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Asymptotic entanglement dynamics phase diagrams for two electromagnetic field modes in a cavity
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We investigate theoretically an open dynamics for two modes of electromagnetic field inside a microwave
cavity. The dynamics is Markovian and determined by two types of reservoirs: the “natural” reservoirs due to
dissipation and temperature of the cavity, and an engineered one, provided by a stream of atoms passing trough
the cavity, as devised by Pielawa et al. [Phys. Rev. Lett. 98, 240401 (2007)]. We found that, depending on the
reservoir parameters, the system can have distinct “phases” for the asymptotic entanglement dynamics: it can
disentangle at finite time or it can have persistent entanglement for large times, with the transition between them
characterized by the possibility of asymptotical disentanglement. Incidentally, we also discuss the effects of
dissipation on the scheme proposed in the above reference for generation of entangled states.
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I. INTRODUCTION

In recent years, the problem of entanglement dynamics has
gained the attention of the quantum-information community
[1]. Despite the fact that some recent results contradict the
intuition that “the more entangled, the better” [2], to protect
entanglement is yet an important concern when one wants
to make quantum computers. The first works on the “fate”
of entanglement on an open system focused on two or
more qubit systems. Curious names such as entanglement
sudden death have appeared, first by the recognition of the
possibility of entanglement between two qubits to vanish in
finite time, although coherences only decay exponentially.
Similar phenomena also happen for continuous-variable (CV)
systems [3]. A general geometrical picture has already been
offered showing that the long-term behavior of entanglement
depends essentially on the set of asymptotic states [4].

In a series of papers, Paz and Roncaglia studied some
phase diagrams for the asymptotic behavior of entanglement
on two-mode Gaussian states (GS) exposed to a common
thermal environment [5]. In particular, they built them in terms
of squeezing and temperature for two harmonic oscillators.
For the resonant case, they found three very distinct possible
fates: entanglement can suffer from sudden death, can enter
in a perpetual cycle of death and birth, or can be persistent.
From a different perspective, Pielawa et al. made a proposal
of how to use an engineered reservoir to create two-mode
Gaussian entangled states in cavity quantum electrodynamics
(CQED) [6].

In this paper we make a threefold study: we generalize
the studies from Paz and Roncaglia by constructing phase
diagrams in terms of different variables for systems subjected
to not only natural reservoirs, but also this engineered one;
we show how those phase diagrams can be experimentally
obtained; and incidentally we study the robustness, against
thermal noise, of the engineered reservoir strategy for gener-
ating two-mode entangled states.

The next section is devoted to reviewing some basics about
two-mode GS and the proposal for generating entangled ones
in CQED [6]. Section III is the central part of our study,
where the entanglement dynamics of two modes subjected to
thermal noise and the engineered reservoir is discussed. The
experimental proposal is focused on in Sec. IV, followed by
the study of the robustness of the method suggested in Ref. [6].
Discussion and concluding remarks close the paper.

II. PRELIMINARIES

Here we will review some necessary definitions and tools
in the theory of entanglement of GS and also the scheme to
implement the engineered reservoir.

A. Entanglement in Gaussian states

Many of the protocols and techniques from the entangle-
ment theory of finite dimensional systems can be adapted
to CV systems, usually restricted to the set of GS. For
instance, the protocols of teleportation [7,8] and quantum
key distribution [9,10] have their analogs for CV systems
(and may be more robust experimentally [11]); the Peres-
Horodecki [12,13] separability criteria can be applied and
is also necessary and sufficient for two-mode GS [14]; and
entanglement quantifiers such as negativity [15], logarithmic
negativity [16], and entanglement of formation [17] can
be computed within the formalism of symplectic geometry
[18–20].

GS are defined as those states whose Wigner characteristic
function is Gaussian, so they are completely described by
its first and second statistical momenta. First momenta,
mean values, can be locally changed by redefining the
mode operators, so all entanglement information is
given by second momenta. Choosing only two modes,
with destruction operators âj = (x̂i + ip̂i)/

√
2, i = 1,2,

and corresponding quadrature amplitudes x̂i ,p̂i , the
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Wigner characteristic function of a state ρ̂ is given by
χ (z1,z2) = Tr[ρ̂ exp (z1â1 − z∗

1â
†
1 + z2â2 − z∗

2â
†
2)], where zi

are complex numbers. The state second momenta, on the other
hand, are well grouped under its covariance matrix (CM):

Vρ̂ =

⎛
⎜⎜⎜⎝

n1 + 1
2 m1 ms mc

m∗
1 n1 + 1

2 m∗
c m∗

s

m∗
s mc n2 + 1

2 m2

m∗
c ms m∗

2 n2 + 1
2

⎞
⎟⎟⎟⎠ , (1)

where nj = 〈â†
j âj 〉, mj = −〈â2

j 〉, ms = −〈â1â
†
2〉,

mc = 〈â1â2〉, and 〈ξ̂〉 denotes the quantum expectation
value Trξ̂ ρ̂ of an observable ξ̂ . The state is Gaussian (with
null first momenta) if and only if χ (z1,z2) = exp (− 1

2 z†Vρ̂z),
where zt = (z1,z

∗
1,z2,z

∗
2).

We can write the CV as a block matrix, as follows:

Vρ̂ =
(

V1 C

C† V2

)
, (2)

where Vi is a 2 × 2 matrix related to the mode i, and C is
a 2 × 2 matrix that gives the correlations (both quantum and
classical) between the modes. One should note that to represent
a quantum state, a CM should also obey the generalized
Robertson-Schrödinger uncertainty relations [20]. A CM not
obeying such relations is called nonphysical.

Simon [14] has shown that, as for two qubits, the
Peres-Horodecki criterion [13] is decisive for entanglement
of two-mode GS, and it can be given in terms of the quantity

S
(
Vρ̂

) = I1I2 + (1/4 − |I3|)2 − I4 − 1/4(I1 + I2), (3a)

where I1,2 = det V1,2, I3 = det C, and I4 = tr
[V1ZCZV2ZC†Z] are invariants under local unitary opera-
tions, with Z = diag{1,−1}. A GS is separable if and only if

S
(
Vρ̂

)
� 0, (3b)

the so-called Simon criterion.
Entanglement in two-mode systems reminds Einstein-

Podolsky-Rosen (EPR) discussion on completeness of quan-
tum mechanics [21]. Indeed, entanglement in this system is
closely related to squeezing in “EPR-like” quadratures. Given
any local operators Q̂i,P̂i satisfying the commutation relations
[Q̂i,P̂i] = ih̄, for any arbitrary real number a �= 0 one can
define the pair of EPR-like operators û = |a|Q̂1 + 1

a
Q̂2,

v̂ = |a|P̂1 − 1
a
P̂2. Duan, Giedke, Cirac, and Zoller (DGCZ)

[22] have shown that if a state is separable, then 〈�û2〉 +
〈�v̂2〉 � a2 + 1/a2. Hence, if this pair of EPR operators is
squeezed enough, i.e., if the sum of their variances violates the
inequality, the state is entangled for sure.

For GS, this criterion is necessary and sufficient to decide
separability, which we shall call the DGCZ criterion. This is
done representing the CM in a standard form, through local
Gaussian operations, so that the validity of the above inequality
applied to the matrix in this form, with a determined by its co-
efficients, implies that the state is separable. Restricting further
to the set of symmetric states, it is sufficient to consider |a| = 1,
and the procedure amounts to finding, through local rotations
and squeezing of the quadratures x̂i ,p̂i , which pair of EPR-like
operators have the least value for the sum of their variances.

We shall deal mostly with symmetric GS (i.e., I1 = I2),
and for these we shall use the entanglement of formation as an
entanglement quantifier, which has an explicit formula [23]

EF (ρ) = f (2
√

I1 + |I3| −
√

I4 + 2I1|I3|), (4)

where f (x) = c+(x) log2 c+(x)−c−(x) log2 c−(x), with c±(x) =
1
4 (x−1/2 ± x1/2)2.

B. Two-mode entanglement from engineered reservoir

To make the context clear, we now review the scheme
for constructing the common squeezing reservoir between the
modes [6]. We also take the opportunity to introduce notation
and to explicit the dependence of the final master equation on
the several parameters of the setting.

Consider two modes of electromagnetic field of a high-
quality microwave cavity, with frequencies ω1 and ω2. As
before, âi denotes the annihilation operator for mode i. The
engineered reservoir is provided by a stream of atoms passing
through the cavity. The atoms are first prepared in a specific
superposition of two Rydberg states denoted |g〉 and |e〉, then
they pass through the cavity, where they can interact with
the two nondegenerate modes, while a classical field (injected
externally in the setup of open cavities) saturates the dipole
transition, pumping the two modes. The Hamiltonian that
describes such setup is

Ĥ = h̄ω0σ̂
+σ̂− + h̄�(e−iωLt σ̂+ + eiωLt σ̂−)

+
∑

i

[h̄ωi â
†
i âi + h̄gi(âi σ̂

+ + â
†
i σ̂

−)], (5)

where ω0 is the transition frequency between the atomic
levels, gi are the coupling constants between the atom and
the modes, and σ̂+ and σ̂− are the atomic ladder operators.
The coupling with the external classical field, with strength �,
is described by the time-dependent part. For future reference,
we set � = ωL − ω0, the detuning between the classical field
and the atomic level.

The authors explore different approximations and mode
redefinitions. Here we will be concerned with the regime
when (i) the atomic coupling with the classical field is much
stronger than with the cavity modes: |�| � |gi |; (ii) defining
d = √

�2 + 4�2, and choosing ωL obeying ωL − ω1 = ω2 −
ωL = d, with the condition g = g1 = g2. Under this regime,
the interaction Hamiltonian can be approximated by

Ĥint � −h̄�b(b̂1π̂
− + b̂

†
1π̂

+) if � > 0, (6a)

Ĥint � h̄�b(b̂†2π̂
− + b̂2π̂

+) if � < 0, (6b)

where π̂+ and π̂− are ladder operators for semiclas-
sical dressed states |+〉 = sin θ |g〉 + cos θ |e〉 and |−〉 =
cos θ |g〉 − sin θ |e〉, with tan θ = 2�/(d − �); �b is re-
lated to the coupling constant between the atoms and the
cavity modes, �b = g

√
(1 − µ)/(1 + µ), where µ = tan2 θ

[µ = (tan θ )−2] if | tan θ | < 1 (| tan θ | > 1), i.e., µ is
determined by the classical field parameters. The
new modes are b̂1(2) = Ŝ†(rµ)â1(2)Ŝ(rµ) = cosh |rµ|a1(2) −
rµ

|rµ| sinh |rµ|a†
2(1) defined by the well-known two-mode squeez-

ing operator: Ŝ(rµ) = exp(r∗
µâ1â2 − rµâ

†
1â

†
2), and rµ is the

squeezing parameter rµ = arctanh µ.
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If after the interaction time the atoms are ignored, the
Hamiltonian of Eq. (5) implies an open system effective
dynamics for the field modes. Equations (6) show that for
� > 0 (� < 0), the interaction reduces to a (anti-) Jaynes-
Cummings between the classically dressed atom and mode
b̂1(2). For � > 0 (� < 0), one simulates null temperature
dissipation in mode b̂1(2) if one prepares atoms in the state |+〉
(|−〉) and allows interaction for times τ , obeying �bτ � 1. We
shall call these type 1 (2) atoms. If a stream of type j atoms
passes trough the cavity, one at a time, the field dynamics will
be Markovian, given by a differential equation in Lindblad
form [24]:

dρ̂

dt
= Dj,eng(ρ̂), (7a)

where the effective engineered dissipator is given by [25]

Dj,eng(ρ̂) = 2κj (2b̂j ρ̂b̂
†
j − b̂

†
j b̂j ρ̂ − ρ̂b̂

†
j b̂j ), (7b)

while κj = (rat,j�
2
bτ

2)/4 with rat,j the atomic preparation rate.
We note that, at first sight, the large frequency separation

between the modes would forbid, in the regime considered
here, the presence of combined terms between the modes, such
as a1a

†
2 in the master equation, since they are fast oscillating

compared to the total time scale of the experiment and even
the interaction time of each atom [which is essential, in order
to use the approximated Hamiltonian (6)]. Though, the crucial
point is that the terms a

(†)
1 a

(†)
2 , the only combined ones present

in the master equation, do not oscillate in the laser reference
frame. We will come back to this point later when discussing
the state evolution.

III. ENTANGLEMENT DYNAMICS UNDER ENGINEERED
AND THERMAL RESERVOIRS

If a random source defines together the type of the atom
and the suitable dc electrical field in the cavity, the dissipator
for the engineered reservoir will acquire the form

Deng(ρ̂) = D1,eng(ρ̂) + D2,eng(ρ̂), (8)

with κj = (rat,j�
2
bτ

2)/4, rat,j being the type j atoms’ flux.
The entanglement behavior will get richer when considered

together with the natural dissipation and thermal noise on
the modes, effects that, in usual experiments with microwave
cavities, can be well described by a Lindblad equation with
dissipator Dnat given by

Dnat(ρ̂) =
∑

i

λi(nTi
+ 1)(2âi ρ̂â

†
i − â

†
i âi ρ̂ − ρ̂â

†
i âi)

+ λinTi
(2â

†
i ρ̂âi − âi â

†
i ρ̂ − ρ̂âi â

†
i ), (9)

where nTi
denotes the number of thermal photons and λi the

decay rate for mode i. Since the number of thermal photons
is approximately the same for both modes if |ω1 − ω2| � ωi ,
we shall assume from now on nTi

= nT .
At last, the full dynamics of the system will be described

by the Lindblad equation:

dρ̂

dt
= Dnat(ρ̂) + Deng(ρ̂), (10)

with the dissipator given by Eqs. (8) and (9).

In an experimental setting one should actually consider
the evolution in the laser reference frame. In this case, fast
oscillations (with frequencies of the order d) between the
modes will take place. As a consequence, in the course-
grained scale necessary for the approximations to be valid,
some coherences of the density matrix will vanish, making
the theoretical analysis more complicated. Nevertheless, the
above equation will still be valid for some initial states, i.e.,
they are not affected by these oscillations. Hence, in the rest
of this section we shall explore the theoretical properties of
Eq. (10), considering several initial states, but later, in the
experimental proposal, we must guarantee the use of such
robust states against this coarse-graining effect.

A. Symmetric engineered reservoir

Now we pass to the study of entanglement dynamics under
Eq. (10). Given the specific form of the dissipators, Gaussianity
is preserved, so we are safe to restrict ourselves to GS. Let us
suppose first that both types of atoms enter in the cavity with
equal probability, so that κ1 = κ2 = κ , and also, for the sake
of simplicity, that λ1 = λ2 = λ. The equations of motion for
the second momenta in this case become

ṅj = −2(κ + λ)nj + 2κ|B|2 + 2λnT , (11a)

ṁj = −2(κ + λ)mj, (11b)

ṁc = −2(κ + λ)mc + 2κAB∗, (11c)

ṁs = −2(κ + λ)ms, (11d)

with A = cosh(r), B = eiφ sinh(r), where r is the squeezing
parameter and φ the squeezing angle in the definition of
modes b̂j (rµ = reiφ). This gives a relaxing dynamics with
the asymptotic CM:

Vρ̂f
=

⎛
⎜⎜⎜⎝

n1,f + 1
2 0 0 mc,f

0 n1,f + 1
2 m∗

c,f 0

0 mc,f n2,f + 1
2 0

m∗
c,f 0 0 n2,f + 1

2

⎞
⎟⎟⎟⎠ ,

(12)

where n1,f = n2,f = |B|2+nT R

1+R
, mc,f = AB∗

1+R
, and the ratio R =

λ/κ was introduced.
Simon criterion can now be applied to determine whether

such CM represents entangled or separable states. In the same
reasoning as in Ref. [4], S(Vρf

) > 0 implies a deep separable
asymptotic state, i.e., a state belonging to the interior of
the separable states set. This can be seen noting that S is a
continuous function, so there must exist a “ball” of GS around
the asymptotic one such that S is strictly positive, that is, a
ball of separable GS. Hence, this translates dynamically as
sudden death of entanglement (SDE), because we can say for
sure that, for every initial GS, there will be a time T such
that the entanglement will be zero for t > T . In principle,
though, it could undergo cycles before it vanishes for good, or
an initially separable state can acquire some entanglement and
(necessarily) lose it after some time. These “nonasymptotic”
behaviors will be discussed in more detail on Sec. III B.

On the other hand, states satisfying S(Vρf
) < 0 represent a

situation of (asymptotic) persistent entanglement (PE). Note
that entanglement can be created by the common reservoir,
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SDE

PE

n T

R

FIG. 1. Representation of the asymptotic states determined by
reservoir parameters nT and R with respect to their entanglement,
for r = 1 and arbitrary φ. Below the curve, they are entangled, and
above, separable. This also determines the asymptotic properties for
the entanglement dynamics of any initial state: for points above the
curve, every initially entangled state exhibits SDE; for points below
the curve, every initial state has some entanglement for large times;
and for points exactly in the curve, entanglement can die at finite time
or asymptotically.

since this is exactly the idea of the Ref. [6] proposal. But again,
the intermediate dynamics can exhibit richer features; for
instance, an initially entangled state can lose all entanglement
at finite time but (necessarily) recover it at later time, as will
be exemplified at Sec. III B.

The exceptional situation is given by S(Vρf
) = 0, when

each initially entangled state can show one of two fates: sudden
death of entanglement or asymptotic death of entanglement,
depending on the initial state. Contrary to the former two
situations, this one requires the knowledge of the whole
dynamics in order to determine which fate will occur.

The situation here studied allows only one asymptotic state
for each set of fixed parameters, that is why one cannot see
infinite cycles of birth and death as in Ref. [5], which would
appear for dynamics with asymptotic periodic orbits, instead
of asymptotic states.

In Fig. 1, we plot the regions in the parameter space R × nT

where the asymptotic state is separable or entangled, defining
the fate of entanglement. The boundary curve separating the
two regions in the diagram has the simple form

nT = e2r − 1

2R
. (13)

The physical interpretation is simple and meaningful. Given
the engineered reservoir, for any given positive coupling
ratio R, there is a positive temperature nT obeying (13) such
that below this temperature, the asymptotic state is entangled
due to the common reservoir, while for temperatures above that
critical value, the asymptotic state is separable, when (local)
thermal noise prevails.

For any set of reservoir parameters, we applied the method
of Duan et al. [22] and found the EPR-like operators with
least sum of variances, which gives X̂1,φ − X̂2,φ and P̂1,φ +
P̂2,φ , where (X̂i,φ,P̂i,φ)T = R2φ(x̂i ,p̂i)T , R2φ is the matrix
representing a rotation in the plane trough an angle 2φ, φ being

R

E
F

n =0T

n =0.5T

n =1T

FIG. 2. Entanglement of the asymptotic state as function of the ra-
tio R = λ/κ between the reservoir’s coupling constants for some val-
ues of the number of thermal photons, nT , with r = 1 and arbitrary φ.
While the entanglement is always positive for nT = 0, if nT > 0 there
is always some value of R above which the entanglement is zero.

the squeezing angle defined by the reservoir. This is expected,
since the engineered reservoir tries to lead the initial state to
a usual two-mode squeezed state, known to be squeezed in
these quadratures. The natural reservoir, on the other hand,
enlarges their spreading. So the final decision of whether the
asymptotic state will be separable or entangled will depend on
this competition between the reservoirs: one trying to squeeze
the collective quadratures, the other trying to spread them.

Since the asymptotic states here obtained are also symmet-
ric, we can apply Eq. (4) to calculate their entanglement of
formation. In Fig. 2, we show their values as functions of R

for some fixed values of nT . For null temperature, when there
is no thermal photon, the entanglement is positive for any rate.
However, for each positive temperature, there is a maximal
rate above which the state is deep separable (as the coupling to
the natural reservoir grows, thermal effects are more sensible)
corresponding to the regime where the system exhibit SDE.

B. Nonasymptotic dynamics

We will discuss here in more detail the system intermediate
dynamics. This task is facilitated recognizing, by Eqs. (11),
that the dynamics will always describe a straight line in the
space of the parameters of the CM (n1,n2, etc.),1 for every
initial GS, and that the set of separable states is convex for these
parameters also. In other words, the trajectories of the CM are
given by straight line segments exponentially approaching the
asymptotic CM, Vρ̂f

. From now on we set φ = 0, for simplicity
in the analysis.

We begin with the situation where the reservoir parameters
satisfy Eq. (13) so that the corresponding asymptotic state
rests in the border between the separable and entangled sets.
If we restrict our attention to initial states with CM, where
n1 = n2 = n, mc is real and all other elements are null,
Eqs. (11) keep the dynamics inside this same subset. In
Fig. 3, we plot a diagram representing the values of n,mc

1Although the trajectories in the space of density matrices itself will
not be straight lines.
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m

c

n

nonphysical entangled

separable

FIG. 3. Representation of the CMs with n1 = n2 = n, mc � 0,
and all other elements equal to zero. The region where these
parameters represent physical CMs is divided by a straight line, above
which all states are entangled, while below they are separable. Both
regions are convex in the parameters.

such that the corresponding CM is nonphysical, separable,
or entangled. The frontier between separable and entangled
states is given by the straight line n = mc, so the entangled
region is convex in these parameters, and by our choice an
asymptotic state is defined by the dynamics somewhere in this
line. A simple picture of the dynamics can be given for these
states, using the fact that the trajectory in the n × mc space
will be a straight line, from the values (n0,mc,0) of the initial
state to the asymptotic values (nf ,mc,f ), defined by reservoir
parameters r and R [with nT given by Eq. (13)]. If these
parameters are such that (n0,mc,0) represents an entangled
state, since (nf ,mc,f ) belongs to the line n = mc, the entire
trajectory will be on the entangled-state region, by convexity,
i.e., entanglement will vanish asymptotically. To illustrate this,
we plot in Fig. 4 (dashed line) the evolution of the S function,
parametrized by p(t) = 1 − exp [−2(κ + λ)t], for an initial
state with n0 = 1 and mc,0 = 1.0125 and an asymptotic state
with nf = mc,f = 1. Its value is initially negative, since the
initial state is entangled, and remains negative for all times.

For examples of entanglement sudden death, consider the
set of states with n1 = n2 = n, mc = 1, and m1 = m2 = m a
real number. In Fig. 5, we exhibit a diagram analogous to the
one in Fig. 3, and we see that the subset of entangled states is
not convex anymore. If the asymptotic state also has mc = 1,
the trajectory of the state CM can be described in this diagram
and will be again a straight line. Since the entangled region
is not convex, we may have initially entangled states that will
lose all entanglement at finite time, even if the asymptotic state
is in the frontier between the regions. For instance, we can take
parameters for the reservoir such that nf = mc,f = 1 and an
initial CM that has elements n0 = 1.2, m0 = 0.5, and mc,0 = 1.
In Fig. 4 (continuous line), we plot, as before, the function
S of the evolved state. We see that it is initially negative,
representing an entangled state, it became positive at finite
time, so the state has no entanglement, and it remains strictly
positive until it vanishes for p = 1 (or t → ∞), because the
state converges to a point in the frontier.

S

p

FIG. 4. Evolution of the Simon function S, parametrized by p(t)
for three distinct situations. The continuous line corresponds to an
initially entangled state, which enters in the separable region at
finite time and converges to an asymptotic state in the frontier. The
dotted line is for the same initial state, but the reservoir is such
that its corresponding asymptotic state is entangled, with the system
losing all its entanglement to recover it later. Finally, the dashed line
corresponds to a situation of asymptotic death of entanglement.

If we perturb a little the reservoir parameters so that this
asymptotic state becomes entangled, and taking the same
initial state, the curve in the figure will be slightly distorted but
now will cross the p axis twice, meaning that the state loses all
entanglement suddenly but recovers it a later time, remaining
entangled for the rest of the dynamics, a possibility mentioned
before (see the dotted line of Fig. 4, with the parameters
nf = 0.95 and mc,f = 1 for the asymptotic state). This is a
consequence of the fact that the set of entangled states is not
convex on these parameters. Cycles of birth and death are
not allowed, since a straight line can cross the convex set of
separable states only once.

This feature can be understood, from a more physi-
cal point of view, considering the entanglement from the
perspective of squeezed EPR-like quadratures. Again, the

n

nonphysical

entangled

separablem
c

FIG. 5. Representation of the CMs with n1 = n2 = n, m1 =
m2 = m � 0, and mc = 1 and all other elements equal to zero. The
region where these parameters represent physical CMs is divided by
the dashed curve, above which all states are entangled, while below
they are separable. Now the entangled region is not convex in the
parameters.
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p

∆
∆

u+
v-

2

FIG. 6. Evolution, parametrized by p, for the sum of variances
of pairs of EPR quadratures, subtracted by 2, so that a negative
value indicates an entangled state. The continuous, dotted, and dashed
curves are, respectively, for the optimum pairs of the final state, the
initial state, and the state in each instant of time. We see that the
common reservoir enlarges the optimum pair of the initial state to
squeeze the pair of the asymptotic state (which is initially large). And
there is a period of time where the quadratures with the least sum of
variances are not squeezed enough to entangle the states.

EPR-like operators with least sum of variances values (i.e.,
the optimum pair for this state) can be found and read
X̂1,r ′ − X̂2,r ′ and P̂1,r ′ + P̂2,r ′ with X̂i,r ′ = r ′x̂i , P̂i,r ′ = p̂i/r ′,
and r ′ = √

(n − m − 1/2)/(n + m − 1/2). But these are not
the quadratures “chosen by” the common reservoir to squeeze
(being those with r ′ = 1, since we had set φ = 0). So, on its
way to squeezing its favorites, it enlarges the ones from the
initial state, such that there is a period of time when no pair of
EPR-like quadratures at all are squeezed enough to entangle
the modes (see Fig. 6).

It remains then to explore the intermediate dynamics for
the situation where the asymptotic state is in the interior of the
separables, but this is also easily inferred from the straight line
trajectories exhibited by the system: every initial separable
state will remain separable for all times, and every initial
entangled state will lose its entanglement in finite time.

C. Asymmetric engineered reservoir

We have also considered the other extreme case where only
one type of atom enters in the cavity, say of type 1, so that
κ1 > 0 and κ2 = 0 (but again λ1 = λ2 = λ). Here, the second
momenta equations of motion read

ṅ1 = −2(A2κ + λ)n1 + (ABκ)mc + (AB∗κ)m∗
c + 2λnT ,

(14a)
ṅ2 = −2(λ − |B|2κ)n1 − mc(ABκ) − (AB∗κ)m∗

c

+ 2λnT + 2κ|B|2, (14b)
ṁ1 = −2(A2κ + λ)m1 − (2AB∗κ)ms, (14c)
ṁ2 = −2(λ − |B|2κ)m2 + (2AB∗κ)m∗

s , (14d)

ṁc = −(κ + 2λ)mc − (AB∗κ)n1 + (AB∗κ)n2 + AB∗κ,

(14e)
ṁs = −(κ + 2λ)ms + (ABκ)m1 − (AB∗κ)m2. (14f)

Despite the asymmetry of the master equation here, the
asymptotic states have the same qualitative behavior as in the

R

n T

SDE

PE

FIG. 7. Phase diagram for the asymmetric reservoir, exhibiting
the same qualitative behavior as in the symmetric case.

previous case: for null temperature it will be entangled for any
value of R = κ1/λ but for finite temperature it is separable
for high enough R. In Fig. 7, we plot the diagram analogous
to the one in Fig. 1, determining the dynamical phases for
the entanglement dynamics, also separated by a curve with a
similar shape.

The asymptotic states entanglement, using now the log-
negativity for asymmetric GS [18], are also shown (Fig. 8)
for distinct values of nT , as functions of R, and the same
interpretation applies here.

Analogous results are valid also when κ2 > 0 but κ1 �= κ2.
So, as far as asymptotic issues are concerned, the system
presents the same general behavior for both symmetric and
asymmetric reservoirs. However, the nonasymptotic analysis
made before for the symmetric reservoir becomes much more
involved for the asymmetric one and will be subject of future
work.

IV. EXPERIMENTAL PROPOSAL

The dynamics studied here is simpler than that in Ref. [5]
(e.g., being Markovian), yet it is much more controllable and
with clear experimental motivation. In this section, we discuss
in more detail how to test these predictions in the laboratory.

E
N

R

n =0T

n =0.5T

n =1T

FIG. 8. Log-negativity of the asymptotic state for the values
r = 1, and some values of nT .
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Considering the state evolution in the laser reference frame,
Eqs. (11) will be replaced by

ṅj = −2(κ + λ)nj + 2κ|B|2 + 2λnT , (15a)

ṁj = −2(κ + λ)mj + (−1)j+12idmj , (15b)

ṁc = −2(κ + λ)mc + 2κAB∗, (15c)

ṁs = −2(κ + λ)ms + 2idms, (15d)

where only the equations for mj and ms have changed. If
we consider the initial GS where mj = ms = 0, as well as
null amplitudes, the evolution will be the same as that for
the interaction picture i.e., given by Eq. (10), and the coarse
graining in time will not affect these states throughout the
evolution. For other initial states, the coarse graining will
be a source of decoherence, and the state may even lose
the Gaussian character along the evolution (like a one-mode
coherent state, with nonvanishing amplitude, averaged over its
phase).

Our proposal starts then from the preparation of a highly
entangled state using the common symmetric reservoir [6]
for a total time much shorter than λ−1, and setting R � 1 in
order to make thermal effects negligible. After the preparation
time, the parameter R is set to values of the order R >≈ 1, by
changing the flux of atoms through the cavity.2 The system
is allowed to evolve until some time t (of the order λ−1) and
the entanglement evolution can be studied, for example, by
using the method proposed in Ref. [26], to reconstruct the
two-mode state. Naturally, one could also try to measure some
entanglement witness to simplify the experimental procedure,
by using the previous knowledge of the field to reduce
the amount of experimental data, but still characterize its
entanglement.

For this setting, i.e., assuming an initial two-mode squeezed
state, the times where entanglement sudden death (ESD) takes
place can be obtained explicitly and reads

λtESD = R

2(1 + R)
ln (1 − pESD)−1, (16)

where

pESD = (1 + R)(B2 − AB)

(1 + R)(B2 − AB) − B2 − nT R + AB
, (17)

and the parameter R refers to the one in the second stage of the
procedure, after the initial state preparation. These times, in
units of λ−1, are exhibited as functions of R in Fig. 9 for some
values of temperature. Naturally, they are infinite for small R,
in the region where persistent entanglement takes place. After
the threshold, it falls abruptly and stabilizes in values close to
unity, so the entanglement will typically survive long enough
for its (not so sudden) death to be observed. It may also be
interesting to study thermal effects like the behavior of dEF

dt

before the sudden death, which is an indicator of the incidence

2Note that changing the driving field amplitude also alters the
squeezing parameter, and that interrupting the flux corresponds to
R → ∞.

R

λt
E

S
D

n =0.5T

n =0.15T

n =0.1T

FIG. 9. Sudden death time as function of R, for some values of nT .
It is infinite for small R, corresponding to the persistent-entanglement
region, but after the threshold, it rapidly falls to a value near unity.

of the dynamical trajectory of ρ̂ at the set of separable states,
by controlling the temperature.

V. ROBUSTNESS OF THE SCHEME FOR GENERATING
ENTANGLED GS IN A CAVITY

Since entanglement in GS is related to squeezing in the
proper EPR quadratures, while the natural thermal effect is
to spread Wigner functions, it is in order to ask about the
sensibility of the preparation scheme with natural dissipation,
considering the regime R � 1 and nT � 1. Actually we
have analyzed a slightly different procedure than the original
one by Pielawa et al. [6]. There they propose to empty the
modes b̂j at turns, passing a stream of atoms of type 1,
say, until mode b̂1 is sufficiently “washed,” then repeating
the procedure with type 2 atoms. Here we consider that both
types of atoms can pass through the cavity, not at the same
time, but with equal probability, so that we can apply the
equations for the symmetric reservoir to compute the system
evolution.

Supposing that the two original modes, âi , are initially
empty (and remembering that the number of photons can
be lower than the number of thermal photons if one passes
a suitable stream of atoms to “steal” photons from the
mode), the evolution of the covariance matrix of the system
will be then given with the following nonzero entries: n1 =
n2 = |B|2+nT R

1+R
p(t) and mc = AB

1+R
p(t), where again p(t) =

{1 − exp [−2(κ + λ)t]}. Assuming also that the duration of
experiment t is large enough so that p ≈ 1 (which can be
achieved with t � κ−1 but still t � λ−1) or, in other words,
that the system is essentially in the asymptotic state of the
procedure, we plot in Fig. 10 the entanglement of formation
as a function of R, for nT = 0.05 (the value attained in the
recent experiment reported in Ref. [27]) for distinct values
of r . The graphs are normalized by the value of the entan-
glement of formation with R = 0, which would be obtained
if there were no dissipation. We see that the entanglement
is somewhat sensitive to the dissipation, even at such a low
temperature, and can be lowered by half, for R = 0.1, i.e.,
when the engineered reservoir rate is ten times greater then
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R

E
(R

=
0)

FE
(R

)
F

r=1
r=1.5
r=2
r=2.5

FIG. 10. Entanglement of the asymptotic states as function of the
ratio R = λ/κ between the reservoir decay rates, for some values of
squeezing parameter r , with nT = 0.05, normalized by its value at
R = 0. The continuous line is for r = 1, dotted for r = 1.5, dashed for
r = 2, and dotted-dashed for r = 2.5. The entanglement is somewhat
sensitive to dissipation and is more sensitive the greater the squeezing
parameter.

the dissipation rate. Also, the greater the squeezing parameter,
the more sensitive entanglement becomes to dissipation, as
expected. Though, if κ is above two orders of magnitude
greater than λ, the entanglement does not appear to be
significantly changed. For a squeezing parameter of r = 1,
a value of R ≈ 10−2 and a waiting time of about 3κ−1 would
suffice to obtain an amount of entanglement greater than 90%
of the pure ideal state (with R = 0 and infinite waiting time).

VI. CONCLUSION

An engineered reservoir can be used to create entangled
states of two field modes in a cavity [6]. We here show
that it can also be used, together with the natural thermal
reservoir, to depict asymptotic entanglement phase diagrams
[5]. Taking advantage of the fact that the specific reservoirs
used preserve Gaussianity, we could make all the discussion
of entanglement in terms of covariance matrices. We showed
that only two behaviors are allowed: asymptotic entanglement
or entanglement “sudden death.” The line between both phases
allows the coexistence of both behaviors.

Besides the asymptotic studies, the symmetric engineered
reservoir was also studied in detail, with examples of all
possible entanglement fates exhibited.

This study can be viewed as an experimental proposal for
drawing entanglement phase diagrams and for monitoring the
“transition.” Another byproduct is the study of the robustness
of the proposal for entanglement generation with respect to the
natural thermal environment. An interesting question raised is
what would be the best setup for such experimental drawing
of asymptotic entanglement phase diagrams.
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