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Analytical solution of thermal magnetization on memory stabilizer structures
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We return to the question of how the choice of stabilizer generators affects the preservation of information
on structures whose degenerate ground state encodes a classical redundancy code. Controlled-not gates are used
to transform the stabilizer Hamiltonian into a Hamiltonian consisting of uncoupled single spins and/or pairs of
spins. This transformation allows us to obtain an analytical partition function and derive closed-form equations
for the relative magnetization and susceptibility. These equations are in agreement with the numerical results
presented in Viteri et al. [Phys. Rev. A 80, 042313 (2009)] for finite size systems. Analytical solutions show that
there is no finite critical temperature, Tc = 0, for all of the memory structures in the thermodynamic limit. This
is in contrast to the previously predicted finite critical temperatures based on extrapolation. The mismatch is a
result of the infinite system being a poor approximation even for astronomically large finite-size systems, where
spontaneous magnetization still arises below an apparent finite critical temperature. We extend our analysis to the
canonical stabilizer Hamiltonian. Interestingly, Hamiltonians with two-body interactions have a higher apparent
critical temperature than the many-body Hamiltonian.
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I. INTRODUCTION

The equivalent of a magnetic memory for quantum in-
formation would consist of a macroscopic number of qubits
with multiqubit interactions that create a single stable qubit
memory. The free energy of the system would depend upon
an external control to spontaneously break global symmetry
in the presence of environment-induced fluctuations. Kitaev’s
toric code in a four-dimensional lattice would achieve this
task [1,2], but its implementation seems currently unlikely.
Bravyi and Terhal have recently shown that a two-dimensional
self-correcting quantum memory may not exist [3]. If dimen-
sionality is an engineering limitation, the solution may be self-
correcting memories of finite size based on concatenated codes
in which the number of qubits involved in each interaction
grows with the lattice size [4]. The classical concatenated
triple modular redundancy code in the formalism of quantum
stabilizers using the standard choice of generators fulfills this
prerequisite for classical memory.

The stabilizer for a subspace is defined as the group of
Pauli operators that act trivially on a code space and whose
eigenvalues are +1. The code space is the degenerate ground
state of a Hamiltonian built from the stabilizer elements with
negative couplings. The triple-modular redundancy code is a
textbook example for introducing the idea of stabilizer error-
correcting codes [5]. Classical error-correcting codes represent
a subset of quantum error-correcting codes that only protect
against classical bit-flip errors but not phase errors [6]. At
each level of concatenation k, the logical bit consists of three
bits of level k − 1, and correction works by majority vote
at the lowest level first and then working up. The kth level
of concatenated code contains 3k bits or classical spins, and it
can always correct a maximum of 2k − 1 errors on the physical
bits. The increase of k leads to many-body operators that test
the parity of 2

3 × 3k bits at once. This exponential increase in
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the many-body nature of the Hamiltonian makes the physical
construction of such a system unrealistic.

An alternative choice uses only elements that test a pairwise
agreement. This set of Pauli operators generates the same
stabilizer group and represents an Ising Hamiltonian with char-
acteristic thermodynamic and kinetic properties. Using Monte
Carlo simulations, we examined the thermal magnetization of
this pairwise choice of stabilizers (Structure 1 in Fig. 1) and the
effect of adding nonindependent stabilizers to the Hamiltonian
(Structures 2 and 3) [6]. For Structure 1, 3k − 1 independent
stabilizer elements form a tree. Structures 2 and 3 are
modifications that include cycles in the structure. The cycles
are equivalent to choosing an overcomplete set of stabilizer
generators.

In this article, we analytically evaluate the choice of
stabilizer generators on the preservation of information.
Specifically, a unitary operator is constructed from controlled-
not gates that converts a Hamiltonian representing an Ising
tree into a Hamiltonian of uncoupled spins in a magnetic field.
Applying the same unitary operator to the treelike graphs of
Structures 2, 3, and 4 yields partition functions corresponding
to a collection of independent single spins and independent
pairs of spins. A slight modification of the sequence allows
us to calculate the analytical magnetization of the canonical
stabilizer Hamiltonian. The results presented here agree with
our previous numerical work for relatively small, finite-size
systems. Closed-form partition functions for each of the four
self-correcting memory structures allow us to examine the
problem at much larger k.

A direct measurement of the degree of preservation of the
information can be read from the spontaneous magnetization
at zero magnetic field. Below a certain temperature, a single
spin, s0, is sufficient to bias the system into one of the two
states of broken symmetry. The finite-size system develops
spontaneous magnetization and the single order parameter
m0 = (

∑N−1
j=0 〈s0sj 〉)/N approaches the value of 1 [7]. The

stability of the structure, as measured by the temperature range
in which m0 is preserved, depends on the energy barrier that
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FIG. 1. Transformation of the memory stabilizer structures gen-
erated by two-body interactions from the Ising basis to the free-spin
basis. Black dots and open circles are spin sites (qubits), and the lines
show pairs of interacting spins (generators). In the free-spin basis,
the black dot without interactions is a single free spin, open circles
are independent spins in a magnetic field, and the connected circles
are independent pairs of interacting spins in a magnetic field. The
interaction strength J is constant [see Eq. (1)]. The total number of
bits increases with concatenation level, k, as 3k . Only k = 3 level
structures are shown.

separates the two ground states and the number of pathways
that traverse the barrier.

Structure 1 is an example of an Ising tree with free
boundaries. The Ising model on Cayley trees results in partition
functions that are equivalent to free spins [8,9]. Our previous
analysis, based on N = 81, 243, 729, and 2187 bits (k = 4–7)
and under the assumption that Fisher’s finite-size scaling
method [10] applies to these type of Ising graphs, yielded a
nonzero Tc. However, contrary to Sierpinski fractals [11–13],
where a few data points seem to be enough to forecast Tc

correctly, the finite-size scaling fails to describe magnetic
susceptibility peaks shifted away from Tc = 0. For Ising
trees and for Sierpinski gaskets, the relative magnetization
approaches zero in the thermodynamic limit [9,14–16], but it
persists for very large systems (comparable to the number of
hadrons in the universe) [8,17]. The nature of the magnetic
phase transition for an infinite system is not applicable to
systems of laboratory dimensions. We find similar behavior
in Structures 2, 3, and 4, but with higher apparent critical
temperatures (defined as the temperature where magnetic sus-
ceptibility reaches its maximum). Surprisingly, the canonical
choice of elements to generate the concatenated three-bit
error-correction code exhibits the lowest of the finite-size
apparent critical temperatures.

II. CNOT TRANSFORMATIONS AND ISING SYSTEMS

The algebra of controlled-nots (CNOTs) and Pauli Z oper-
ators from quantum computation is used to find analytical
solutions for the internal energy and magnetization of the
Ising structures in Fig. 1. Following standard notation, the
spin or qubit basis is labeled |0〉 and |1〉 with the Pauli Z

operator in the computational basis acting as Z|x〉 = (−1)x |x〉,
where x equals 0 or 1. The controlled-not operation on two
qubits can be written compactly in the computational basis
as CNOT(1,2)|x1〉|x2〉 = |x1〉|x2 ⊕ x1〉, where qubit 1 is the
control qubit and ⊕ represents addition modulo 2. Throughout
this article, we take advantage of the following relations:

CNOT(j,k)CNOT(j,k) = I,

ZjZj = I,

CNOT(j,k)Zj CNOT(j,k) = Zj ,

CNOT(j,k)ZkCNOT(j,k) = ZjZk,

CNOT(j,k)ZjZkCNOT(j,k) = Zk.

The last two relationships convert between Ising couplings,
ZjZk , and local magnetic fields, Zk . The repeated application
of CNOT transformations is an explicit method of obtaining the
zero-field partition function for any Ising tree Hamiltonian of
N spins, which is always equivalent to a single free spin and
N − 1 independent spins in a magnetic field [9]. The same
transformation applied to trees that are graphs with a few
cycles results in partition functions of clusters of spins. All of
these partition functions are products of partition functions of
few spins and do not lead to any singularities of the zero-field
thermodynamic response functions. They do, however, lead to
differences in magnetic behavior.

III. ANALYTICAL SOLUTION FOR THE
PARTITION FUNCTION

The stabilizer is defined as all the products of Pauli
operators that act trivially on the code space. For the bit-flip
code, we can choose any set of pairwise Ising interactions
that generates the stabilizer operators. These generators form
a Hamiltonian that is similar to the ferromagnetic Ising model,

H = −J
∑
〈i,j〉

ZiZj , (1)

where 〈i,j 〉 indicates a sum over nearest neighbors, and J sets
the energy scale of the problem with temperature measured
in units of J/kB . The choice of generators determines the
structure and properties of the system [6].

A. Ising trees

A tree is a connected graph without cycles or loops. As a
result, there is one and only one path between any two nodes. In
an Ising tree, the nodes represent bits and the edges represent
the Ising interaction. Each node, n, is connected to a single
parent, np, and one or more children, nc. If the node n is at a
distance d from the root, the parent is at a distance d − 1, and
the children are at a distance d + 1. For convenience, we define
a function D that converts labels to the minimum distances
from the root, for example, if D(n) = d, then D(nc) = d + 1.
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We label each node by its number and its parent’s number to
make explicit the tree nature of the graph. The Hamiltonian
for N spins is then written as

H = −J

N−1∑
n=0

∑
nc

Z[np,n]Z[n,nc], (2)

and the Z operator on the root is labeled Z[0,0], although the
root has no parent.

The CNOT([np,n],[n,nc]) operator transforms Z[np,n]Z[n,nc]

into Z[n,nc], but also transforms Z[n,nc]Z[nc,ngc] into
Z[np,n]Z[n,nc]Z[nc,ngc], where gc labels the children of the
children. By applying CNOTs first at the outermost connections
(leaves) and then moving inward, we can effectively transform
all of the Ising terms into single spin terms.

We define

U =
dmax−1∏
d=0

∏
D(n)=d

CNOT([np,n],[n,nc]), (3)

and the product implies right multiplication. Applying this
unitary to the Hamiltonian of Eq. (2) yields

H ′ = UHU †

= −J

N∑
n=1

Z[np,n], (4)

which represents N − 1 spins in a magnetic field and one free
spin. We refer to this basis as the free-spin basis and the original
computational basis as the Ising basis. U is the transformation
matrix between the two bases (see Fig. 1).

In Ising trees, every qubit, except the root, has the
Hamiltonian H1 = −JZ in the free-spin basis. The partition
function is then simply the product of the partition function
of a single spin in a magnetic field: Q1 = exp(J/kBT ) +
exp(−J/kBT ). The thermodynamic density matrix for a single
spin is ρ = 1/2[I2×2 + tanh(J/kBT )Z]. The density matrix is
used to calculate the polarization in the free-spin basis, ε =
Tr[Zρ] = tanh(J/kBT), and the internal energy, 〈E1〉 = −J

Tr[Zρ] = −Jε. The total thermal density matrix for all of
the N spins is a tensor product over independent spin density
matrices,

ρtotal = ⊗N−1
n=0 ρ[nd ,n] = I2×2 ⊗N−1

n=1 ρ, (5)

and the total internal energy is then 〈Etotal〉 = Tr[H ′ρtotal] =
−J (N − 1)ε.

B. Ising trees with cycles

The CNOT Ising tree transformation can also be applied to
graphs that can be decomposed into a spanning tree and Ising
couplings between spins with the same parent (siblings). The
Hamiltonian for N spins is now

H = −J

N−1∑
n=0

∑
nc

Z[np,n]Z[n,nc] − J
∑
〈n,m〉
np=mp

Z[np,n]Z[np,m], (6)

and the same unitary of Eq. (3) transforms it to the free-spin
basis; thus,

H ′ = −J

N∑
n=1

Z[np,n] − J
∑
〈n,m〉
np=mp

Z[np,n]Z[np,m]. (7)

This is the Hamiltonian of one free spin and finite Ising graphs
of sibling spins in nonzero magnetic field.

Here we examine connections only between sibling pairs,
that is the triangular cycles in Structures 2, 3, and 4 (Fig. 1).
In this case, there are three types of spins: (i) the root which
is depolarized in the free-spin basis and has 〈E0〉 = 0, (ii) the
spin that is not connected to a sibling and is described by
H1 = −JZ, which is equivalent to a spin in a magnetic field,
and (iii) spins that are connected to a sibling that have the two-
spin Hamiltonian H2 = −J (Zi + Zj + ZiZj ). The expected
energy of the spins with the magnetic field Hamiltonian
is 〈E1〉 = −Jε with magnetization ε = tanh(J/kBT ). The
partition function of the siblings is Q2 = exp(3J/kBT ) + 3
exp(−J/kBT ), and the two-spin density matrix is then ρi,j =
1/4(I4x4 + αZi + αZj + αZiZj ), where

α = exp(3J/kBT ) − exp(−J/kBT )

exp(3J/kBT ) + 3 exp(−J/kBT )
. (8)

The energy is 〈E2〉 = −3Jα, and the magnetization of a single
spin is α.

The total internal energy is the sum of energies for
the three types of spin, 〈Etotal〉 = 〈E1〉N1 + 〈E2〉N2/2 = −J

(εN1 + 3
2αN2). The internal energies for Structure 1,

Structure 2, Structure 3, and Structure 4 are then −Jε(3k −
1), −J [ε(3k−1 − 1) + 3

2α(2 × 3k−1)], −J 3
2α(3k − 1), and

−J [ε(2 × 3k−1) + 3
2α(3k−1 − 1)], respectively.

The expectation value of the operators constructed from
products of Z’s can be calculated quickly from the density
matrices for the three spin types. The root is unpolarized,
ρ0 = 1/2I2×2, and as a consequence any operator that contains
Z[0,0] will be zero. The single spins will contribute ε per Z. The
paired spins are correlated and will contribute α for individual
Z’s (Zi,Zj ) or the product (ZiZj ). These rules are sufficient
for calculating the magnetic properties of the system and have
a succinct description in terms of the geometry.

C. Partition function from coding theory

An alternative method of calculating the partition function
takes advantage of the MacWilliams identity from coding
theory [18]. A bit is assigned to each Ising bond operator,
Sk = ZiZj , such that the bit is zero when the spins agree
and one when they disagree. When the spins disagree, we
say the bond is broken. The code space of m bits for Sk

is defined as C = {y|∏k S
yk

k = I }. Except for the trivial
solution, yk = 0 for all k, the other code words in C contain
1’s, which denote cycles in the Ising model. The dual code
space is C⊥ = {x| ∑k xkyk mod 2 = 0 for all y ∈ C}. For an
Ising system, C⊥ contains all the strings that correspond to
physically allowed patterns of agreement and disagreement.

Each 1 in C⊥ corresponds to a broken bond and an energy of
J , and each 0 corresponds to a satisfied bond with energy −J .
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As a result, the partition function for any Ising system can be
written as

Q = 2
w=m∑
w=0

Bw(eJ/kbT )w(e−J/kbT )m−w, (9)

where w is the Hamming weight or the number of ones in
the string, and Bw is the number of code words in C⊥ with
Hamming weight w. The factor of 2 arises from the global
symmetry of flipping all spins.

Using the MacWilliams identity,

w=m∑
w=0

Bw(eJ/kbT )w(e−J/kbT )m−w

= 1

|C|
w=m∑
w=0

Aw[−2 sinh(J/kbT )]w[2 cosh(J/kbT )]m−w,

(10)

where Aw is the number of code words in C with Hamming
weight w and |C| = ∑

w Aw is the size of the code space.
If there are no cycles, C = {000 . . . 000}, and the par-

tition function is simply Q = 2m+1[cosh(J/kbT )]m by the
MacWilliams identity. This is the partition function for any
Ising tree with m bonds and N = m + 1 spins. In the case
of trees with triangular cycles, it is useful to examine the 3
bond partition function derived from S1 = Z1Z2, S2 = Z2Z3,
and S3 = Z3Z1. For this example, C = {000,111} and C⊥ =
{000,011,101,110}. One can show that the partition function
per triangle is then e3J/kbT + 3e−J/kbT by direct computation
over C⊥ or by using the MacWilliams identity to calculate
over C. Since the linear dependence in the stabilizer elements
considered in this article are limited to local triangles, this is
sufficient to calculate the partition functions.

The MacWilliams identity can be extended beyond the Ising
model to any set of Pauli operators Sk that commute. When
{Sk} is a set of m linearly independent operators, the partition
function is always equivalent to the Ising model on a line
with free boundary conditions, Q = 2m+1[cosh(J/kbT )]m.
For linearly dependent operators, the collections of operators
that multiply to form the identity are equivalent to loops in
the Ising model. The MacWilliams identity is a quick way to
calculate the partition function when |C| is small.

D. Calculation of the magnetization
and the magnetic susceptibility

The dimensionless magnetization operator in the computa-
tional or Ising basis is M = ∑N−1

n=0 Z[np,n] and its expectation
value is zero by symmetry. The product of the magnetization of
each spin and the magnetization of the root defines the relative
magnetization operator

M̃ =
N−1∑
n=0

Z[0,0]Z[np,n]. (11)

The root spin is sufficient to bias the system into one of the
two states that break the symmetry [7], and the 〈M̃〉/N is
nonzero in the thermodynamic limit when the system is in a

ferromagnetic phase. The square of the magnetization relates
to the magnetic susceptibility per spin as follows:

χ = 〈M̃2〉 − 〈M̃〉2

NkBT
= 〈M2〉 − 〈M̃〉2

NkBT
. (12)

The series of CNOTs that transform the partition function to
the free-spin basis also transform the magnetization operator.
Equation (3) maps each single spin magnetization operator,
Z[np,n], onto a product of Z’s. When n is at a distance d from
the root, the transformation yields

UZ[nd−1,n]U
† = Z[nd−1,n]Z[nd−2,nd−1]

×Z[nd−3,nd−2], . . . ,Z[n1,n2]Z[0,n1]Z[0,0], (13)

with each parent labeled as nd−1. The operator Z[np,n] becomes
a product of Z’s on every node on the path from the root to the
spin n.

The key observation is that the local magnetization opera-
tors in the Ising basis are transformed into paths in the free-spin
basis. Calculations can then be performed using the paths as
follows:

(i) label the edges of the treelike graph with paired siblings
by α if the edge is part of a triangle or by ε otherwise;

(ii) define Path(n,l) as the product of the edge labels
between nodes n and l along the shortest path.

Figure 2 shows a tree and related treelike graph with the
edges labeled. As an example, we calculate Path(4,9). For the
tree [Fig. 2(a)], Path(4,9) = Path(4,1)Path(1,5)Path(5,9) =
ε3. In the treelike graph [Fig. 2(b)], there is a shortcut
between the paired sibling nodes 4 and 5 and Path(4,9) =
Path(4,5)Path(5,9) = εα.

As shown in Appendix A, the magnetic thermodynamic
averages can be related to the paths as

〈M̃〉 =
N−1∑
n=0

Path(0,n) (14)

and

〈M2〉 =
N−1∑
n=0

N−1∑
l=0

Path(n,l). (15)

For trees, these expressions simplify to

〈M̃〉 =
dmax∑
d=0

f (d)εd (16)
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FIG. 2. Example of labeling edges in (a) trees and (b) treelike
graphs to calculate the magnetic properties based on paths between
nodes (see text).
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and

〈M2〉 = N +
2dmax∑
d=1

2φ(d)εd, (17)

where f (d) is the number of nodes a distance d from the root
and φ(d) is the number of unidirectional paths of length d.

In summary, notice that in the Ising basis, H encodes the
geometry by selecting which spins are paired [Eq. (1)], and that
the magnetization operator is independent of the connectivity
of the N spins. In the free-spin basis, H ′ is independent of the
graph for trees with N nodes [Eq. (4)], and the geometry is
now encoded in the magnetization operator [Eq. (14)].

This is well illustrated by calculating the magnetization
for two simple examples: a line of N spins and N − 1 spins
connected to a central spin. In both cases, the transformation
to the free-spin basis results in a Hamiltonian of N − 1 spins
in a magnetic field and a single free spin. As a result, the
partition function and density matrix in the free-spin basis are
equivalent; however, the magnetizations are quite different.
For a line, f (d) = 1; therefore, 〈M̃〉 = ∑N−1

d=0 εd converges to
1/(1 − ε) in the limit of large N . This yields the familiar result
that the magnetization per spin is vanishingly small for T > 0.
For the central spin case, d = 1 or 0 and f (1) = N − 1, with
the resulting magnetization being 〈M̃〉 = (N − 1)ε + 1. The
system has nonzero magnetization per spin for all T < ∞.

In what follows we use the equations derived in this section
to find analytical expressions for the magnetization and the sus-
ceptibility of the stabilizer structures of Fig. 1. All of these
systems grow in size as N = 3k as they are based on the
concatenation of three units of 3k−1 spins at each level k. The
path from the root to the furthermost spin is of length dmax = k.

1. Structure 1

In the Ising tree labeled Structure 1 of size N = 3k , the
number of nodes at distance d from the root is

f (d,k) = 2d

(
k

d

)
, (18)

and according to Eq. (16), the expected relative magnetization
of Structure 1 at level k is then

〈M̃(k)〉S1 =
k∑

d=0

2d

(
k

d

)
εd = (1 + 2ε)k. (19)

One can understand the result by imagining building up the
tree level by level. The level k adds 2 nodes to every node in a
level k − 1 tree. The paths between nodes and the root in the
inner k − 1 tree are the same, and the leaves add two paths that
are one edge longer. This results in the recursion formula:

〈M̃(k)〉S1 = (1 + 2ε)〈M̃(k − 1)〉S1. (20)

Notice that this last equation also generates Eq. (19); thus, the
relative magnetization per spin at zero magnetic field is

m0S1(k) = 〈M̃S1(k)〉
N

=
(

1 + 2ε

3

)k

, (21)

which vanishes in the limit of large k for all ε < 1 and T > 0.
In order to calculate the magnetic susceptibility using Eq. (12),
we need to first evaluate the magnetization squared operator.

Starting from k − 1, two leaves are added to every node. Each
path of length d > 0 on the k − 1 tree now has two extra
leaves on each end. This results in one path of length d, four
paths of length d + 1, and four paths of length d + 2. For the
3k−1 paths of d = 0, there are now two paths of length one,
one path of length two, and two new paths of zero length.
Using these observations and defining φ1(d,k) as the number
of paths of distance d between two spins, Eq. (17) can be
written recursively:

〈M2(k)〉S1 = 3k +
2k∑

d=1

2φ1(d,k)

= 3k−1(1 + 2 + 4ε + 2ε2)

+ (1 + 4ε + 4ε2)
2(k−1)∑
d=1

2φ1(d,k − 1)

= (1 + 2ε)2〈M2(k − 1)〉S1 + 2(1 − ε2)3k−1. (22)

The solution to the recursion formula is

〈M2(k)〉S1 = (1 + 2ε)2k + 2(1 − ε2) (1 + 2ε)2(k−1)

×
{

1 − [3/(1 + 2ε)2]k

1 − 3/(1 + 2ε)2

}
, (23)

and the magnetic susceptibility per spin is then

χS1(k) = 2(1 − ε2) (1 + 2ε)2(k−1){1 − [3/(1 + 2ε)2]k}
NkBT [1 − 3/(1 + 2ε)2]

. (24)

2. Structure 2

Structure 2 is similar to Structure 1 but the leaves are con-
nected, forming triangular cycles. The number of spins at the
minimum distance d from the root is the same as in Structure
1 but now there are single spins and spin pairs in the free-spin
basis. For paths that include leaf spins from Structure 1,
the magnetization needs to include the polarization of a spin
pair, α. Structure 2 with 3k spins is equivalent to Structure 1
with 3k−1 spins with a sibling pair connected to each spin. The
magnetization is then

〈M̃(k)〉S2 = (1 + 2α)〈M̃S1(k − 1)〉. (25)

The thermodynamic average of 〈M2〉 for a Structure 2 of
3k nodes can be built from a Structure 1 with 3k−1 nodes
by examining the extra shortest paths due to the attached
outer cycles. The main difference is that the two new nodes
connected to the k − 1 structure are a distance 1 apart instead
of a distance 2. The result is that

〈M2(k)〉S2 = (1 + 2α)2〈M2(k − 1)〉S1

+ 2 × 3k−1(1 + α − 2α2) (26)

and

χS2(k) = (1 + 2α)2χS1(k − 1) + 2(1 + α − 2α2)/kBT

3
.

(27)

3. Structure 3

In this structure, each spin is part of a triangular cycle, and
all spins but the root are paired spins. The thermodynamic
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average of the magnetization is identical to Structure 1 except
the polarization is now α instead of ε:

〈M̃(k)〉S3 = (1 + 2α)k. (28)

The magnetization squared depends on the number of
shortest paths between all spins, which is quite different from
Structure 1 due to shortcuts made by triangular cycles.
Applying the same building method of adding nodes to the
core yields the following recursion relation:

〈M2(k)〉S3 = (1 + 2α)2〈M2(k − 1)〉S3 + 2(1 + α − 2α2)3k−1,

(29)

whose solution is

〈M2(k)〉S3 = (1 + 2α)2k + 2(1 + α − 2α2) (1 + 2α)2(k−1)

×
{

1 − [3/(1 + 2α)2]k

1 − 3/(1 + 2α)2

}
. (30)

The magnetic susceptibility is then

χS3(k) = 2(1 + α − 2α2) (1 + 2α)2(k−1){1 − [3/(1 + 2α)2]k}
NkBT [1 − 3/(1 + 2α)2]

.

(31)

4. Structure 4

In Structure 4, each of the spins forms a part of a triangular
cycle except the outer nodes. The relationship between
Structure 4 and Structure 3 is similar to the relationship
between Structure 2 and Structure 1, and the magnetization
properties are calculated to be

〈M̃(k)〉S4 = 〈M̃(k − 1)〉S3(1 + 2ε), (32)

〈M2(k)〉S4 = (1 + 2ε)2〈M2(k − 1)〉S3 + 2 × 3k−1(1 − ε2),

(33)

and

χS4(k) = (1 + 2ε)2χS3(k − 1) + 2(1 − ε2)/kBT

3
. (34)

E. Extension to the canonical stabilizers

The stabilizer formalism of quantum computing defines a
subspace of n qubits by a set of commuting observables that are
products of Pauli matrices on the n qubits and have the value of
1 on the subspace. The stabilizer generators are independent,
trace orthogonal operators, which commute with one another.
As a result, there is always a unitary transformation which
maps the stabilizer elements to Z operators on independent
spins. Furthermore, this unitary can be constructed from
CNOTs, Hadamards, and Pauli matrices [5].

Structure 1 is derived from the three-qubit classical stabi-
lizer code. The choice of generators is chosen to form an Ising
tree, and this is not the standard choice. The standard choice is
to use logical Ising interactions at every level of encoding. This
choice results in generators that are multiqubit interactions
which grow exponentially with the level of encoding. The
partition function of the multiqubit system can be reduced to
a partition function of one- and two-qubit couplings using the
decoration and generalized triangle transformations following
Wegner [19]. For example, a stabilizer of nine qubits has

A A' B B'

0 0

0 1

0 2

10

11

12

20

21

22

FIG. 3. A description of U as a quantum computing circuit for
nine qubits. For the tree and treelike structures examined, the CNOTs
are applied with the control toward the root starting from the leaves
and then moving down layers until the root (A,B). For the full
stabilizer, the direction of control is alternated before applying the
CNOTs at the next layer (A,A′,B,B ′).

two 6-spin interactions and six 2-spin interactions. Applying
the transformation multiple times to the 6-spin interactions
results in the addition of 14 fictitious spins, and expands the
total number of exponentiated terms in the partition function
from 8 to 73. In contrast, arguments by linear independence
or by the MacWilliams identity (see Sec. III C) transform
eight multiqubit terms into eight single-qubit terms. Although
these methods yield the same partition function, we construct
an explicit transformation which simplifies the calculation of
thermodynamic properties such as the relative magnetization.

In this work, the transformation that takes the stabilizer
elements to independent Z’s is closely related to the transfor-
mation used for Structures 1, 2, 3, and 4. Instead of simply
applying the CNOTs with the control on the inner node and
then progressing inward, the control is alternated from inner
to outer. A comparison of the two transformations is shown for
nine qubits in Fig. 3. For Structures 1, 2, 3, and 4 only A and
B are applied. For the full stabilizer, A, A′, B, and B ′ are all
applied. The detailed description of the transformation can be
found in the Appendix B. The expected relative magnetization
and the magnetization squared are, respectively,

〈M̃(k)〉 = 1 + 2ε

{
1 − [(2 + ε)ε3]k

1 − (2 + ε)ε3

}
(35)

and

〈M̃2(k)〉 = 3k + 2 × 3k−1ζ

[
1 − (ζ 2/3)k

1 − (ζ 2/3)

]
, (36)

where ζ = (2 + ε)ε.

IV. RESULTS AND DISCUSSION

A. Apparent critical temperature for finite-size systems

The analytical results obtained from Eqs. (24), (27),
and (31) match perfectly with our previous Monte Carlo
simulations [6]. As an example, Fig. 4 compares the closed-
form equation of the magnetic susceptibility for Structure 3
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0
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k=4
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k=7

FIG. 4. Magnetic susceptibilities per spin in units of 1/J as a
function of temperature T in units of J/kB for different concatenation
levels of Structure 3. The solid lines are calculated from Eq. (31)
and the symbols are the result of Monte Carlo simulations [6] using
5 × 104 independent spin configurations.

with numerical simulations of systems of various sizes.
The susceptibilities are calculated using the thermodynamic
statistics of 5 × 104 independent spin configurations generated
with Wolff cluster simulations at different temperatures.

For finite-size self-correcting memories, the susceptibility
as a function of temperature shows a maximum which occurs
at an apparent critical temperature T

χ
max(N ). It is clear from

Fig. 4 that this temperature decreases with system size as
expected. Finite-size effects replace the divergences at the
thermodynamic critical point by finite peaks shifted away from
Tc [10,20]. Previously [6], we used a first-order approximation
to estimate these shifts for the case of susceptibility. A fit of
T

χ
max against the system size N gave us an estimate for Tc,

χ0, and ν ′. With only four data points, we forecasted a finite
Tc. Analytical solutions for the magnetic susceptibility permit
the study of bigger systems and present a more complete
picture of the finite-size effects on the magnetic properties.
We obtain T

χ
max(N ) numerically and Fig. 5 compares them

for the four Ising stabilizer structures, the canonical stabilizer,
and the one-dimensional (1D) Ising model as a function of
total number of spins in a double-log scale, log10[log3(N )].
The numerical calculation of T

χ
max for the 1D Ising model

of systems bigger than 318 spins results in a numeric
underflow. The dotted line in the figure is an extrapolation
using a two-parameter fit of the solid line to the equation
T

χ
max = ak−b.

In the limit of systems of infinite size, Eqs. (19), (25), (28),
(32), and (35) reveal that the only temperature at which m0

takes the exact value of one is Tc = 0. It is seen in Fig. 5 that
T

χ
max converges very slowly to zero with system size. Based

on the closed-form equations this prolonged decay cannot be
captured by a simple first-order equation in N−1/ν ′

nor by any
finite power expansion in N without including an offset. We
cannot calculate numerically the size of memory stabilizers
with a T

χ
max of practically zero before we run into numerical

overflow. As shown in the figure, memory stabilizers utilizing
all the observable matter in the universe will still behave as
a finite-size system with almost all of their spins correlated
at a finite apparent critical temperature on the order of J/kB .
This is in contrast to the linear spin case where T

χ
max rapidly

0.75 1 1.25 1.5 1.75 2 2.25
0

0.2

0.4

0.6

0.8

1

1.2

log
10

(k )

T
m

ax
χ

Structure 1
Structure 2
Structure 3
Structure 4
Stabilizer
1D Ising
1D approx.

FIG. 5. Temperature of maximum relative magnetic susceptibil-
ity T χ

max in units of J/kB for different memory stabilizers of sizes
that span from tens to 1095 spins. Note that 1.70 and 2.23 in the
abscissa correspond, respectively, to the Avogadro’s number and to
the predicted number of hadrons in the observable universe [8].

approaches zero with increasing system size. For 3 spins,
Structure 1 and the line are equivalent with T

χ
max = 1.07.

We can then ask how many spins are required to reach a
certain T

χ
max. As an example, a maximum susceptibility of

T
χ

max = 0.29 is achieved using 36 spins in a line, but it would
require a Structure 1 of 3313 spins. This presents an interesting
challenge as these networked spin systems stand in contrast to
our standard notion of what size the thermodynamic limit is
appropriate.

The thermal stability of the information encoded into finite
systems for the four structures and the full stabilizer can
be related to T

χ
max (Fig. 5). The choice of stabilizers leads

to a significant change in this apparent critical temperature.
Two-thirds of the spins in Structure 2 form closed cycles, and
the other third of spins form a core that is the same as a
k − 1 Structure 1. As expected for small systems, Structure 2
remains magnetized for a broader range of temperatures than
Structure 1. Similarly, Structure 4, with 2/3 of its spins as free
leaves, is less stable to temperature-driven fluctuations than
Structure 3. The cores of Structures 1 and 2 and Structures
3 and 4 account for 1/3 of the spins, and they show similar
magnetic behavior in the astronomical limit of large k. The
canonical choice of stabilizer elements remains magnetized
below a broad range of temperatures, and shows the same
long-ranged order properties, but under this thermodynamic
criteria is a less efficient memory stabilizer than the simpler
pairwise interaction geometries.

B. Power-law correlations and finite-size effects

Assuming that there is a relation between a 1D path of
correlated spins and the total size of the system, L = N1/d , we
can define a correlation length exponent scaled to the system
size ν ′ = νd. The dimension, d, of each of the structures
of Fig. 1 is unknown. According to the standard scaling
hypothesis, and provided that the system size is large enough,
the following scaling properties are expected at the critical
point: c(N ) ∝ N

α

ν′ , m(N ) ∝ N− β

ν′ , and χ (N ) ∝ N
γ

ν′ [20].
Closed-form equations for the magnetization and the magnetic
susceptibility can be used to calculate critical exponents.
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An analytical formula for the relative magnetization critical
exponent can be obtained by equating the relative magneti-
zation per spin to the N− β

ν′ power law. After simplification
of the exponent k, the β/ν ′ critical exponent can be written
in terms of the logarithm of the relative magnetization as
follows:

β/ν ′ = 1 − ln(ψ)

ln(3)
, (37)

where ln(ψ) = ln(〈M̃〉)/k. For Structures 1 and 3, ψ is
independent of k and we find ψ1 = 1 + 2ε and ψ3 = 1 + 2α,
respectively. For Structures 2 and 4, ψ depends weakly on k

as ψ2 = ψ1(ψ3

ψ1
)1/k and ψ4 = ψ3(ψ1

ψ3
)1/k . The power law for

the relative magnetization per spin can thus be written as a
function of any arbitrary temperature:

m0(T ) = N
−[1− ln(ψ(T ))

ln(3) ]
. (38)

This last equation reduces the magnetic susceptibility of
Eqs. (24) and (31) to the form

χ (k,T ) = A(k,T ) (3k)−2β/ν ′+1, (39)

where for Structures 1 and 3 A is

A(k,T )S1 = (1 − ε2) [(1 + 2ε)2k − 3k]

kBT (2ε2 + 2ε − 1) (1 + 2ε)2k
(40)

and

A(k,T )S3 = (1 + α − 2α2) [(1 + 2α)2k − 3k]

kBT (2α2 + 2α − 1) (1 + 2α)2k
, (41)

respectively. As T approaches the thermodynamic critical
temperature of Tc = 0, the A function of Eqs. (40) and (41) is
independent of the system size and converges, respectively, to

A(T )S1 
 (1 − ε2)

kBT (2ε2 + 2ε − 1)
(42)

and

A(T )S3 
 (1 + α − 2α2)

kBT (2α2 + 2α − 1)
. (43)

In this limit, the magnetic susceptibility can be written as the
well-known formula χ (N ) = A(T )N

γ

ν′ . Examining Eq. (39),
we find that γ /ν ′ + 2β/ν ′ = 1, which matches the Rushbrooke
and Josephson scaling law d = γ /ν + 2β/ν if written as a
function of the correlation size exponent ν ′. Figure 6 tests the
temperature region in which this approximation holds for all
system sizes. There is a broad temperature region where the
magnetic properties are well described by N and temperature-
dependent critical exponents.

The set of critical exponents obtained numerically for
particular ill-predicted critical temperatures (see Tables IV
and V in Ref. [6]) match very well with those calculated using
Eq. (37) and the hyperscaling relation. These apparent critical
temperatures fall in the temperature region in which Eqs. (42)
and (43) hold.

We find that there is a broad temperature region above
Tc where the β/ν ′ exponent is almost zero (it is strictly
zero only at T = 0). Complementary, and for the same broad
temperature region, the γ /ν ′ critical exponent reaches almost
the value of one. The interpretation is simple: The number

0 0.5 1 1.5 2
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0.2

0.4

0.6

0.8

1

A
S

1

k=6
k=50
Eq. 40

0 0.5 1 1.5 2

0

0.1

0.2

0.3

0.4

A
S

3

T

k=4
k=50
Eq. 41

(a)

(b)

FIG. 6. Power-law proportionality function A(k,T ) for (a) Struc-
ture 1 and (b) Structure 3. The solid lines are calculated using
Eqs. (40) and (41) while the circles come from the approximations
of Eqs. (42) and (43). In a broad region of temperatures near the
thermodynamic critical point, these simple equations are enough to
define a magnetization power law on N for any system size. A and T

are in the same units as 1/J and J/kB , respectively.

of correlated spins grows almost at the same rate as N .
Spins that present long-ranged correlations develop a net
macroscopic alignment when an infinitesimal magnetic field is
applied [7].

V. CONCLUSION

We use CNOT gates to transform the Hamiltonian of sta-
bilizer structures into a Hamiltonian consisting of uncoupled
single and pairs of spins. In the original basis, the Hamiltonian
encodes the geometry by selecting which bits interact. The
magnetization operator is independent of the graph for N

spins. In the free spin basis, the Hamiltonian is independent
of the graph for N spins and the geometry is now encoded
in the magnetization operator. This transformation allows us
to obtain an analytical partition function and closed-form
equations for the effective magnetization and susceptibility
with respect to a central spin.

The analytical solutions match very well with the numerical
results presented previously [6] for finite-size systems of
N � 38 spins. With a slight modification of the transforma-
tion sequence we calculate the analytical magnetization and
susceptibility of the canonical stabilizer Hamiltonian.

In our previous calculation based on four values of k, we
forecast a finite critical temperature for systems of infinite
size. Our analytical solution shows that this prediction is
incorrect. After applying a sequence of CNOT operations on
the four stabilizer Hamiltonians studied in this work, the
partition function results in a collection of free elements. The
interactions represented in the magnetization operator yield
to graphs that have a transition from magnetic to random at
Tc = 0 in the thermodynamic limit. However, they possess
unusual long-range-order properties as previously observed in
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hierarchical systems which also have Tc = 0 (e.g., Sierpinski
gaskets [17] and Cayley trees [8]). The memory stabilizer
structures develop spontaneous magnetization below an appar-
ent critical temperature for unrealistically large systems. The
relative magnetization persists below a finite temperature for
systems of N = 3200 spins. For a practical implementation,
the infinite system is a poor approximation, and it remains
poor even for finite systems that are astronomical in size. This
conflicts with our notion of the thermodynamic limit, where the
infinite system well describes crystalline solids of few billion
unit cells [17].

First-order finite-size scaling analysis is incomplete and
fails to describe the slow decrease of T

χ
max with the system

size for all structures. For systems with no phase transition at
finite temperatures, the shift away from Tc cannot be written
as a simple power expansion in N1/ν ′

. The partition function
of the systems, and its first and second derivatives with respect
to an external magnetic field, do not present critical points.
They are continuous, well behaved, and show spontaneous
magnetization for a broad range of temperatures. In the broad
region near Tc = 0, scaling properties of the magnetization
and magnetic susceptibility satisfy power laws as a function
of N .

The memory stabilizers presented in this work do not show
a phase transition in the thermodynamic sense. However, for a
wide range of temperatures and finite size, there are many long
paths of correlated spins that go through the structure resulting
in a net macroscopic magnetization. These structures have free
energy functions that spontaneously break global symmetry in
the presence of environment-induced fluctuations; thus, they
stabilize the memory.

We arrive at conclusions similar to those in our previous
work [6]. Figure 5 suggests that one way to increase the
apparent critical temperature for a system of a given finite
size is to add generators to each spin site. Structure 3 is the
best self-correcting memory as it has the broadest range of
temperatures in which the system remains magnetized. The
four simple two-body-interaction structures investigated have
different levels of connectivity. We find that the relationship
between coordination number and the apparent finite-size
critical temperature T

χ
max is not obvious. The number of

generators is less important than the structure. The canonical
stabilizer Hamiltonian seems to be thermodynamically a less
stable memory than the simpler pairwise-based construction
with the minimum number of generators (Structure 1), but it
is more stable than the Ising chain. Kinetically, the canonical
stabilizer could be the the most impervious to fluctuations.
For systems with all of the spins aligned, the lowest excited
state energy for Structure 1 is 2J from the ground state,
but this gap grows as 2kJ for the canonical stabilizer. The
multi-body interactions of the canonical stabilizer result in
many large kinetic barriers that may be advantageous for
preserving certain spin configurations.

Finally, the exploration of stabilizer Hamiltonians defined
by geometries of noninteger dimensions could yield self-
correcting quantum memories with few multiqubit inter-
actions. Small finite-size systems show an unusual order
preservation for a broad range of temperatures making them
suitable for a practical implementation of passive error
correction.
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APPENDIX A: TREES AND TREES WITH CYCLES

For an Ising tree, there is only one path between any two
nodes n and l. We define Pl,n as the product of Z operators of
all of the nodes on the path between n and l on the spanning
tree (including n and l). The transformation of Eq. (13) can
then be written succinctly as

UZ[np,n]U
† = P0,n (A1)

and M transforms to

UMU † =
∑

n

UZ[np,n]U
† =

∑
n

P0,n. (A2)

The expected value must be zero by symmetry and this is
easy to confirm since each term contains the root factor Z[0,0].
Applying the transformation to the M̃ operator of Eq. (11)
results in

UM̃U † =
∑

n

UZ[np,n]Z[0,0]U
†

=
∑

n

P0,nP0,0

=
∑

n

Z[nd−1,n]Z[nd−2,nd−1] . . . Z[0,n1]Z[0,0]Z[0,0]

=
∑

n

Z[nd−1,n] . . . Z[0,n1]

=
∑

n

Pn,n1 . (A3)

Note that none of the terms contain Z[0,0] and the number
of Z factors in each term is the distance between n and the
root.

The expectation value of the magnetization is the product
of the polarization of all the spins on the path from n to n1 in
the free-spin basis. For the structures studied in Sec. III D, the
spins that are in sibling pairs have polarization α and otherwise
have polarization ε (except the root). This leads the relative
magnetization to be

〈M̃〉 =
∑

n

αcnεD(n)−cn , (A4)

where cn is the number of spins that are in a pair between the
root and n. One can express this graphically by labeling every
edge in the graph with an ε if it is not part of a triangle and
with an α if it is part of a triangle (see Fig. 2). One then starts
from a node and multiplies the label of the edges between
the node and the root on the spanning tree. Summing over all
nodes yields Eq. (14), and a comparison to Eq. (A3) shows
that Path(0,n) = 〈Pn,n1〉.
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The magnetization operator squared, M2 = M̃2, in the
transformed basis is

UM2U † =
∑
n,l

UZ[lp,l]Z[np,n]U
†

=
∑
n,l

P0,lP0,n. (A5)

The product of P0,l and P0,n results in the Z’s that are
in the intersection of the paths from the root to l, and
from the root to n, to cancel. The Z operator on the last
node in common is ZLast(l,n), and this node is included in
the path from l to n on the spanning tree. As an exam-
ple, consider node 4 and node 9 of Fig. 2. Then P0,4 =
Z[1,4]Z[0,1]Z[0,0], P0,9 = Z[5,9]Z[1,5]Z[0,1]Z[0,0], and P4,9 =
Z[1,4]Z[1,0]Z[1,5]Z[5,9]. Node 1 is the last node in common
and, as a result, P0,4P0,9 = P4,9Z[0,1] and Z[0,1] = ZLast(4,9).
These operators are the same for Figs. 2(a) and 2(b), but the
expectation values differ as explained in what follows.

Equation (A5) is simplified to

UM2U † =
∑
n,l

Pl,nZLast(l,n). (A6)

To calculate the expectation value of Pl,nZn,l , we must consider
three cases. In the first case, the node n is contained in the
path between the root and l or vice versa, and ZLast(l,n) equals
Z[np,n] or Z[lp,l], respectively. The expectation value of Pl,nZn,l

is simply the polarization of spins on the path from l to n

excluding the node Last(l,n). The polarization of each node
is the label of the edge connecting it to its parent and as
a result 〈Pn,lZn,l〉 = Path(n,l). In the second case, the two
nodes after the last node are not part of the same triangle. The
polarization of spins at these nodes are independent and again
〈Pn,lZn,l〉 = Path(n,l). In the third case, the two nodes after
the last node are part of the same triangle. The polarizations are
not independent and two Z’s yield a single α. This is equivalent
to taking a shortcut, and for all cases, 〈Pn,lZn,l〉 = Path(n,l).
Combining these observations with Eq. (A6), we obtain

〈M2〉 =
∑
n,l

Path(n,l). (A7)

APPENDIX B: CANONICAL STABILIZER

To define the full stabilizer, it is useful to start at the top
level and work down. At level k there is one qubit (labeled 0),
composed of three level k − 1 qubits labeled 00, 01, and 02.
We can define the logical operator as

Z
(k)
0 = Z

(k−1)
00 Z

(k−1)
01 Z

(k−1)
02 (B1)

and the highest-order stabilizer elements as

A
(k)
01 = Z

(k−1)
00 Z

(k−1)
01 ,

(B2)
A

(k)
02 = Z

(k−1)
00 Z

(k−1)
02 .

Continuing this procedure, we define

Z(j )
η = Z

(j−1)
η0 Z

(j−1)
η1 Z

(j−1)
η2 ,

A
(j )
η1 = Z

(j−1)
η0 Z

(j−1)
η1 , (B3)

A
(j )
η2 = Z

(j−1)
η0 Z

(j−1)
η2 ,

and one composite operator,

A
(j )
η0 = A

(j )
η1 A

(j )
η2 , (B4)

where η is a k − j + 1 string of trits. It is convenient to
consider η as a number in base 3. Also, we introduce four
useful identities:

A
(j )
η1 Z(j )

η = Z
(j−1)
η2 , (B5)

A
(j )
η2 Z(j )

η = Z
(j−1)
η1 , (B6)

A
(j )
η0 Z(j )

η = Z
(j−1)
η0 , (B7)

A
(j )
ηt A

(j )
ηt = I. (B8)

Note how the products of Aj−1 with Zj interchange the 1 and
2 labels.

The Hamiltonian is

H =
k∑

j=1

2∑
x=1

3k−j −1∑
η=0

Aj
ηx, (B9)

and there exists a unitary that transforms A’s to single-
qubit Z’s. The chosen unitary performs the following
transformation:

UAj
ηxU

† = Zηx0(j−1) ,
(B10)

UA
j

η0U
† = UA

j

η1U
†UA

j

η2U
† = Zη10(j−1)Zη20(j−1) ,

where 0l is a string of l zeros and x = 1 or 2. Every physical
qubit is denoted by a k + 1 trit string with the first trit set to
zero. This will transform the 3k − 1 stabilizer elements into
3k − 1 single Z operators. To further specify the unitary, we
set

UZk
0U

† = Z0k+1 . (B11)

An explicit construction of U is as follows. Arranging the
spins on the tree that defines Structure 1 and starting at the
spins at the maximum distance from the root, dmax, apply
CNOT(ndmax−1,ndmax ) between all spins connected on the graph
at this distance. Then apply CNOT(ndmax ,ndmax−1) to the same
spins. Then move up one level and repeat the procedure
first applying CNOT(ndmax−2,ndmax−1) at this distance and then
CNOT(ndmax−1,ndmax−2). Continue to the root. If we only used
the CNOTs that are controlled by parents, we have the same
unitary as Structure 1. Switching to CNOTs that are controlled
by children allows us to transform logical Z’s into Z’s on
single spins. The unitary is shown as a circuit for k = 2 in
Fig. 3.

U †ZµU must be determined to calculate the magnetization.
This is possible by constructing Zµ from stabilizer elements
and Zk

0 using Eqs. (B5), (B6), and (B7). If we write µ =
µkµk−1, . . . ,µ1µ0, one can show that

Zµ = Zk
0

k∏
j=1

A
j
µkµk−1...µ̄j−1

, (B12)

where

µ̄j = (2µj ) mod 3, (B13)

which exchanges 1’s for 2’s and follows from Eqs. (B5) and
(B6).
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Zk
0 is the product of Z on all spins, and the element Zk

0A
k
0x

is the product of all spins on a single k − 1 level qubit.
Geometrically, each Aj splits off one block of 3j−1 spins from
a block of 3j level. Each A reduces the total number of spin
operators by 1/3 until we reach a single qubit operator.

To calculate the magnetic properties, we examine the
transformed product of two Z operators, Zµ and Zν . Assume
that µ and ν agree in the first q + 1 trits, the product is
then

ZµZν =
⎛
⎝Zk

0

k∏
j=1

A
j
µkµk−1,...,µ̄j−1

⎞
⎠

⎛
⎝Zk

0

k∏
j=1

A
j
νkνk−1,...,ν̄j−1

⎞
⎠

=
k−q∏
j=1

A
j
µkµk−1,...,µ̄j−1

A
j
νkνk−1,...,ν̄j−1

. (B14)

After the transformation UZµZνU
†, each remaining A

j

η{1,2}
corresponds to a single Z operator and each A

j

η0 corresponds
to two Z operators. The Z’s will be unique between µ and ν

except for the only case where η agrees, A
k−q
µkµk−1,...,µ̄k−q−1

and

A
k−q
νkνk−1,...,ν̄k−q−1

. The number of independent Z’s in UZµZνU
†

denotes an effective distance between µ and ν,

δ(µ,ν) = 2(k − q − 1) + zeros(µk−q−2, . . . ,µ0)

+ zeros(νk−q−2, . . . ,ν0) + 2µk−q−1νk−q−1/2, (B15)

in which q + 1 is the number of leading trits that agree in µ

and ν, and zeros(µj , . . . ,µ0) counts the number of zeros in
the string µj , . . . ,µ0. The first trits that do not agree, µk−q−1

and νk−q−1, result in one or two independent Z’s depending
on whether either trit equals zero. For a given q, the minimal
effective distance between the spins is 2k − 2q − 1.

Calculating the relative magnetization requires computing
the effective distances between the root Z0 k+1 and all other
spins Zµ. Clearly, the number of leading trits that agree are
the number of leading zeros in µ,L(µ). The result is

δ(0k+1,µ) = 2[k − L(µ) − 1] + [k − L(µ) − 1]

+ zeros(µk−L(µ)−2, . . . ,µ0) + 1

= 3k − 4L(µ) + zeros(µ) − 2. (B16)

This effective distance serves the same role as the distance
from the root to the nodes in Structure 1.

Figure 7 shows the effective distance for each spin of the
canonical stabilizer up to level k = 2. Each qubit at level k con-
sists of three qubits of level k − 1. The effective distances for
each level k include effective distances from the central k − 1
level qubit and two equivalent sets of distances corresponding
to the appended k − 1 level qubits. The minimum effective
distance in each new set is 3k − 2 at the corner qubit, which
occurs when there is exactly one zero in the string µ. In a new
set, the effective distance increases by one for each additional
zero in µ. Suppose µ labels a qubit in an appended block, then
µk = 0 and µk−1 �= 0. If µj = 0 for j < k − 1, then the qubit
is effectively one step farther from the root than if µj = 1

1 0 1

k=0

k=1 Z 01 Z 00 Z 02

Z 0

k=2

0

1

4

0

5

1

4

454
Z 011 Z 010 Z 012

Z 001 Z 000 Z 002

Z 021 Z 020 Z 022

FIG. 7. The effective distances of the canonical stabilizer up
to k = 2. For each k the black dot represents the root qubit. The
corresponding Zµ is written next to each qubit. The numbers shown
on the right are the effective distances from the root to the qubit at the
same position. The bold box contains the effective distances inherited
from the level k − 1.

or 2. Analogous to the Ising trees, the expected value of the
magnetization is calculated using the polarization ε and the
effective distance of each qubit.

With the minimum effective distance of 3k − 2, the ex-
pected value of the magnetization is calculated to be

〈M̃(k)〉 = 〈M̃(k − 1)〉 + 2(2 + ε)k−1ε3k−2, (B17)

and the solution to this recursion formula is

〈M̃(k)〉 = 1 + 2ε

{
1 − [(2 + ε)ε3]k

1 − (2 + ε)ε3

}
. (B18)

The 2 + ε arises from the three choices of µj and there are
k − 1 values of j in the appended block.

The thermodynamic average of 〈M2(k)〉 is obtained by per-
forming a similar calculation but summing over the effective
distances between all spins. At level k, each level k − 1 qubit
has the same internal magnetization squared, 〈M2(k − 1)〉.
To compute the effective distances between qubits in k − 1
blocks, we determine how many trits are required to distinguish
a pair of physical qubits. It takes a single trit to determine
which two logical blocks are paired. Each block contains qubits
labeled by k − 1 different trits. Similar to the magnetization,
each trit contributes a factor of 2 + ε, but now there are
a total of 2k − 1 choices. The minimum effective distance
between two sets is also 2k − 1, since only the leading trit can
agree (q = 0). Overall, the thermodynamic average of 〈M2〉 is
expressed as

〈M2(k)〉 = 3〈M2(k − 1)〉 + 2(2 + ε)2k−1ε2k−1, (B19)

and the solution to the recursion is given by

〈M2(k)〉 = 3k + 2 × 3k−1ζ

k−1∑
j=0

ζ 2j

3j

= 3k + 2 × 3k−1ζ

[
1 − (ζ 2/3)k

1 − (ζ 2/3)

]
, (B20)

where ζ = (2 + ε)ε.
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