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We consider the problem of improving noisy quantum measurements by suitable preprocessing strategies
making many noisy detectors equivalent to a single ideal detector. For observables pertaining to finite-dimensional
systems (e.g., qubits or spins) we consider preprocessing strategies that are reminiscent of quantum error
correction procedures and allow one to perfectly measure an observable on a single quantum system for increasing
number of inefficient detectors. For measurements of observables with an unbounded spectrum (e.g., photon
number and homodyne and heterodyne detection), the purification of noisy quantum measurements can be
achieved by preamplification as suggested by Yuen [Opt. Lett. 12, 789 (1987)].
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I. INTRODUCTION

In many situations it is necessary to measure an observable
in the presence of noise, e.g., when transmitting a quantum
state through a noisy quantum channel that degrades it
exponentially versus distance, corresponding to a degradation
of the measurement.

A number of figures of merit can be used to characterize the
noise of nonideal measurements. An example of such figures of
merit is the variance of the outcomes distribution. An extensive
analysis of the variance affecting quantum measurements has
been done, for example, in Ref. [1]. In a communication
scenario, a relevant figure of merit is represented by the mutual
information between the measurement outcomes and the input
alphabet encoded on an ensemble of states. The problem
of how much classical information can be extracted from a
quantum system was first deeply discussed by Holevo [2],
who provided bounds on the accessible information, and
then revisited in the framework of quantum information by
Schumacher et al. [3]. A further figure of merit is the average
probability of correctly distinguishing input states picked up
from a given ensemble. This is one of the first problems
faced by quantum estimation theory and has been addressed
extensively in the literature [2,4–6]. Finally, another example
of figure of merit is a suitable distance between the noisy and
the ideal outcomes probability for fixed input states.

In this article, we consider the situation where N identical
preparations of the state ρg belonging to some ensemble
S = {(pg,ρg)} are given. We are allowed to use M nonideal
detectors, with M � N . Each detector is described by a
positive operator-valued measure (POVM), namely a set of
positive operators {P ′

i }, which provides a resolution of the
identity, i.e.,

∑
i P

′
i = I . Each POVM element P ′

i is the noisy
version of an ideal POVM element Pi . A generic quantum
channel R is allowed to act on the N identical copies of the
state ρg before the M noisy POVMs {P ′

i } are measured, and
generic classical postprocessing can be done on the outcomes
of such measurements. Such a scheme of “purification” of
noisy measurements is depicted in Fig. 1. We address the
problem of optimizing the quantum channel R in order to
reduce the effect of noise affecting the POVMs {P ′

i }. We
approach the problem through the minimization of the variance

of the maximum likelihood estimator for the parameter g and
through the maximization of the mutual information between
g and the measurement outcomes.

Notice the analogy between quantum error correction
schemes [7], as depicted in Fig. 2, and the purification
of measurements. For error correction, the message is first
encoded by gateR into one of the carefully chosen code words,
which is then (possibly) corrupted by the noisy communication
channel E . Finally, in gate D some set of commuting
Hermitian operators are measured over the corruption, the
syndrome is used to perform error correction, and, finally,
the recovered code word is decoded into the original message.
For purification of measurements, we are allowed to encode
the N identical copies of input state ρg through the channel
R, in a way similar to quantum error correction. The aim of
such encoding is very different, since after that we are forced
to perform M measurements with the same noisy POVM {P ′

i },
which provide us just classical outcomes to be classically
postprocessed. The limitation of the measurement purification
versus error correction is that the decoding D is restricted
to classical outcomes only. The problem we are considering is
also similar to the problem solved by entanglement purification
protocols [8], since we are generally trying to recast the use
of a number of noisy measurements to an effective use of
a smaller number with less noise. The article is organized
as follows. In Sec. II we specify the general problem to a
qubit with isotropic noise, and then we face the optimization
considering different figures of merit, in Sec. III we show
how to minimize the measurement noise, while in Sec. IV
we maximize the mutual information between the parameter
describing the state and the outcomes of the POVMs. In Secs. V
and VI, we consider observables with unbounded spectrum,
for which the concept of amplification applies, and we review
the scheme of Yuen [9] for purifying photodetectors (Sec. V)
and homodyne and heterodyne detectors (Sec. VI). Finally,
Sec. VII is devoted to conclusions.

II. PURIFICATION OF QUBIT MEASUREMENTS

Let us specify the general problem we are considering. We
are provided with N identical copies of the input state ρg of
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FIG. 1. Purification scheme for noisy quantum measurements.

dimension d. In what follows we will always suppose that
the elements of the POVMs {Pi} and {P ′

i } are d, which has
been proved to be the optimal choice for d = 2 [10], when the
mutual information is optimized.1 We suppose that each noisy
element P ′

i is obtained acting with the same channel E on the
corresponding element Pi of the ideal POVM

P ′
i = E∨(Pi), (1)

where E∨ denotes the Heisenberg-picture version of the
channel E . Equation (1) shows that the ideal POVM {Pi} is
“cleaner” than the noisy POVM {P ′

i } in the sense of the partial
ordering introduced in Ref. [12], as depicted in Fig. 3.

We consider a qubit (so d = 2) parametrized as

ρa,b =
(

a b

b∗ 1 − a

)
. (2)

We are interested in the observable σz, and we suppose to have
at our disposal M noisy POVMs {P ′

i } of σz, i.e., Pi = |i〉〈i|.
We assume a simple kind of noise acting on each POVM, i.e.,
the isotropic noise

E∨(Pi) = αPi + βI, (3)

so P ′
i = α|i〉〈i| + βI .

We suppose we have an N = 1 qubit state and consider as a
purification channel R the orthogonal cloning C, with respect
to the basis of eigenstates of the observable σz,

C(ρ) =
∑
i=0,1

〈i|ρ|i〉|i〉〈i|⊗M. (4)

The conditional probability p( �ı|a,b) of obtaining outcomes
�ı = {i1, . . . ,iM} given the state parametrized by a,b does not
depend on b and can be explicitly written as

p( �ı|a) = Tr[C(ρ)E∨(Pi)
⊗M ]. (5)

1Indeed, for d > 2 it has been shown in Ref. [11] that a measurement
with number of outcomes larger than the dimension of the span of
the input states can improve the mutual information.

{ψi}
R E D

FIG. 2. Scheme for quantum error correction.

Pi = E Pi

FIG. 3. Noisy POVM element.

We substitute Eqs. (4) and (3) into Eq. (5) to obtain

p( �ı|a) = Tr{[a|0〉〈0|⊗M + (1 − a)|1〉〈1|⊗M ]

⊗ M
j=1(α|ij 〉〈ij | + βI )}. (6)

We observe that the probability p( �ı|a) depends only on the
number of outcomes 0 and 1 in the measurement (i.e., not on
their position). On defining such integers as M0 and M1 =
M − M0, we obtain

p(M1|a) =
(

M

M1

)
[a(α + β)M0βM1 + (1 − a)(α + β)M1βM0 ].

(7)

For the normalization condition of the POVM in Eq. (3)
one has α = 1 − 2β, so 0 � β � 1

2 , and hence

p(M1|a) =
(

M

M1

)
{a[(1 − β)M0βM1 − (1 − β)M1βM0 ]

+ (1 − β)M1βM0}. (8)

One can easily check the normalization of this probability,
i.e.,

∑M
M1=0 p(M1|a) = 1. In the case of ideal measurements

for which β = 0, the non-null probabilities are obtained just
for M1 = 0 and for M1 = M , namely

p(M1 = 0|a) = a, p(M1 = M|a) = 1 − a, (9)

whereas in the completely isotropic case (i.e., β = 1
2 ) the

probability p(M1|a) = ( M

M1
)( 1

2 )M is independent of a, namely
no information can be obtained about the state. Note that also
the coherent channel, widely used in encoding schemes for
quantum error correction as [13]

C ′(ρ) =
∑

i,j=0,1

〈i|ρ|j 〉|i〉〈j |⊗M, (10)

leads to the same probability distribution Eq. (8), since P ′
i are

diagonal on the σz basis.

III. MINIMIZATION OF MEASUREMENT NOISE

We show how to apply the maximum likelihood (ML)
criterion to obtain the optimal estimator for the expectation
value of σz, by means of our measurement purification scheme.
Our aim is to show an improvement of estimation in terms of
variance by increasing the uses of the POVM.

The ML criterion provides the following estimator for a in
the state Eq. (2):

aML = arg max
a

1

n
L(a|M1), (11)

where n is the number of (joint) outcomes (runs of the
purification scheme depicted in Fig. 1), L(a|M1) is the so-
called log-likelihood functional

L(a|M1) =
n∑

j=1

log2 pj (M1|a), (12)
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and pj (M1|a) denotes the conditional probability for the j th
run. We observe that Eq. (11) is concave since the logarithm
of a linear function is a concave function and the summation
of concave functions is a concave function. To solve the ML
problem, we employ the iterative numerical method described
in Ref. [14]. First, we generate a large amount of data
distributed according to Eq. (8) for some fixed value of a

and β. Then, we fix some order zero approximation a0 for the
estimator aML. Then, the first order correction is given by

a1 =
∂L(a|M1)

∂a

∣∣
a=a0

F (a0)
, (13)

where F (a) is the Fisher information

F (a) =
∑

�ı

[
∂p( �ı|a)

∂a

]2 1

p( �ı|a)
, (14)

which in our case is given by

F (a) =
M∑

M1=0

(
M

M0

)2 [(1 − β)M0βM1 − (1 − β)M1βM0 ]2

p(M1|a)
.

(15)

The Fisher information measures the amount of information
that the random variable M1 carries about the unknown
parameter a on which the likelihood function depends. So
the estimator to first order is a0 + a1, and the procedure can be
iterated with this value as order zero approximation to obtain
higher-order corrections. Obviously, the result is independent
of the initial value a0. For β not too big (say 0 < β < 1

3 ),
the algorithm converges in a few steps (say, less than 10).
The variance on the ML estimator of a parameter satisfies the
Cramer-Rao bound [15]

σ 2(aML) � 1

nF (a)
. (16)

The bound in Eq. (16) is saturated if the number of data are
large enough and the parameter is monodimensional (as in the
present case). We numerically estimated the variance of the
estimator aML in Eq. (11) by dividing the data into blocks,
finding the estimator ai for each block, and then calculating
the variance of such estimators, namely

σ 2(aML) =
∑

i

(ai − aML)2. (17)

In Fig. 4 we verified that the variance numerically saturates
the bound in Eq. (16).

Figure 5 shows that the variance decreases as the number of
POVMs used in parallel increases and upper and lower bounds
for variance. To find the upper bound consider the function

f (M1) =
M1
M

+ β − 1

2β − 1
. (18)

Note that f (M1) is an unbiased estimator for the parameter a,
since one has

〈f (M1)〉 =
M∑

M1=0

f (M1)p(M1|a) = a. (19)

FIG. 4. (Color online) Variance σ 2(aML) versus the number n of
outcomes (runs) for parameter a = 0.75, measurement noise β =
0.25, and number of POVMs M = 10. The solid line represents the
Cramer-Rao bound in Eq. (16).

The second moment is given by

〈f (M1)2〉 =
M∑

M1=0

f (M1)2p(M1|a)

= a + β(1 − β)

(1 − 2β)2M
. (20)

Thus, an upper bound for the variance on the parameter a is

σ 2(aML) �
[
a − a2 + β(1 − β)

(1 − 2β)2M

]
1

n
. (21)

The lower bound for the variance is

σ 2(aML) � 1

nF (a)|β=0,M=1
= a − a2

n
, (22)

where the right-hand side of Eq. (22) corresponds to the use
of the ideal detector on the original state.

FIG. 5. (Color online) Variance σ 2(aML) versus the number M of
POVMs for parameter a = 0.75, measurement noise β = 0.25, and
number of runs n = 2000. The upper and lower bounds correspond
to Eqs. (21) and (22), respectively.
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The computed variance shows a dependence on the param-
eter a similar that in Eq. (21), decreasing as 1/M for a = 0 or
a = 1. The variance saturates the lower bound in Eq. (22), so
the the estimator of the parameter a is optimal.

IV. MAXIMIZATION OF MUTUAL INFORMATION

We consider now the mutual information as the figure of
merit in the measurement purification scheme. We consider a
qubit parametrized as

|ψ〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉. (23)

The probability in Eq. (8) can be written as

p(M1|θ ) =
(

M

M1

)[
[(1 − β)M0βM1 − (1 − β)M1βM0 ] cos2 θ

2

+ (1 − β)M1βM0

]
, (24)

independent of φ.
In the following we suppose that the prior probability

p(θ,φ) of having the input state in Eq. (23) is uniform, so the
mutual information I (M1 : θ,φ) between random variables θ

and φ and random variable M1 is given by

I (M1 : θ ) := 1

2

∫ π

0
dθ sin θ

M∑
M1=0

p(M1|θ )

× log2

[
p(M1|θ )

1
2

∫ π

0 dθ sin θp(M1|θ )

]
. (25)

The integral in the denominator gives∫ π

0
dθ sin θp(M1|θ )

=
(

M

M1

)
[(1 − β)M0βM1 + (1 − β)M1βM0 ], (26)

and a lengthy analytical form for Eq. (25) is provided in the Ap-
pendix. The mutual information I (M1 : θ ) saturates the bound
I (M1 : θ ) � I (M1 : θ )|M=1,β=0 � 0.279 bit for increasing M.
Note that the mutual information does not converge to 1 bit,
since a continuous “alphabet” of states is allowed. The mutual
information I (M1 : θ ) saturates almost exponentially versus
M , as shown by Fig. 6. This means that we are recasting the
use of many noisy detectors to an effective use of a single ideal
detector.

Let us consider in more detail the simplified case in which
the only allowed input states are the up (θ = π ) and down
(θ = 0) eigenstates of σz. This simplification leads to two
advantages: a much more tractable analytical form for the
mutual information I2(M1 : θ ) and the possibility to make a
comparison with classical postprocessing based on majority
voting. The mutual information is given by

I2(M1 : θ ) =
M∑

M1=0

(
M

M1

)
(1 − β)M1βM0

× log2

[
2(1 − β)M1βM0

(1 − β)M0βM1 + (1 − β)M1βM0

]
.

(27)

FIG. 6. (Color online) Function −log2[1 − I (M1:θ)
I (M1:θ)|β=0

] versus the

number M of POVMs for measurement noise β = 0.25. The mutual
information I (M1 : θ ) is given by Eq. (A1).

Equation (27) behaves as expected for the ideal POVM
case (i.e., β = 0), where I2(M1 : θ ) = 1, and for the com-
pletely isotropic POVM case (i.e., β = 1

2 ), where I2(M1 :
θ ) = 0. Finally, we investigate the optimal classical post-
processing to be applied on the M outcomes of the
parallel noisy POVMs to maximize the mutual infor-
mation. We simply argue that majority voting is close
to the optimal postprocessing, as shown in Fig. 7. The
gap between the binary mutual information I2(M1 : θ )
and that obtained with the majority-voting strategy could be
explained by the fact that in general a number of POVM
elements greater than the cardinality of the input alphabet can
optimize the mutual information. In fact, Davies’s theorem
[16] puts an upper bound of d2 on the number of POVM
elements to optimize the mutual information for an alphabet
of d linear independent pure states (see also Ref. [11]). The
case of a two-states alphabet can be easily generalized to an
alphabet of d orthogonal state {|j 〉}, with j = 1,2, . . . d, and
noisy POVM elements P ′

i = α|i〉〈i| + 1−α
d

I . The conditional

FIG. 7. (Color online) Function −log2[1 − I2(M1 : θ )] versus the
number M of POVMs for measurement noise β = 0.25.
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FIG. 8. (Color online) Mutual information for an alphabet of four
equiprobable orthogonal states versus the number of purifying copies
for measurement noise α = 0.8 (upper) and α = 0.4 (lower).

probability of the outcomes of M noisy measurements on M

copies of |j 〉 is simply the multinomial

p(M1,M2, . . . ,Md−1|j )

= M!

M1!M2! · · · Md

[(d − 1)α + 1]Mj (1 − α)M−Mj

dM
, (28)

where Ml is the number of outcomes l in the string of
M outcomes, and Md = M − ∑d−1

j=1 Mj . The conditional
probability allows one to evaluate the mutual information, and
for increasing number of clones M , the noisy measurements
are purified. In Fig. 8 we show the purification effect for
an alphabet of four orthogonal equiprobable states and two
different values of noise. As expected, for increasing value of
M the mutual information approaches two bits.

V. INEFFICIENT PHOTODETECTION

In the rest of the article we consider observables with an
unbounded spectrum, for which the concept of amplification
applies, and we review the scheme of Yuen [9] for improving
noisy photodetectors and homodyne and heterodyne detectors.
In the original proposal of Ref. [9] the signal-to-noise
ratio improvement was studied for noisy measurements with
preamplification assistance. By reviewing the results here, we
explicitly consider the effect of amplification as a purification
of the noisy POVMs and hence of the outcome probability
distributions.

Light is revealed by exploiting its interaction with atoms,
molecules, or electrons in a solid, and, essentially, each
photon ionizes a single atom or promotes an electron to a
conduction band, and the resulting charge is then amplified to
produce a measurable pulse. In practice, however, available
photodetectors do not ideally count all photons, and their
performance is limited by a nonunit quantum efficiency η,
namely only a fraction η of the incoming photons leads to
an electric signal and ultimately to a count: some photons are
either reflected from the surface of the detector or are absorbed
without being transformed into electric pulses. Let us consider
a light beam entering a photodetector of quantum efficiency η,
i.e., a detector that transforms just a fraction η of the incoming
light pulse into electric signal. We will focus our attention to the
case of the radiation field excited in a stationary state of a single
mode at frequency ω. The Poissonian process of counting

then gives the following probability pη(m) of revealing m

photons [17]:

pη(m) = Tr

[
ρ:

(ηa†a)m

m!
exp(−ηa†a):

]
, (29)

where ρ represents the quantum state of light, and : : denotes
the normal ordering of field operators.

Using the identities

:(a†a)n: = (a†)nan = a†a(a†a − 1) · · · (a†a − n + 1), (30)

:e−xa†a: =
∞∑
l=0

(−x)l

l!
(a†)lal = (1 − x)a

†a, (31)

one obtains

pη(m) =
∞∑

n=m

ρnn

(
n

m

)
ηm(1 − η)n−m, (32)

where

ρnn ≡ 〈n|ρ|n〉 = pη=1(n). (33)

Hence, for unit quantum efficiency a photodetector measures
the photon number distribution of the state, whereas for
nonunit quantum efficiency the output distribution of counts
is given by a Bernoulli convolution of the ideal distribution.

The outcome distribution in Eq. (32) can be equivalently
described by means of a simple model in which the realistic
photodetector is replaced with an ideal photodetector preceded
by a beam splitter of transmissivity τ ≡ η. The reflected mode
is absorbed, whereas the transmitted mode is photodetected
with unit quantum efficiency. In order to obtain the probability
of measuring m clicks, note that, apart from trivial phase
changes, a beam splitter of transmissivity τ affects the unitary
transformation of fields(

c

d

)
≡ U †

τ

(
a

b

)
Uτ =

( √
τ −√

1 − τ√
1 − τ

√
τ

) (
a

b

)
, (34)

where all field modes are considered at the same frequency.
Hence, the output mode c hitting the detector is given by the
linear combination

c = √
τa − √

1 − τb, (35)

and the probability of counts reads

pτ (m) = Tr[Uτ (ρ ⊗ |0〉〈0|)U †
τ |m〉〈m| ⊗ 1]

=
∞∑

n=m

ρnn

(
n

m

)
(1 − τ )n−mτm. (36)

Equation (32) is then reproduced for τ = η. We conclude that a
photodetector of quantum efficiency η is equivalent to a perfect
photodetector preceded by a beam splitter of transmissivity η

which accounts for the overall losses of the detection process.
According to Eq. (32), the POVM describing the inefficient
photodetector can be written as


η(m) =
(

a†a

m

)
ηm(1 − η)a

†a−m, (37)
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such that pη(m) = Tr[ρ
η(m)]. The random variable m,
suitably rescaled by η, provides an estimator of the average
photon number 〈a†a〉 = Tr[ρa†a], since one has

∞∑
m=0

m

η

η(m) = a†a. (38)

In order to evaluate the second moment of the probability, one
uses the identity

∞∑
m=0

(
m

η

)2


η(m) = (a†a)2 + 1 − η

η
a†a, (39)

and hence the inefficient measurement is affected by the
added noise 1−η

η
〈a†a〉, with respect to the ideal intrinsic noise

�(a†a)2 ≡ 〈(a†a)2〉 − 〈a†a〉2.
In the following we show that and ideal photon-number am-

plifier can arbitrarily reduce the added noise of the inefficient
measurement for increasing gain. The ideal photon-number
amplification map is given by [18–20]

a†a −→ V̂ †a†aV̂ = ga†a, (40)

where g is an integer and V̂ is the isometry

V̂ =
∞∑

n=0

|gn〉〈n|. (41)

The preamplified POVM is simply given by


(g)
η (m) =

(
ga†a

m

)
ηm(1 − η)ga†a−m. (42)

The estimator of the average photon number is now m/(gη),
and the second moment is given by

∞∑
m=0

(
m

gη

)2


(g)
η (m) = (a†a)2 + 1 − η

gη
a†a. (43)

Clearly, for g → ∞, the added noise is completely removed
for any value of the quantum efficiency η.

We note that the ideal photon-number amplifier is so
effective that, indeed, even a preamplified heterodyne de-
tection provides the ideal photon number distribution for
increasing gain, as shown in Ref. [21].

VI. INEFFICIENT CONTINUOUS
VARIABLE MEASUREMENTS

A. Homodyne detection

The balanced homodyne detector provides the measure-
ment of the quadrature of the field

Xϕ = a†eiϕ + ae−iϕ

2
. (44)

It was proposed by Yuen and Chan [22] and subsequently
experimentally demonstrated by Abbas, Chan, and Yee [23].
The signal mode a interferes with a strong laser beam
mode b in a balanced 50:50 beam splitter. The mode b is the
so-called local oscillator (LO) mode of the detector. It operates
at the same frequency of a and is excited by the laser in
a strong coherent state |z〉. Since in all experiments that use
homodyne detectors the signal and the LO beams are generated

by a common source, we assume that they have a fixed phase
relation. In this case the LO phase provides a reference for
the quadrature measurement, namely we identify the phase
of the LO with the phase difference between the two modes.
By tuning ϕ = arg z we can measure the quadrature Xϕ at
arbitrary phase.

Behind the beam splitter, the two modes are detected
by two identical photodetectors (usually linear avalanche
photodiodes), and finally the difference of photocurrents at
zero frequency is electronically processed. In the strong-LO
limit |z| → ∞, the homodyne detector is described by the
POVM


(x) =
∫ +∞

−∞

dλ

2π
exp[iλ(Xϕ − x)] = |x〉ϕϕ〈x|, (45)

namely the projector on the eigenstate of the quadrature Xϕ

with eigenvalue x. In conclusion, the balanced homodyne
detector achieves the ideal measurement of the quadrature Xϕ

in the strong LO limit. In this limit, the probability distribution
of the output photocurrent approaches exactly the probability
distribution p(x,ϕ) = ϕ〈x|ρ|x〉ϕ of the quadrature Xϕ for any
state ρ of the signal mode a.

It is easy to take into account nonunit quantum efficiency
at detectors. The POVM is obtained by replacing

Xϕ → Xϕ +
√

1 − η

2η
(uϕ + vϕ) (46)

in Eq. (45) with wϕ = (w†eiϕ + we−iϕ)/2, where w = u,v de-
notes the vacuum modes of the two inefficient photodetectors.
By tracing the vacuum modes u and v, one obtains


η(x) =
∫ +∞

−∞

dλ

2π
eiλ(Xϕ−x)|〈0|eiλ

√
1−η

2η
uϕ |0〉|2

=
∫ +∞

−∞

dλ

2π
eiλ(Xϕ−x)e

−λ2 1−η

8η

= 1√
2π�2

η

exp

[
− (x − Xϕ)2

2�2
η

]

= 1√
2π�2

η

∫ +∞

−∞
dx ′e

− 1
2�2

η
(x−x ′)2

|x ′〉ϕϕ〈x ′|, (47)

where

�2
η = 1 − η

4η
. (48)

Thus the noisy POVM, and in turn the probability distribution
of the output photocurrent, are just the Gaussian convolution
of the ideal ones with rms �η = √

(1 − η)/(4η).
In the following we show that the added noise of the

inefficient homodyne detector can be removed by amplifying
the signal by means of a phase-sensitive amplifier. This
amplifier is described by the squeezing operator

S(ξ ) = exp
[

1
2 (ξa†2 − ξ ∗a2)

]
(49)

and performs the mode transformation

S†(ξ )aS(ξ ) = (cosh |ξ |)a + ξ

|ξ | (sinh |ξ |)a†. (50)
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For ξ = re2iϕ , with r > 0, one has

S†(ξ )XϕS(ξ ) = erXϕ. (51)

Hence, the effective POVM obtained by preprocessing 
η(x)
in Eq. (47) with the phase-sensitive amplification of Xϕ is
given by


(r)
η (x) = S†(re2iϕ)
η(x)S(re2iϕ)

= 1√
2π�2

η

exp

[
− (x − erXϕ)2

2�2
η

]
. (52)

Now, in order to obtain an unbiased measurement of Xϕ , it
is enough to rescale the outcome by er . On the other hand,
the added noise with respect to the ideal measurement Xϕ

becomes equal to e−2r�2
η, which can be made arbitrary small

for increasing value of the squeezing parameter r .

B. Heterodyne detection

Heterodyne detection allows to perform the joint measure-
ment of two conjugated quadratures of the field [24,25].

A strong local oscillator at frequency ω in a coherent
state |α〉 hits a beam splitter with transmissivity τ → 1 and
with the coherent amplitude α such that γ ≡ |α|√τ (1 − τ )
is kept constant. If the output photocurrent is sampled at the
intermediate frequency ωIF, just the field modes a and b at
frequency ω ± ωIF are selected by the detector. Modes a and b

are usually referred to as signal band and image band modes,
respectively. In the strong LO limit, on tracing the LO mode,
the output photocurrent I (ωIF) rescaled by γ is equivalent to
the complex operator

Z = I (ωIF)

γ
= a − b†, (53)

where the arbitrary phases of modes have been suitably
chosen. The heterodyne photocurrent Z is a normal operator,
equivalent to a couple of commuting self-adjoint operators

Z = ReZ + iImZ, [Z,Z†] = [ReZ,ImZ] = 0. (54)

The POVM of the detector is then given by the orthogonal
(in Dirac sense) eigenvectors of Z.

In conventional heterodyne detection the image band mode
is in the vacuum state and one is just interested in measuring
the field mode a. In this case the POVM 
(z) is obtained on
tracing on mode b, and one has the customary projectors on
coherent states


(z) = 1

π
|z〉〈z|, (55)

with z ∈ C. The coherent-state POVM provides the optimal
joint measurement of conjugated quadratures of the field [4].
For a state ρ, the expectation value of any quadrature Xϕ is
obtained as

〈Xϕ〉 = Tr[ρXϕ] =
∫
C

d2α

π
Re(αe−iϕ)〈α|ρ|α〉. (56)

The price to pay for jointly measuring noncommuting observ-
ables is an additional noise. The rms fluctuation is evaluated
as follows:∫

C

d2α

π
[Re(αe−iϕ)]2〈α|ρ|α〉 − 〈Xϕ〉2 = 〈

�X2
ϕ

〉 + 1

4
, (57)

where 〈�X2
ϕ〉 is the intrinsic noise, and the additional term is

usually referred to as “the additional 3dB noise due to the joint
measure” [26–28].

The effect of nonunit quantum efficiency can be taken into
account in analogous way as in Sec. VI A for homodyne
detection. The coherent-state POVM is replaced with the
convolution


η(z) =
∫
C

d2z′

π�2
η

e
− |z′−z|2

�2
η

|z′〉〈z′|
π

, (58)

where �2
η = (1 − η)/η.

In the following we show that inefficient heterodyne
detection can be purified by phase-insensitive amplification.
Phase-insensitive amplification with (power) gain G amplifies
the coherent amplitude of coherent states by

√
G at the

expense of addition thermal photons n̄ = G − 1. Differing
from phase-insensitive amplification, the physical process is
not unitary but described by a completely positive map EG.
Here, we just need the Heisenberg evolution of the pro-
jector on coherent states, which is simply given by the
rescaling [29]

E∨
G(|α〉〈α|) = 1

G
|G−1/2α〉〈G−1/2α|. (59)

It follows that under phase-insensitive preamplification the
noisy heterodyne POVM (58) is replaced with


(G)
η (z) =

∫
C

d2z′

π�2
η

e
− |√Gz′−z|2

�2
η

|z′〉〈z′|
π

. (60)

Upon rescaling z → G−1/2z, one obtains


(G)
η (z) =

∫
C

Gd2z′

π�2
η

e
− G|z′−z|2

�2
η

|z′〉〈z′|
π

= G→∞
|z〉〈z|

π
, (61)

namely the noise due to quantum efficiency can be arbitrarily
reduced for increasing value of the gain G. The effectiveness
of preamplification in purifying heterodyne detection is more
unexpected than the case of homodyne detection, since phase-
insensitive amplification is not a unitary process.

VII. CONCLUSION

In this article, we addressed the problem of optimizing a
quantum channel acting before many parallel uses of a noisy
POVM in order to purify the measurements, namely to achieve
an effective measurement that is less noisy than the original
ones. We first considered the purification of σz noisy measure-
ments on qubits, by choosing the orthogonal cloning channel
as a purification map. We found the maximum-likelihood
estimator for σz, whose variance shows an almost exponential
decay versus the number of POVMs. We also worked out
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an analytic form for the mutual information between the
state parameter and the outcomes of the POVMs, and here
also an almost exponential improvement versus the number
of POVMs has been found. We proved that naive majority
voting is not the optimal classical postprocessing, since
the maximum-likelihood approach gives a better estimator.
For photodetection and continuous variable measurements
as homodyne and heterodyne detection, the measurement
purification can be achieved by preamplification, as early
pointed out by Yuen [9].

We think that the relevant problem of purifying noisy
quantum measurements will have a significant impact on the
quantum information technology, in this same way as the
decoherence problem.
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APPENDIX: DERIVATION OF THE MUTUAL
INFORMATION IN EQ. (25)

We provide here an analytic form for Eq. (25), obtained
substituting Eq. (8) for p(M1|θ ). One obtains

I (M1 : θ ) = 1

32

M∑
M1=0

(
M

M1

)
c1A + c2B

C
, (A1)

where

c1 = (1 − β)2Mβ4M1 , c2 = (1 − β)4M1β2M, (A2)

and

A = −16 log2[(1 − β)2M1βM + (1 − β)Mβ2M1 ]

+ 8 log2[(1 − β)2Mβ4M1 ] + 16 − 8
1

ln(2)
, (A3)

B = +16 log2[(1 − β)2M1βM + (1 − β)Mβ2M1 ]

− 8 log2[(1 − β)4M1β2M ] − 16 + 8
1

ln(2)
, (A4)

C = (1 − β)M+M1β3M1 − (1 − β)3M1βM+M1 . (A5)
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