate the Fisher information
F (ϕ). The minimal value of F (ϕ) = 0 occurs when function
f (x) is constant (r = P ) with the corresponding measurement
statistics:

p(x0|ϕ) = erf 2(2P�),

p(x̄0|ϕ) = 1 − erf 2(2P�).

Conversely, the maximal value of the Fisher information,

F (ϕ) = 4erf 2(2P�)[cos(2ϕ) − 1]

erf 2(2P�)[cos(2ϕ) + 1] − 2
, (21)

occurs when function f (x) is balanced (r = 0) with the
corresponding measurement statistics:

p(x0|ϕ) = 1
2 erf 2(2P�)[1 + cos(2ϕ)],

p(x̄0|ϕ) = 1 − 1
2 erf 2(2P�)[1 + cos(2ϕ)].

Here the optimal value of the Fisher information F (ϕ) = 4 is
given for erf 2(2P�) = 1 ⇒ P � 3/(2�), which, in general,
implies P � 1/(2�) and is consistent with the approximation
applied earlier. The general dependence of the Fisher informa-
tion F (ϕ) on parameter r with P = 3/(2�) and � = 1/

√
2

(the variance of the coherent state) is shown in Fig. 4. The dips
that are especially visible for the balanced function appear
because the Fisher information F (ϕ) retains some dependence
on the parameter ϕ since for P = 3/(2�), erf 2(2P�) ≈ 1.
Based on the general dependence of F (ϕ) on r , we conclude
that the maximal value of the Fisher information is indeed
obtained for a balanced function.

FIG. 4. (Color online) General dependence of the Fisher infor-
mation F (ϕ) for five values of the parameter r: r = 0 corresponds
to the uppermost solid line (green), r = P/8 corresponds to the
dashed line (blue), r = P/4 corresponds to the dashed-dotted line
(brown), r = P/2 corresponds to the long-dashed line (gray), and
r = P corresponds to the lowermost solid line (red).

To address the optimality of our parameter-estimation pro-
tocol, we analyze the behavior of the generator of translations
in the parameter ϕ: H ≡ f (x̂). The expectation value of
the generator H in the state of the register CV preceding
application of the black-box operator, that is, |ψin〉 = F |r〉
with � 	 T , is given by

|〈H 〉| = |〈f (x̂)〉| = 1
2 [erf(2P�) − erf(2r�)].

Since f 2(x) = f (x) the variance of the generator H in |ψin〉
can be written as

(�H)2 = [�f (x̂)]2 = 1
2 [erf(2P�) − erf(2r�)]

× [
1 − 1

2 [erf(2P�) − erf(2r�)]
]
.

The maximal expectation value of the generator H occurs for
a balanced function (r = 0) with P � 3/(2�) and is given by
|〈H 〉| = 1/2. On the other hand, the maximal variance of the
generator H is (�H)2 = 1/4. Hence, the Fisher information
is bounded by F (ϕ) � 16(�H)2 = 4. Therefore, we note that
according to Eqs. (11) and (13) our procedure attains the
scaling regime of the Heisenberg limit. However, to establish
its optimality, we must calculate whether δϕ = 1/

√
F (ϕ). We

use the standard expression for the mean squared error given
by

δϕ = �X

|d〈X〉/dϕ| , (22)

where X is the measurement observable defined as
X = Px0 [see Eq. (18)]. Hence, for the final state
|ψϕ〉 = F−1Uf (ϕ)F |r〉 with ε = �, we calculate 〈X〉 =
〈ψϕ|Px0 |ψϕ〉 = 1

2 erf 2(2P�)[1 + cos(2ϕ)]. Based on the prop-
erty P 2

x0
= Px0 , we find that 〈X2〉 = 〈X〉. For P � 3/(2�) the

mean squared error is δϕ = 1/2. Hence, we conclude that for
a balanced function our parameter-estimation procedure over
CVs attains the ultimate limit of the quantum Cramér-Rao
bound, and therefore is optimal. This result constitutes an
analogy to the phase estimation with a qubit realized as a single
photon placed in the arms of the Mach-Zehnder interferometer.
Here the balanced property of function f (x) plays a role of
two distinct paths in a balanced Mach-Zehnder interferometer.

Next, let us analyze the Deutsch-Jozsa side of the procedure.
Under appropriate conditions the developed procedure can
determine the character of function f (x). If a value of the
parameter ϕ is fixed, ϕ = π/2, then the measurement statistics
is given by

p(x0) = erf 2(2r�),

p(x̄0) = 1 − erf 2(2r�).

It is clear that for a constant and balanced function f (x)
the corresponding measurement statistics of the Deutsch-
Jozsa algorithm are recovered. Indeed, when function f (x)
is constant (r = P ), then

p(x0) = erf 2(2P�),

p(x̄0) = 1 − erf 2(2P�),

and when function f (x) is balanced (r = 0), then p(x0) = 0
and p(x̄0) = 1. The Deutsch-Jozsa algorithm over the semi-
Gaussian states defined on a finite domain becomes a
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FIG. 5. (Color online) General dependence of the Fisher informa-
tion F (r) for four values of the parameter ϕ: ϕ = π/2 corresponds
to the uppermost solid line (green), ϕ = 5π/12 corresponds to the
dashed line (blue), ϕ = π/3 corresponds to the dashed-dotted line
(brown), ϕ = π/4 corresponds to the long-dashed line (gray), and
ϕ = π/8 corresponds to the lowermost solid line (red). The optimal
value of r shifts from balanced to constant.

probabilistic procedure. This is consistent with the conclusions
found in Ref. [7]. However, when the size of the domain is
sufficiently large with P � 3/(2�), then a definite distinction
between constant and balanced functions can be made. Nev-
ertheless, even for large-enough domains this implementation
of the Deutsch-Jozsa protocol does not offer an unphysical,
infinite speed-up over the classical procedures. We note that
for ideal, non-normalizable position eigenstates (� → 0),
the constant function measurement statistics is retained for
P → ∞, rendering P and r unphysical, thus making a
meaningful distinction between the balanced and constant
functions impossible.

We also calculated the Fisher information F (r) and plotted
it against r ∈ (0,P ) for five different values of the parameter
ϕ = {π/2,5π/12,π/3,π/4,π/8} with P = 3/(2�) and � =
1/

√
2 (see Fig. 5). The maximal value of the Fisher information

F (r) is obtained for ϕ = π/2 corresponding to a simplified
Deutsch-Jozsa algorithm. We note that the optimality changes
from balanced to more constant when ϕ = π/2. Any further
analysis of this side of the procedure is problematic due to a
lack of the generator of translations in r .

One possible application of the Deutsch-Jozsa part of our
procedure is to test the quality of the implementation of
function f (x) employed in the parameter-estimation protocol.
Whenever the function is balanced or constant the quality
of its implementation can be established by probing the
parameter r . We also stress that since we are employing
a single continuous variable, no entanglement is present
at the preparation stage and none is created during the
computation. The quantum superposition principle itself is
responsible for speed-up over any classical procedure. Even
though, in principle, a single CV is quite sufficient, a practical
implementation of the Deutsch-Jozsa algorithm may require
more CVs.

V. CONCLUSIONS

In conclusion, we developed a general procedure capable
of performing two distinct tasks. For one mode of operation
the protocol estimates a value of an unknown parameter with
Heisenberg-limited precision. On the other hand, for a fixed
value of the parameter in question the procedure addresses
the Deutsch-Jozsa problem in a single run. Our procedure
employs Fourier transforms and black-box unitary operator
applied to a single CV represented as the semi-Gaussian state
defined on a finite domain. Consequently, for this setup, the
parameter-estimation side of the procedure is optimal and the
Deutsch-Jozsa algorithm offers finite, that is, physically
feasible, speed-up over any classical procedure. Furthermore,
no entanglement is present at any stage of the procedure.
A similar conclusion concerning quantum metrology can be
found in Refs. [18,19]. We emphasize a special role played
by balanced functions f (x). The procedure equipped with the
black-box operator that introduces the parameter ϕ via the
balanced function attains the ultimate limit of the quantum
Cramér-Rao bound. This behavior can be linked to the phase
estimation with a qubit realized as a single photon placed in
the arms of the Mach-Zehnder interferometer.
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