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Experimental quantum process tomography of non-trace-preserving maps
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The ability of fully reconstructing quantum maps is a fundamental task of quantum information, in particular
when coupling with the environment and experimental imperfections of devices are taken into account. In
this context, we carry out a quantum process tomography approach for a set of non-trace-preserving maps.
We introduce an operator P to characterize the state-dependent probability of success for the process under
investigation. We also evaluate the result of approximating the process with a trace-preserving one.
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I. INTRODUCTION

The complete characterization of quantum devices repre-
sents one of the fundamental tasks of quantum-information
science. The characterization of single- and two-qubit devices
is particularly important, since single-qubit and two-qubit
controlled-NOT gates are the two building blocks of a quantum
computer [1]. Furthermore, identifying an unknown quantum
process acting on a quantum system is another key task for
quantum dynamics control, in particular in the presence of
decoherence [2,3]. In this context any quantum process E can
be described by a linear map [1] acting on density matrices ρ

associated with a Hilbert space H which transforms an input
state ρin into an output state ρout (Fig. 1):

ρin
E−→ ρout = E(ρin). (1)

The complete characterization of such a process can be
realized by reconstructing the corresponding map E . The
action induced by a black box may be represented by a
process matrix χ which is experimentally reconstructed by
quantum process tomography (QPT) [3–8]. So far, several
QPT experiments have been performed for trace-preserving
processes, such as single-qubit transmission channels [9,10],
optimal transpose maps [11], gates for ensembles of two-qubit
systems in NMR [12], a two-qubit quantum-state filter [13], a
universal two-qubit gate [14], and controlled-NOT (CNOT) and
controlled-Z (CZ) gates for photons [15–17].

Recently, theoretical and experimental analyses of non-
trace-preserving processes have been carried out. Kiesel
et al. evaluated the role of prior knowledge of the intrin-
sic feature of the experimental setup in order to obtain
physical and easily understandable parameters for char-
acterizing the gate and estimating its performance [17].
Furthermore, quantum process tomography in the presence
of decoherence has been analyzed for a fast identification
of the main decoherence mechanisms associated with an
experimental map [2].

Here we address the characterization of non-trace-
preserving maps, focusing on the evaluation of an operator
P , representing the success probability of the process. In
particular we carry out a QPT approach for a set of non-trace-
preserving maps. Then, we discuss possible errors occurring
in the presence of inappropriate approximations.

The paper is organized as follows. In Sec. II a brief review of
the main theoretical aspects of QPT and of the process fidelity,
both for trace-preserving and non-trace-preserving maps, is
presented. In Sec. III we report an example of QPT of a
non-trace-preserving process, corresponding to the transfor-
mation induced by a partially transmitting polarizing beam
splitter. The QPT experimental realization and results are then
presented together with a brief discussion on possible wrong
approaches to the problem, when a non-trace-preserving
process is approximated with a trace-preserving one. Finally,
the conclusions are given in Sec. IV.

II. QUANTUM PROCESS TOMOGRAPHY

Consider an unknown quantum process, i.e., a black box,
acting on a physical quantum system described by a density
matrix ρ associated with a d-dimensional Hilbert space H.
A complete characterization of the process may be obtained
by the Kraus representation of quantum operations in an open
system [3,4,14]. A generic map E acting on a generic state ρ

can be expressed by the Kraus representation [1]

E(ρ) =
∑

i

EiρE
†
i , (2)

where Ei are operators acting on the system and satisfying the
relation1 ∑

i E
†
i Ei � I. If E is a trace-preserving process, the

completeness relation
∑

i E
†
i Ei = I holds.

The quantum process tomography of E consists of the
experimental reconstruction of the operators {Ei}. In order
to relate each operator Ei with measurable parameters it is
convenient to use a fixed basis of operators {Ai} such that

Ei =
∑
m

aimAm. (3)

By substituting this expression in (2), the map reads as follows:

E(ρ) =
∑
m,n

χmnAmρA†
n , (4)

1
∑

i E
†
i Ei � I means that the eigenvalues of the Hermitian operator∑

i E
†
i Ei − I are not positive.
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FIG. 1. (Color online) Scheme of a generic quantum process E .

where χmn = ∑
i aima�

in. By construction, the matrix χE with
elements χmn is Hermitian and semidefinite positive.

To experimentally reconstruct each element χmn we prepare
d2 input states ρk forming a basis for the Hilbert space of d × d

matrices. The output states can be written as

E(ρk) =
∑

j

λkjρj , (5)

where the coefficients λkj are experimentally obtained by
characterizing E(ρk) and expressing it in the {ρk} basis. By
defining the coefficients βmn

jk such that

AmρjA
†
n =

∑
k

βmn
jk ρk , (6)

it is easy to obtain a relation between λkj and χmn [4]:∑
m,n

βmn
jk χmn = λjk . (7)

In order to find the matrix χE which completely describes the
process E , we need to operate a matrix inversion of βmn

jk . If τmn
jk

is this generalized inverse matrix (i.e.,
∑

jk τ
pq

jk βmn
jk = δpmδqn),

the elements of χE read

χmn =
∑
jk

τmn
jk λjk. (8)

For a non-trace-preserving map, it is important to consider
not only the transformation acting on a generic input state, but
also the probability of success of the map. For a given input
state ρ, the probability of obtaining an output state from the
black box is given by

Tr[E(ρ)] = Tr

[∑
mn

χmnAmρA†
n

]
= Tr[Pρ] , (9)

where P is a semidefinite positive Hermitian operator defined
as

P =
∑
mn

χmnA
†
nAm � I. (10)

Let us write P in its diagonal form, P = ∑
i pi |pi〉〈pi |, where

|pi〉 are the eigenstates and 0 � pi � 1 the corresponding
eigenvalues. Different cases may occur:

(i) pi = 1 ∀ i, i.e., P = I for a trace-preserving process.
(ii) pi = p < 1 ∀ i (P is proportional to the identity opera-

tor) for a non-trace-preserving process with state-independent
success probability.

(iii) There is at least one eigenvalue pi different from the
others in the case of a non-trace-preserving process with state-
dependent success probability.
The eigenvectors of P coincide with the “probability of
success” eigenstates of the transformation.

We now describe how to compare two quantum processes.
It is well known that a quantum state can be completely

determined by a tomographic reconstruction [18] and com-
pared with the expected theoretical state by a variety of
measures, such as quantum-state fidelity [19]. Similarly, we
know that the process matrix χE gives a convenient way
of representing a general operation E . A closely related but
more abstract representation is provided by the Jamiolkowski
isomorphism [20], which relates a quantum operation E to a
quantum state, ρE :

ρE ≡ (I ⊗ E)|�〉〈�|, (11)

where |�〉 = 1√
d

∑
j |j 〉|j 〉 is a maximally entangled state

associated with the d-dimensional system with another copy
of itself, and {|j 〉} is an orthonormal basis set. If E is a trace-
preserving process, then the quantum state ρE is normalized,
Tr[ρE ] = 1. In this way, by associating a quantum process to
a quantum state, for two trace-preserving processes E and G,
a process fidelity 	 has been defined as follows [21–24]:

	(E,G) = F(ρE ,ρG), (12)

where F is the quantum-state fidelity F =
Tr[

√√
ρEρG

√
ρE ]2 [19]. It is easy to demonstrate that,

by choosing the set Am = {√d|i〉〈j |} as Kraus operators, we
have ρE ≡ χE , and, in general, F(ρE ,ρG) = F(χE ,χG) if any
complete set of operators A′

m satisfying Tr[A′
mA

′†
n ] = dδmn

is used (δmn is the Kronecker delta). Thus, if we want to
compare an experimental map χ with the expected one χid,
the process fidelity is

	 = Tr[
√√

χ χid
√

χ]2. (13)

The last expression gives the fidelity of density matrices with
unit trace. However, if χ represents a non-trace-preserving
process, i.e., Tr[χ ] = 1

d
Tr[P] < 1, the process fidelity defini-

tion is generalized as follows [17]. Let χid be the ideal matrix
associated with a non-trace-preserving process in the Kraus
representation and χ the experimental one. The fidelity for
such a process is written as

	(χ,χid) = Tr[
√√

χ χid
√

χ ]2

Tr[χ ]Tr[χid]
. (14)

Note that the physical meaning of this expression is the same
as that of (13); indeed we can express it as

	(χ,χid) = 	(χ ′,χ ′
id) = Tr[

√√
χ ′ χ ′

id

√
χ ′]2, (15)

where χ ′ = χ

Tr[χ]
and χ ′

id = χid

Tr[χid]
are well-defined phys-

ical states (Tr[χ ′] = Tr[χ ′
id] = 1) which, however, do not

correspond to any meaningful quantum operation, since the
probability of success of the corresponding processes will be
larger than 1 for some input states (i.e., the corresponding
operators P will have at least one eigenvalue larger than 1).

It is interesting to highlight that the process fidelity defined
in (14) does not distinguish between two processes E and
G if E = αG, where α is a constant, i.e., two processes are
indistinguishable if they differ only for a global loss, as it
often occurs in the experimental implementations of photonic
quantum systems.
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III. QPT OF A PARTIALLY TRANSMITTING POLARIZING
BEAM SPLITTER

Now we analyze a simple example of the quantum process
tomography of a non-trace-preserving, state-dependent map,
acting on a single polarization qubit (d = 2). Consider a
partially transmitting polarizing beam splitter (PPBS) with
transmittivities TH and TV at the horizontal and vertical
polarization, respectively. Following the Kraus approach, in
which we consider Aj as the Pauli operators, we report the
analytical expression of the process matrix χPPBS.

In general, if we inject a photon with arbitrary polarization
state into the PPBS, the output state will be

α|H 〉 + β|V 〉 → α
√

TH |H 〉 + β
√

TV |V 〉, (16)

where α,β ∈ C and |α|2 + |β|2 = 1. Clearly the probability of
success of this transformation is state dependent. Let us write
the process matrix associated with this map. According to QPT
calculations, we fix the Pauli matrices σi, i = 0, . . . ,3, in a
bidimensional Hilbert space as the basis Ai in the Kraus sum
(satisfying the normalization condition Tr[AmA

†
n] = dδmn),

and choose the set {ρk} of the states to be measured, obtaining
the following matrix:

χPPBS =

⎛
⎜⎜⎜⎜⎝

(
√

TH +√
TV )2

4 0 0 TH −TV

4

0 0 0 0

0 0 0 0
TH −TV

4 0 0 (
√

TH −√
TV )2

4

⎞
⎟⎟⎟⎟⎠ . (17)

Obviously, the explicit form of χPPBS does not depend on
the chosen set {ρk}, but only on the fixed basis Ai in the
Kraus representation. Let us now write the explicit form of the
operator P for the PPBS. By using the χ matrix given in (17),
we obtain

PPPBS =
(

TH 0

0 TV

)
. (18)

This operator is proportional to the identity only when TH =
TV .

A. Experimental QPT of a PPBS

In this subsection we report the experimental realization
of QPT for a partially transmitting polarizing beam splitter.
In the experimental setup shown in Fig. 2, the PPBS is
implemented by a closed-loop scheme, similar to the one
used in [25,26], operating with two half-wave plates (HWPs).
A diagonally polarized light beam is split by a polarizing
beam splitter (PBS) into two beams with equal intensity and
orthogonal polarizations. Precisely, the horizontal (H ) and
vertical (V ) components travel along two parallel directions
inside the interferometer, counterclockwise and clockwise,
respectively. One half-wave plate intercepts the H beam,
while the other intercepts the V beam; by rotating the wave
plates, it is possible to vary the value of TV with respect
to TH .

The photons injected in this interferometric setup are
generated by a spontaneous parametric down-conversion
source realized with a nonlinear crystal cut for type II
noncollinear phase matching [27]. The crystal is pumped by a

FIG. 2. (Color online) Experimental setup used for the QPT
of a partially transmitting polarizing beam splitter. The PPBS is
implemented by a displaced Sagnac interferometer and two half-wave
plates. The measurements are performed with a standard polarization
analysis setup.

cw diode laser and pairs of degenerate photons are produced
at wavelength λ = 806 nm. One photon is used as a trigger,
while the other is delivered to the PPBS setup. We prepared
six different input states, |H 〉, |V 〉, |D〉, |A〉, |R〉, and |L〉
associated with horizontal, vertical, diagonal, antidiagonal,
right-handed, and left-handed polarization, respectively, and
measured the six output components for each input with
a standard polarization analysis setup. We repeated this
procedure for different values of the ratio � = TV /TH and,
for each value of �, we reconstructed the experimental χ

matrix of the process. We then performed an optimization
of the process matrix following a maximum likelihood ap-
proach [15,28]; in particular, we minimized the following
function:

f (
t) =
d2∑

a,b=1

1

nab

[
nab −

d2−1∑
m,n=0

〈ψb|σm|φa〉〈φa|σn|ψb〉χ̃mn(
t)
]2

,

(19)

where nab are the measured coincidence counts for the ath
input and the bth output, |φa〉 and |ψb〉 indicate the input and
the output states, respectively, and σm are the Pauli operators.
Since we are not interested in the overall losses affecting the
transformation (even the adopted fidelity is independent of
global losses), we normalize the experimental χexpt matrix
such that the maximum eigenvalue of P is 1. We determined
the fidelity between the experimental map and the ideal one
for several values of �, as shown in Fig. 3. We observe that
the process fidelity approaches unity for each value of �, and
in general, we have F > 96% with a good agreement between
the experimental data and the theory. In Fig. 4, two examples
of ideal and experimental process matrices, corresponding to
� = 0.879 and � = 0.255, are shown.

We also estimated the probability operator P: the behavior
of its eigenvalues λ1 and λ2 as a function of � is shown in
Fig. 5. We observe that λ1 = 1 for each value of � (by con-
struction), while the other eigenvalue, λ2, shows a decreasing
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FIG. 3. (Color online) Measurement of fidelity as a function of
� = TH

TV
. The solid line represents the theoretical value.

behavior as the ratio between the transmittivities decreases, as
expected from (18). Again, a very good agreement between
experimental data and theory is obtained.

B. Trace-preserving approximation

The method just described can be usefully adopted
even when the process under investigation is ideally trace-
preserving. In fact, when quantum process tomography is
practically implemented, any interaction with the environment
as well as experimental imperfections may cause the process
to be non-trace-preserving. In practice, to approximate the
process as a trace-preserving one corresponds to minimizing
the likelihood function (19) with the additional constraint
P = ∑

m,n χmnσnσm = I. In this way we are imposing the
probability of success to be independent of the input state.
We carried out the f (t) minimization by taking into account

FIG. 4. (Color online) Real part of ideal and experimental process
matrices, χid and χexpt, for � = 0.879 [(a) and (b)] and � = 0.255
[(c) and (d)]. The imaginary parts are negligible.

FIG. 5. (Color online) Probability operator eigenvalues as a
function of the ratio � = TV /TH . Solid lines represent expected
behavior. Error bars are smaller than the spot size.

the constraint2 and evaluated the process fidelity between the
obtained χexpt and the ideal matrix (17) for each value of �.
The results are shown in Fig. 6. As expected, this method gives
results similar to those obtained in Sec. III A for � ∼ 1, while
the fidelity values are different as � decreases. In particular,
the fidelities calculated by imposing the constraint decrease as
� goes to zero. It is evident that constraining the process to
be trace-preserving does not allow one to correctly reconstruct
the associated map.

A further scenario in which the probability of success must
be taken into account may arise when measurements are per-
formed in postselection. The reconstruction of the output state
density matrices (which obviously are normalized physical
states) for several input states, leads to a trace-preserving
process. Even in this case we evaluated the fidelities between
the resulting process matrix and the ideal one obtaining the
results shown in Fig. 7. As in the previous case, the fidelity
decreases as � goes to zero. Note that this approach is
not correct even from a theoretical point of view: the pro-
cess matrix χE obtained by normalizing the output states could
be nonphysical (i.e., it could have negative eigenvalues) and

2We used the function NMinimize[{f, cons}, t] of the MATHEMATICA

5 program that allows us to numerically minimize f (t) subject to
the constraints cons. P = I. Note that the constraint imposes the
normalization Tr[χexpt] = 1.

FIG. 6. (Color online) Experimental fidelities calculated impos-
ing the constraint

∑
m,n χmnσnσm = I (red open circles). Fidelities

obtained with the correct method are also reported (black filled
triangles).
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FIG. 7. (Color online) Experimental fidelities calculated using
the post-selective approach (red open circles). Fidelities obtained
with the correct method are also reported (black filled triangles).

its expression depends on the chosen set of input states. This is
because normalization implies the process is no longer a linear
map and Eq. (4) is not valid anymore. In general, the output
state normalization produces wrong process matrices for any
non-trace-preserving operation with state-dependent success
probability.

IV. CONCLUSIONS

A review on quantum process tomography of non-trace-
preserving maps has been reported. The experimental imple-
mentation of a simple non-trace-preserving, state-dependent
process, i.e., the transformation induced by a partially

polarizing beam splitter, provided process fidelities larger than
96% for any value of the ratio between the transmittivities �.
Particular attention has been addressed to the state-dependence
property of the process through evaluation of the operator
P (10). This operator has been calculated and measured in the
case of a PPBS, and its eigenvalues are different from unity
[see (18)], as expected for a non-trace-preserving process. In
order to stress the validity of the method, a brief discussion
about possible wrong approaches has been presented together
with the explicit calculation of the PPBS process fidelities.
The obtained results clearly show that the approximation
of a non-trace-preserving, state-dependent process with a
trace-preserving one does not allow a correct reconstruction
of the real process map.

QPT of non-trace-preserving processes are relevant for
linear optical logic gates with success probability <1. Indeed,
typically it is just assumed that the success probability of such
gates is uniform across input states, and hence it is crucial
to check the validity of this assumption for any application.
For example, it would be interesting to investigate whether
losses in the planar integrated waveguide chips currently being
used [29] could affect different input states differently.
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