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Universal quantum computation by discontinuous quantum walk
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Quantum walks are the quantum-mechanical analog of random walks, in which a quantum “walker” evolves
between initial and final states by traversing the edges of a graph, either in discrete steps from node to node or
via continuous evolution under the Hamiltonian furnished by the adjacency matrix of the graph. We present a
hybrid scheme for universal quantum computation in which a quantum walker takes discrete steps of continuous
evolution. This “discontinuous” quantum walk employs perfect quantum-state transfer between two nodes of
specific subgraphs chosen to implement a universal gate set, thereby ensuring unitary evolution without requiring
the introduction of an ancillary coin space. The run time is linear in the number of simulated qubits and gates.
The scheme allows multiple runs of the algorithm to be executed almost simultaneously by starting walkers one
time step apart.
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I. INTRODUCTION

In analogy to the use of random walks to speed up classical
computation [1], the role of quantum walks has been explored
in the realm of quantum computation [2,3]. Quantum walks
were first applied to quantum algorithms known to be more
efficient than their classical counterparts, such as Grover’s
search of an unsorted array [4,5], the element distinctness
problem [6], and triangle finding [7] and its extension to
k-cliques [8]. It was quickly recognized that quantum walks
could also be used to generate quantum algorithms for various
problems more directly than was possible within the context
of the conventional quantum-circuit model, for example
traversing glued binary trees [9,10] and evaluating decision
trees [11], NAND trees [12,13], and game trees (AND-OR

formulas) [14].
More recently, quantum walks have been shown to be

computationally universal in both the continuous-time [15]
and discrete-time [16] formulations. In both cases, the walker
moves from left to right along “rails” or lines of vertices,
labeled by computational basis states. These rails are inter-
spersed with small graphs, or “widgets,” that transform the
state of the quantum walker in analogy to gates in the circuit
model. The widgets are attached either to individual rails or
between pairs of rails, and the transformations are chosen in
such a way as to effect a desired computation. The collection of
rails and widgets forms a computational graph, which mimics
the circuit model via the unitary evolution of the walker in its
spatial Hilbert space.

The continuous-time model for universal computation
proposed in Ref. [15] makes use of a walker with a tightly
peaked momentum profile. This requires each of its rails to
include semi-infinite “tails” (linear graphs) both before and
after the computational graph, though in practice the length of
these tails needs only to be large compared to twice the total
evolution time of the walker within the graph (i.e., proportional
to the circuit depth). Additionally, the preparation of the
momentum state requires an initial sequence of momentum
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filter widgets, each with its own tail. A side effect is that
most of the walker’s probability never enters the computational
graph. While these considerations only increase the resources
polynomially in the number of widgets used, their presence
makes the scheme somewhat cumbersome.

In the discrete-time scheme of Ref. [16], double-edged rails
are employed in order to guarantee that the walker moves
through the entire graph strictly from left to right. Each vertex
is attached to four edges, two of which are connected to the
vertex to the left, and two to the right. While this scheme does
not require tails, the walker must have at least eight internal
states because the various widgets require two-, four-, and
eight-dimensional coins.

An alternative approach to universal quantum computation
discussed in this work is based on perfect state transfer
(PST) [17,18]. In PST, quantum states are transferred perfectly
between two nodes of a graph in continuous time. While
PST was originally described in terms of spin chains [19], it
has more recently been extended to continuous-time quantum
walks on graphs [20–22]. In the latter formulation of PST,
the walker’s state at the output vertex is identical to that at the
input, modulo a phase. In order to simulate a universal quantum
circuit for n qubits, one would need to construct a graph in
which an input state on 2n vertices could be transferred via
PST to 2n vertices, together with the desired 2n-dimensional
unitary operator U . While this task appears to be difficult for
general U, it might be possible to decompose the graph into a
small set of widgets, each of which individually allows for PST
or a straightforward extension of it. Alternating these widgets
with some other set of processes could then result in universal
quantum computation [23] in a manner analogous to the inter-
leaving of driving and query Hamiltonians that can efficiently
simulate continuous-time quantum query algorithms under the
discrete query model [24].

We present a hybrid scheme for universal quantum compu-
tation that combines the best features of the continuous- and
discrete-time schemes discussed above while minimizing their
disadvantages: the walker undergoes PST under continuous
evolution, but only in discrete steps. In this “discontinuous
quantum walk,” graphs are turned on and off at discrete time
intervals in a prescribed manner. The walker moves through
these graphs in sequence, resulting in the implementation
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of the desired 2n-dimensional unitary U . In the absence of
errors, the initial state propagates through the graph without
loss of amplitude at the output; furthermore, no coin degree of
freedom is required even though the procedure utilizes discrete
time steps. The scheme has the added advantage that new
walkers can be sent through the same graph at regular intervals,
allowing for nearly simultaneous repetition of the algorithm
with no additional overhead.

The remainder of this paper is organized as follows. In
Sec. II we define the hybrid scheme for universal quantum
computation via discontinuous quantum walk. In Sec. III
we describe a set of fundamental elements that fulfill the
requirements of the scheme, and in Sec. IV we show how
to combine them to create a universal set of gates. In Sec. V
we provide some concluding remarks.

II. HYBRIDIZING DISCRETE- AND
CONTINUOUS-TIME WALKS

A quantum walk takes place on a graph G = (V,E), where
V is a set of vertices and E ⊆ V × V × W is a set of edges
defined by pairs of elements of V and associated edge weights
wij taken from W = {wij }. Often W is simply the single-
element set {1}, in which case it need not be present, but
more generally it can be any set of numbers. An undirected
weighted graph G is defined by a corresponding adjacency
matrix G, with matrix elements defined by

Gij =
{
wij , (i,j,wij ) ∈ E,

0 otherwise,
(1)

where wij = wji > 0. By definition, G is real and symmetric
and can therefore be interpreted as a Hamiltonian on the state
space V = {|v〉 : v ∈ V }. Doing so describes a continuous-
time quantum walk on G, where a quantum walker initially on
vertex vI in the state |I 〉 = |vI 〉 evolves in time t to the final
state |F 〉 = exp(−iGt)|vI 〉, which is generally a superposition
of vertex states |v〉 ∈ V .

With perfect quantum state transfer (PST), the final state
after a time t0 > 0 corresponds to unit probability on a single
vertex vF , |F 〉 = |vF 〉. In particular, a line of M segments
exhibits PST from one end to the other for the particular choice
of edge weights wi,i+1 = √

i(M + 1 − i) for i ∈ {1, . . . ,M}
[19]; an example is shown in Fig. 1(a). In this situation, a

(a)

√
1·M

√
2(M−1)

√
(M−1)2

√
M·1· · ·

(b) · · ·

FIG. 1. Two different methods to effect perfect state transfer.
(a) A line of M segments weighted so as to provide perfect state
transfer from one end to the other in time π/2. All line segments
are always “on” but have varying weights wi,i+1 = √

i(M + 1 − i),
i ∈ {1, . . . ,M}. (b) A line of M segments with unit weight, with the
solid and dashed couplings turned on alternately so as to provide
perfect state transfer from one end to the other in time Mπ/2; that is,
the coupling between a pair of adjacent nodes is alternated between
0 and 1.
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FIG. 2. (Color online) Implementation of single-qubit operations.
The solid (green), dashed (red), and dotted (blue) lines form three
distinct disconnected graphs, Gg , Gr , and Gb, respectively; these
graphs are switched on and off via global control in an algorithm-
independent sequence, namely: g, r , g, b, repeat. The graphs Gi ,
i ∈ Z, are determined by the desired algorithm and are chosen from
a specified set. The result is that a walker initially at x = 0 will take
discrete steps to successive values of x, being transformed in the
process.

walker initially localized at time t = 0 on the leftmost node,
|I 〉 = |v0〉, will be localized on the rightmost node at time
t = π/2; a phase of (−i)M will have been applied to the
state. Consider instead the combination of line segments in
Fig. 1(b). If the walker begins on the leftmost node and the
dashed line segments are disabled (i.e., their weight or coupling
constant vanishes), then after a time t = π/2 the walker will
have transferred perfectly to the second node and acquired a
phase of −i. If at this point the solid lines are switched off
and the dashed ones enabled, the walker will proceed to the
third node. In this manner it can be perfectly transferred to
the rightmost node in M discrete steps, taking a total time
of Mπ/2. Note that the scheme requires only two different
unconnected graphs: those with solid and dashed edges shown
in Fig. 1(b), which are enabled in an alternating pattern. The
direction the walker travels on these “transport” rail segments
then depends crucially on the initial occupied node.

The representation of a qubit requires two such rails, with
one encoding the logical |0〉 state and the other the logical
|1〉. Operations on the qubit are effected by interspersing the
transport segments with widgets that transform the walker
in nontrivial ways. To affect the relative phases of |0〉 and
|1〉, equivalent to a rotation RZ(θ ) of the encoded qubit by
an angle θ about the Z axis, one needs to add an identity
widget to the first rail and a phase widget to the second. Both
widgets must take the same amount of time to traverse by
a continuous-time quantum walk, and both must have PST.
For a universal single-qubit gate, one also requires a rotation
about an orthogonal axis X or Y . This requires a widget that
connects the two rails in such a way that, after continuous
evolution for a specified time, the amplitude on the two rails
will have been transferred into a different superposition of
|0〉 and |1〉. This generalizes the concept of PST: arbitrary
probability amplitude should remain on the input and output
vertices, but no amplitude can remain on any other vertex of
the widget.

Figure 2 shows all of these elements combined to form
a single-qubit gate via hybrid discrete-continuous quantum
walk. The graphs Gi are to be chosen from a universal set of
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graphs that we determine in Sec. III. They are such that when
the transport rails attached to them are turned on while the
walker is at a node with position x = 3j , j ∈ Z, it undergoes
PST to the node at 3j + 1 and is transformed as desired in
the process. The choice of the Gi is algorithm dependent, but
once made the graphs remain in place unchanged throughout
the following protocol, which requires a level of global control
only to switch among three sets of transport segments.

A walker is initialized on the leftmost vertex of the |0〉
rail, and the solid transport rail segments, labeled by Gg ,
are enabled. (Note that at any given time only one transport
graph—Gg , Gr , or Gb—is enabled, so when one is stated to be
on, the others are implied to be off.) After a time th, which must
be the same for all Gi to which horizontal rail segments attach,
the walker has unit probability to be at x = 1. The next step
is taken with Gr enabled for a time tm = π/2, moving the
walker to x = 2. The graphs Gi for the vertical rail segments
are such that after a time tv , with Gg enabled again, either
the walker remains unchanged or it is transformed into a
superposition of the |0〉 and |1〉 rails at x = 2. In either case,
Gb is the next to be turned on for a time tm, moving the walker
to x = 3, possibly spread over two rails. This sequence now
repeats: Gg for th, Gr for tm, Gg for tv , and Gb for tm. Each
iteration moves the walker three x positions to the right in a
time of th + tv + π , enacting operations upon it along the way.
After traversing the whole graph, involving some number of
iterations, the state of the walker at the output on the right will
be the desired arbitrary single-qubit state α|0〉 + β|1〉, with
|α|2 + |β|2 = 1. The next step is to expand this scheme from
single-qubit operations to universal quantum computation,
which will follow from universal single-qubit computation
plus a two-qubit entangling gate.

To extend our scheme to two qubits, we require four
rails. The horizontal portions of the protocol remain the
same; however, we now require vertical connections between
additional pairs of rails at each step. The graph that allows this
can be seen in Fig. 3. There is a new sequence for switching
the transport rail sets on and off, but there are still only three
distinct segment types required. For N qubits the number of
rails required is 2N and the number of inter-rail connections at
a single x value (e.g., x = 2 or 3 in Fig. 3) is 2N−1. Note that

|00

|01

|10

|11

x = 0 1 2 3 4 5

FIG. 3. (Color online) Hybrid scheme for a two-qubit computa-
tion. The required sequence for the three transport rail types is g, r ,
g, b, g, r , repeat. Each additional qubit adds another set of either b,
g or r , g before the repeat, such that the Gr and Gb graphs alternate
on the horizontal rail.

this affects only the width of the graph: the number of distinct
x values at which these inter-rail connections are required
at each stage in the sequence is only N . This is because, to
perform a single-qubit rotation on the nth qubit out of N ,
the rail corresponding to |b1 · · · 0n · · · bN 〉 must be connected
to |b1 · · · 1n · · · bN 〉 for each of the 2N−1 arrangements of
the bi �= bn, but these connections are simultaneous. Since
single-qubit rotations are required for each qubit, we require N

such sets of connections at each step, so the depth of the graph
and therefore the time taken to traverse it is linear in the number
of qubits. The number of these inter-rail connections compares
directly with the requirements of previous schemes [15,16].

Given a set of graphs {Gi} that provides a universal gate
set, which we describe in the following section, we are now
in a position to describe the simulation of a quantum circuit
on N qubits, with a depth of D. We define a layer of the
computational graph to be one of three things: (1) a horizontal
widget on each rail, mediated by Gg , (2) the subgraph of Gr

or Gb joining x and x + 1 for some x, or (3) the subgraph of
Gg at a single x value, providing the vertical connections that
allow a basis-changing operation on a single qubit. We further
define a horizontal sequence Sh as the enabling of Gg for a
duration th followed by Gr for tm, and a vertical sequence S (j )

v ,
for j ∈ {r,b}, as Gg enabled for tv followed by Gj for tm. The
protocol proceeds as follows.

Algorithm-specific graphs are inserted into the generic
structure of the transport graphs Gg , Gr , and Gb. With these
graphs disabled, a quantum walker is initialized on the first
node of the |00 · · · 0〉 rail. The transport graphs are then cycled
on and off according to

Sh,S (b)
v ,S (r)

v , . . . ,S (r)
v︸ ︷︷ ︸

Nsequences

, (2)

with the vertical sequences alternating between r and b. This
constitutes the first round of the protocol, and it finishes
with the walker at x = 2(N + 1) after a time of th + tm +
N (tv + tm). The set of sequences in Eq. (2) is executed a
total of D times, after which the walker is in the superposition
of output nodes corresponding to the result of the action
of the circuit unitary on the input state. We can therefore
define the “graph depth” by DG = 2D(N + 1), corresponding
to the total number of operations required to simulate the
circuit of depth D. Since the graph depth is polynomial
in the number of qubits, its dependence on N results in
at worst a logarithmic correction factor to any quantum
algorithm offering a polynomial speedup over the classical
case. Algorithms offering exponential speedups continue to
do so in this model.

If additional runs of the algorithm are required, for example
to build up statistics of the output state, they can be run almost
in parallel. Once the first walker has reached the input node to
the second round at position x = N + 2, a second walker can
be started at the input node of the first round, x = 0. With no
additional cost, the same sequence of transport segments then
moves both walkers through the computation simultaneously,
and neither is affected by the other’s presence. When the first
walker reaches the set of final output nodes, it remains there
at the final x position while the last set of transport rails that
it traversed is off. During this time it can be measured and

042304-3



MICHAEL S. UNDERWOOD AND DAVID L. FEDER PHYSICAL REVIEW A 82, 042304 (2010)

ejected from the system before those rails cycle on again. This
prevents the first walker from moving backward into the graph
toward the second one. The whole process can of course be
repeated for additional walkers.

The distance between walkers can in fact be made constant
if the widgets are chosen such that th = tv and the number of
vertical sequences required in Eq. (2) is odd, say N = 2k + 1,
k ∈ Z.1 In this case, Sh = S (r)

v , and the result of Eq. (2) for
one round is simply k + 1 copies of the sequence S (r)

v S (b)
v .

Therefore, a second walker can be initialized at x = 0 after
the first of these (i.e., when the first walker has reached x = 4,
independent of N ). For example, with N = 3 qubits the
sequence for two walkers is

Walker 1 →
Graphs:

Walker 2 →

Round 1︷ ︸︸ ︷
g,r,g,b,︸ ︷︷ ︸

Round 1

g,r,g,b ,g,r,g,b,

Round 2︷ ︸︸ ︷
· · · . (3)

Our universal gate set, described in the next section, is of this
form with th = tv .

III. WIDGETS

The fundamental elements of this scheme are the graphs Gi

that are connected to the rails. In this section we describe three
widgets, each comprised of a graph attached to two transport
rail segments, that together yield a universal gate set for single-
qubit operations. When combined, these yield the identity gate,
a Z rotation, and an X rotation on the encoded qubit.

In principle, the identity gate is already built into the
motion along each rail: the state of the walker after each
step is simply multiplied by a factor of −i. The N -qubit state
being represented is then unaffected by the motion along each
step, besides an unimportant overall phase. That said, all the
widgets shown in Fig. 2 are graphs Gi combined with two
edges, connecting to the input and output vertices of the Gi ,
respectively. The smallest identity graph possible is therefore
a single vertex, which corresponds to a three-site unweighted
linear widget. The same widget can be obtained by dividing
the edge weights of the two-segment (M = 2) quantum wire
[cf. Fig. 1(a)] by a factor of

√
2. Thus, the simplest identity

gate requires a PST time t = √
2(π/2) = π/

√
2 and multiplies

the state of the walker by a factor of (−i)2 = −1. The same
procedure can be applied to quantum wires of arbitrary length:
dividing the edge weights by

√
M yields an identity widget

with unit weights on the first and last edges, in a PST time
t = √

M(π/2) and with an overall factor of (−i)M = e−iMπ/2

for each rail. Note though that two wires of different length
cannot be combined to create a phase gate, since they require
different times to exhibit PST.

The first nontrivial gate is a Z rotation, RZ(θ ) ∝ |0〉〈0| +
eiθ |1〉〈1|. After a single step of the discontinuous quantum
walk, the state of the walker on the second rail (encoding the
|1〉 component of the computational qubit) must accumulate

1As we have described the protocol, an odd number of vertical
sequences corresponds to an odd number of qubits. If an even number
of qubits is desired along with a constant distance between walkers,
an additional vertical identity sequence could simply be added.

µ2

µ1 µ1

µ3

(a)

µI µI

(b)

µR

(c)

FIG. 4. Basic building blocks of the hybrid scheme. Open circles
represent the nodes shared with the transport graph Gg . The graphs
are (a) the phase graph GP , (b) the identity graph GI , and (c) the
rotation graph GR . Their edge weights are µI = √

3/2, µ1 = 5
√

3/8,
µ2 = 15/8, µ3 = 21/8, and µR = 2

√
3.

a phase different by θ from that accumulated on the first rail.
In practice, this means that the state on the second rail must
obtain a phase θ �= −Mπ/2 in a time t = √

M(π/2), relative
to the identity gate acting on the first rail.

Candidate graphs on up to four vertices were considered,
and within this restricted search space no widgets satisfied the
above criteria for transit times t = √

2π/2 or
√

3π/2. The first
successful widget found has transit time t = π . This is based
on the graphGP that is a weighted square, as shown in Fig. 4(a).
We number the vertices clockwise around the graph, from |1〉
in the bottom left to |4〉 in the bottom right; the corresponding
widget has two additional vertices, |v�〉 and |vr〉, attached to
GP by transport rails on the left and right, respectively. The
resulting widget Hamiltonian (adjacency matrix) is

HP = |v�〉〈1| + µ1(|1〉〈2| + |3〉〈4|) + µ2|1〉〈4|
+µ3|2〉〈3| + |4〉〈vr | + H.c. (4)

With the edge weightings µ1 ≡ w12 = w34 = 5
√

3/8, µ2 ≡
w14 = 15/8, and µ3 ≡ w23 = 21/8, the state of a walker
initially on the left-hand node |v�〉 is transformed in a time
π as

e−iHP π |v�〉 = i|vr〉. (5)

The time for the horizontal segments of the computational
graph is then taken to be th = π .

To perform a Z rotation based on the graph GP , one requires
an identity gate taking a time th = π = √

4π/2 on the first
rail. Evidently this corresponds to a four-segment (M = 4)
quantum-wire widget, with the weights of the first and last
segments rescaled to unity. The phase acquired by the walker
during traversal is (−i)4 = 1. This results from the graph GI ,
shown in Fig. 4(b), connected to a rail on either end. Since there
are four line segments in total, the weighting of the second
and third segments should be µI = √

3/2. The Hamiltonian
corresponding to this widget is

HI = |v�〉〈1| + µI

2∑
i=1

|i〉〈i + 1| + |3〉〈vr | + H.c., (6)

where {|1〉,|2〉,|3〉} is the set of nodes in GI , labeled from left
to right.

The final graph we require does not actually exhibit PST.
Instead, with Gg enabled, the rotation graph GR results in a
widget connecting a vertex |vt 〉 on the top to |vb〉 on the bottom
of a pair of rails. In a time tv = π the effect of this widget on
a walker starting at either |vt 〉 or |vb〉 is to split its probability
density between these two states, leaving no probability inside
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the graph itself. GR consists of a single weighted line segment
and can be seen in Fig. 4(c). Its widget Hamiltonian is

HR = |vt 〉〈1| + µR|1〉〈2| + |2〉〈vb| + H.c., (7)

and, with weighting µR = 2
√

3, the action on walkers initially
on either the top or the bottom rail is given by

e−iHRtv |vt 〉 = cos(
√

3π )|vt 〉 − i sin(
√

3π )|vb〉,
(8)

e−iHRtv |vb〉 = −i sin(
√

3π )|vt 〉 + cos(
√

3π )|vb〉.
Note that if the graph GR is not present, which is equivalent
to setting the weight µR = 0, then this same widget acts as an
identity operation in the same time tv . In this case, whether
it starts at |vt 〉 or |vb〉, the walker sees only a single line
segment. It walks the line in time tv/2, acquiring a phase
of −i. Therefore, after an elapsed time of tv the walker has
made a round trip and returned to its initial position with an
accumulated phase of (−i)2 = −1; its state is unchanged, up
to a global phase.

IV. UNIVERSAL COMPUTATION

We now show how the graphs GI , GP , and GR can be
combined to construct a universal set of gates for single-qubit
operations, and then we add a controlled-Z (CZ) gate to provide
universal quantum computation.

The
√

Z phase gate is straightforward to construct. Con-
sider only the first stage of the graph in Fig. 2, comprised of the
graphsG1 andG2 along with the connector segments that attach
them to the x = 0 and x = 1 nodes. As shown in Fig. 5, we
replace G1 with the identity graph GI and substitute the phase
graphGP forG2. A walker starting in an arbitrary superposition
of computational basis states on the leftmost vertices of
the gate, |ψ(t = 0)〉 = α|0〉 + β|1〉, will after a time th be
in the state |ψ(t = th)〉 = α|0〉 + βeiπ/2|1〉 = √

Z|ψ(t = 0)〉
on the rightmost vertices. Note that placing GP on the |0〉 rail

and GI on the |1〉 rail changes the resulting gate into i
√

Z
†
, and

of course putting GI on both rails results in the identity gate,
I .

After enacting
√

Z, i
√

Z
†
, or I , the walker has moved from

x = 0 to x = 1. It is then transferred to x = 2 via PST across
a single line segment. At this point a basis change can be
effected, if desired, by using the rotation graph GR with the
states |vin〉 and |vout〉 of Fig. 4(c) identified with the logical
rail states |0〉 and |1〉, respectively. Using Eq. (8), one readily
obtains

|ψ(t = tv)〉 = RX(2
√

3π )|ψ(t = 0)〉. (9)

The
√

Z and RX(2
√

3π ) gates constitute a universal set for
single-qubit operations. Conjugating the latter by the former

|0 |0
µI µI

|1 ei
π
2 |1

µ1 µ1

µ2

µ3

FIG. 5. (Color online) Single-qubit
√

Z gate.

gives

√
ZRX(2

√
3π )

√
Z

† = RY (2
√

3π ), (10)

that is, a Y rotation through an angle 2
√

3π . As with
Euler-angle rotations in three-dimensional Cartesian space
and due to the correspondence between SO(3) and SU(2),
these rotations of the Bloch sphere by irrational multiples of
π about nonparallel axes allow an arbitrary rotation to be per-
formed and, therefore, provide a universal set of single-qubit
gates.

All that remains is to construct a two-qubit entangling gate.
The implementation of

√
Z, by the application of a phase to

a single computational basis state, suggests a straightforward
method for implementing the entangling controlled-

√
Z gate,√

CZ. With rails for two qubits we simply apply
√

Z to the
|11〉 rail while applying identity operations to the |00〉, |01〉,
and |10〉 rails, thus applying a phase of eiπ/2 to |11〉 relative
to the other three computational basis states. Repeating this
obviously results in a full CZ operation. In combination with
the universal set of single-qubit operations already described,
the ability to implement a CZ gate makes this scheme universal
for quantum computation.

V. CONCLUSIONS

By combining components of perfect state transfer and
quantum walks we have developed a hybrid scheme for
performing universal quantum computation via a walker
taking discrete steps of continuous evolution, a discontinuous
quantum walk. The computational model is based on one rail
per computational basis state, as developed for prior schemes
to provide universal quantum computation in the distinct cases
of continuous [15] and discrete [16] walks. As in the discrete
case, we have eliminated the need for the excess tails used
in the continuous case to support well-defined momentum
states, and we do not require the momentum filter that prevents
most of the walker’s probability from participating in the
computation. By making use of perfect state transfer, we
ensure that the walker completes the quantum computation
with certainty. Unlike the discrete case, the evolution of
our quantum walker is manifestly physical under a specific
Hamiltonian, and we do not require site-dependent coins
of multiple dimensions or indeed any coin at all. The cost
associated with these improvements is an additional amount
of global control, which is analogous to the coin and shift
operations employed by discrete-time quantum walks with
site-independent coins. The required control is algorithm
independent, conforming to a well-defined, preprogrammed
sequence.

The widgets described in Sec. III are universal for quantum
computation, so they provide a proof-of-principle scheme for
the implementation of arbitrary quantum algorithms. That said,
they are neither unique nor or they likely to be a preferred
set for particular applications. Alternative choices of single-
and double-rail graphs (generating single-qubit gates) might
generate particular desired gates (such as the Hadamard or
π/8 gate) more readily. Multiqubit gates (such as the three-
qubit Toffoli gate) could be found by graphs linking multiple
rails. A desired unitary for n qubits would conceivably have a
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more efficient decomposition in terms of a larger widget set.
This decomposition would be in the same spirit as the model
employed in Ref. [24] to examine the relationship between
discrete and continuous quantum query algorithms, but would
require neither so-called fractional queries nor Trotter-Suzuki-
type approximations.

Regardless of the choice of widgets, one can recast the
Hamiltonians in terms of spin networks, in the spirit of
Ref. [25], perhaps providing a closer link to potential experi-
mental implementations. This is possible because a quantum
walker on a k-vertex graph can be mapped onto the single-
excitation subspace of a system of k spin-1/2 particles under
the XY model. The spin-preserving Hamiltonian of this model
is of the form H ∼ 1

2

∑
i(XiXi+1 + YiYi+1). In this context the

particles themselves remain stationary and take the place of
the nodes, while the exchange interaction provides edges along
which the excitation propagates. The correspondence between
the XY and quantum-walk models can be seen directly in the
behavior of two interacting spins: an excitation on the left spin
evolves to an excitation on the right one. This is nothing but
a Pauli X operation, as effected on a quantum walker under
the influence of the hopping Hamiltonian on the two-vertex
connected graph.

More generally, the discontinuous quantum walk provides a
framework for universal control of a quantum system. Though
the universality of quantum computation is presented above
in analogy to the circuit model, with rails corresponding
to computational basis states, this is not in fact essential.
In principle, the edges between subgraphs of any particular
graph can be turned on and off in a prescribed manner, in
the process effecting some desired operation on the quantum
walker. The total number of vertices would still presumably
scale exponentially in the number of simulated qubits, but
the representation of the graph for some quantum algorithms
could be much more efficient than that proposed above. We
hope that the flexibility of the discontinuous quantum walk
will lend itself naturally to the development of new efficient
quantum algorithms.
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