
PHYSICAL REVIEW A 82, 042116 (2010)

Bell inequality for pairs of particle-number-superselection-rule restricted states
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Proposals for Bell-inequality tests on systems restricted by the particle-number-superselection rule often
require operations that are difficult to implement in practice. In this article, we derive a Bell inequality, where
measurements on pairs of states are used as a method to bypass this superselection rule. In particular, we focus
on mode entanglement of an arbitrary number of massive particles and show that our Bell inequality detects the
entanglement in an identical pair of states when other inequalities fail. However, as the number of particles in the
system increases, the violation of our Bell inequality decreases due to the restriction in the measurement space
caused by the superselection rule. This Bell test can be implemented using techniques that are routinely used in
current experiments.
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I. INTRODUCTION

The rise of quantum information science over the past
decade has made it popular to seek and understand quantum
many-body systems that contain entanglement [1]. One group
of these many-body systems consists of the ultracold atomic
gases, such as Bose-Einstein condensates [2]. However, unlike
spin lattice systems where the particles are distinguishable
through position, particles in ultracold gases are typically
indistinguishable from one another. Indistinguishability means
that the first quantized many-body state of the particles should
be (anti)-symmetrized, but then the corresponding state space
no longer has the tensor product structure required to define
entanglement [3].

One can, however, recover a tensor product state space
by viewing the ultracold gases in terms of second quantized
modes [4]. It has been shown that entanglement naturally
exists between spatial modes in noninteracting Bose-Einstein
condensates [5–7] and in other ultracold atomic gases provided
the coherence length of the particles extends over the selected
modes [8]. In order to perform a Bell test on such systems,
the spatial modes, which behave in some sense like a pair of
qudits, must be rotated away from the particle-number basis.
However, since systems of massive particles are restricted by
a superselection rule [17–19] that forbids rotations away from
the subspace of fixed particle number, a Bell-like test of the
mode entanglement of massive particles is not straightforward.
On the other hand, spatial mode entanglement (and nonlocal-
ity) of a single photon has been extensively studied [9–14] and
the experimental verification of single-photon entanglement
has been obtained [15] via the CHSH Bell test [16].

Despite the superselection rule, a few schemes to test a Bell
inequality with a single massive particle have recently been
put forward [20–22]. In [21] it was suggested that the spatial
modes could be rotated away from the particle-number basis by
coupling to a coherent particle reservoir. However, to reliably
confirm spatial-mode entanglement of a single massive particle
in an experiment, one would have to ensure that no additional
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entanglement entered the system via the particle reservoir (see
[23,24] for further discussion of this point) and even if this
were guaranteed, such a coupling to the reservoir is likely to
be difficult to implement under realistic conditions. Moreover,
both in the photon experiment [15] and in theoretical proposals
[9,21], a local postselection of the measurement outcomes was
required to see a violation of the CHSH inequality, which
meant that these tests only strictly probed for entanglement
(i.e., the Bell inequality was used as an entanglement witness
[25]), and not the more stringent property of nonlocality.

In this article, we derive a general Bell inequality to detect
the mode entanglement of massive bosons, which overcomes
the possible pitfalls pointed out previously. In particular, we
use two copies of the system to make rotated measurements
despite the superselection rule. Using two copies not only
eliminates the need to have careful couplings to a particle
reservoir in order to overcome the superselection rule, but
also ensures that no auxiliary entanglement from this reservoir
will be responsible for the violation. Note that Wiseman
and Vacarro considered the entropic properties of pairs of
superselection rule restricted states in [19]. Unlike previous
tests of spatial-mode entanglement that focus solely on single
particles, our Bell inequality can be applied to systems
containing any number of bosons, which can be both massless
or massive. At present, there has been no experimental test for
the existence of mode entanglement of massive particles—
even though this type of entanglement is predicted to be
ubiquitous in ultracold atomic gases and though it has recently
been shown to be useful for quantum communication [26].
Because our test is relatively simple compared to previous
proposals to detect mode entanglement of massive particles,
its implementation could allow for the first direct confirmation
of mode entanglement of massive particles.

We begin in the next section by explaining in more detail
why two copies of a bimode quantum state allows one to make
the measurements required to implement our Bell inequality
despite the superselection rule. Building on this, we derive
in Sec. III a general Bell inequality for two copies of a
bimode state, each with N particles. In Sec. IV we test our
Bell inequality with some examples of mode-entangled states
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and in Sec. V we discuss these results. Finally, in Sec. VI we
suggest how one could implement the test in practice, referring
to current experimental techniques that could be put to use.

II. THE CHSH BELL INEQUALITY AND THE
PARTICLE-NUMBER-SUPERSELECTION RULE

Bell inequalities make it possible to test the remarkable
ability for entangled states to violate local realism. Local re-
alistic theories impose constraints on the correlations between
measurement outcomes on two separated systems. For systems
occupying the state space H = C2 ⊗ C2, the most commonly
tested Bell inequality [27] is the CHSH inequality [16]. The
CHSH inequality can be expressed in terms of joint expectation
values of observables for two parties, A and B, as

BCHSH = |〈Â1B̂1〉 + 〈Â1B̂2〉 + 〈Â2B̂1〉 − 〈Â2B̂2〉| � 2, (1)

where 〈ÂiB̂j 〉 = tr[ÂiB̂j ρ̂AB] and Âi and B̂j each have two
outcomes for i,j = 1,2. When this inequality is violated, there
is entanglement between the two subsystems.

In systems of massive particles described by quantum
mechanics, particle number is a superselected quantity so that
the total particle-number operator, N̂ , commutes with all other
physical observables [28]. The system density operator ρ̂,
therefore, cannot contain any off-diagonal terms that connect
states of different particle number. The corresponding Hilbert
space, H, is decomposed as H = ⊕∞

N=0HN , where HN is
the subspace containing N particles. For systems of two
spatially separated modes, A and B, the state space HN has the
substructure HN = ⊕N

n=0(HA
n ⊗ HB

N−n), where HA(B)
n denotes

the Hilbert space of mode A(B) with n particles.
Now consider a single copy of a two-mode system

containing one massive particle. A general state in the
subspace H1 spanned by |01〉 and |10〉 can be writ-
ten as ρ̂AB = p|ψ+〉〈ψ+|AB + (1 − p)|ψ−〉〈ψ−|AB , where
|ψ±〉AB = 1√

2
(|01〉 ± |10〉) and |01〉 = |0〉A ⊗ |1〉B denotes

no particles in mode A and one particle in mode B. The
parameter, p, determines the entanglement of ρ̂AB , only when
p = 1

2 is the state separable, with p = 0 or 1 resulting in
a maximally entangled state. Because of the superselection
rule, the only valid local measurement is particle number and,
if we were to test Eq. (1), every joint correlation function,
〈ÂiB̂j 〉ρAB

, would be 〈ÂiB̂j 〉ρAB
= −1 ∀i,j . Since 〈ÂiB̂j 〉

is independent of p, measurements in the particle-number
basis cannot distinguish separable states from entangled ones,
and such measurements never allow for violation of the Bell
inequality, even with a mode-entangled state.

Conversely, we take now two copies of the preceding
state, ρ̂XY , shared between two parties, σ̂ = ρ̂AB ⊗ ρ̂CD ,
where modes A and C are given to the first party and
modes B and D to a second party. This composite state
will make it possible to “see” the entanglement of ρ̂XY

despite the superselection rule. We consider now a toy
example to highlight this point: Each observer will make
an (incomplete) local measurement on their two modes
in the two-dimensional subspace of fixed particle number
spanned by the normalized basis vectors {|ϕ+〉,|ϕ−〉}, where
|ϕ+〉 = α|10〉 + βeiϕ |01〉 and |ϕ−〉 = βeiϕ |10〉 − α|01〉. If
the first party measures Â(ϕ) = |ϕ+〉〈ϕ + | − |ϕ−〉〈ϕ − | and
the second party B̂(θ ) = |θ+〉〈θ + | − |θ−〉〈θ − |, the joint

expectation values of Eq. (1) with the state σ̂ have the
form 〈Â(ϕ)B̂(θ )〉σ̂ = 8(p − 1

2 )2α2β2 cos(ϕ − θ ). It is clear
that the degree of correlation depends on the entanglement
of the individual states, ρ̂XY , since the parameter p is
present. For instance, when the states are separable, that is,
p = 1

2 , the correlation function is 〈Â(ϕ)B̂(θ )〉σ̂ = 0, yet when
p = 0 and α = β = 1√

2
, the correlation function is maximal,

〈Â(ϕ)B̂(θ )〉σ̂ = 1
2 cos(ϕ − θ ). Moreover, the local parameters

ϕ and θ can be altered by each party, respectively, to change
between different measurement settings (1 and 2) required for
a Bell test. We now expand this basic example to formulate a
general Bell inequality for pairs of N particle states.

III. BELL INEQUALITY FOR PAIRS OF
PARTICLE-NUMBER-SUPERSELECTION-RULE

RESTRICTED STATES

Consider two systems split into two spatially nonoverlap-
ping modes: The first system has N massive particles and
the second N ′ massive particles. We denote the total state of
the system, with N + N ′ particles, by σ̂ (N+N ′) = ρ̂

(N)
ab ⊗ ρ̂

(N ′)
AB .

Party A (or Alice) has access to modes a and A and party B

(or Bob) to modes b and B (see Fig. 1).
In our Bell test, Alice makes a joint measurement on

her two modes in a subspace, HM = ⊕M
n=0(Ha

n ⊗ HA
M−n),

of fixed particle number, M , spanned by the basis states
{|M,0〉aA,|M − 1,1〉aA, . . . ,|0,M〉aA}, although we do not
know a priori what this number, M (0 � M � N + N ′),
will be. The operator for this arbitrary high-dimensional
measurement basis is, for Alice,

Â
(
ϕ

(i)
A

) =
N+N ′∑

nc+mC=0

ε(nc,mC)|nc,mC〉〈nc,mC |cC. (2)

Likewise, Bob measures his two modes in the basis B̂(ϕ(j )
B )

and receives (N + N ′) − M particles. Here ε(nc,mC) are
weighting coefficients. The local parameters ϕ

(i)
A and ϕ

(j )
B ,

FIG. 1. (Color online) Basic setup for the Bell test of mode
entanglement using two copies, ρ̂

(N)
aA ⊗ ρ̂

(N ′)
bB , of a bimode state with

N and N ′ massive particles, respectively. Modes a and A are given to
Alice and b and B to Bob. Each party makes a general measurement in
the subspace of fixed particle number by sending their modes through
a beam splitter parametrized by the local angles ϕA for Alice and ϕB

for Bob.
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where i,j = 1,2, denote the two measurement settings that
Alice and Bob use in the Bell test. Measuring each mode
directly allows for only local particle-number measurements,
but we wish to perform a general measurement within HM . To
do this, each party passes their two spatial modes through a
beam splitter defined, for Alice, by the transformations

ĉ = αâ + e−iϕAβÂ, C = βa − e−iϕAαA, (3)

where ĉ and Ĉ are annihilation operators for the two output
ports. The operators â and Â are annihilation operators for the
two input modes of party A. There are similar beam-splitter
transformations for Bob, where we denote the output modes as
d̂ and D̂. Each party measures the output modes in the particle-
number basis, the outcomes of which depend on the local
parameter ϕA(B). Hence, the number of particles, nc and mC ,
in the two output modes, ĉ and Ĉ, appear in the observable (2)
for Alice. A measurement of |nc,mC〉cC corresponds to an
effective measurement on the input modes a and A of

|nc,mC〉cC = (αâ† + βe−iϕAÂ†)nc

√
nc!

× (βa − e−iϕAαA)mC

√
mC!

|0,0〉a,A, (4)

where |0,0〉a,A is the vacuum of modes a and A and we have
used (3). We discuss in more detail a physical implementation
of our test in Sec. VI.

Since there is a total of N + N ′ particles in the composite
system, there are [1/2(N + N ′) + 1](N + N ′ + 1) different
measurement outcomes. For example, when N = N ′ = 1 and
for balanced beam splitters, α = β = 1√

2
, we have a total of

six outcomes:

|nm〉cC Measurement on the modes a and A ε(nc,mC)

|00〉 |00〉 1

|10〉 1√
2
(|10〉 + e−iϕA |01〉) −1

|01〉 1√
2
(|10〉 − e−iϕA |01〉) 1

|20〉 1
2 (|20〉 + e−iϕA

√
2|11〉 + e−i2ϕA |02〉 −1

|11〉 1√
2
(|20〉 − e−i2ϕA |02〉) 1

|02〉 1
2 (|20〉 − e−iϕA

√
2|11〉 + e−i2ϕA |02〉 −1.

The weighting function ε(nc,mC) is explicitly chosen as

ε(nc,mC) = (−1)mC+ (mC+nc )(mC+nc+1)
2 , (5)

which gives a sharp binning of results, as in [29]. There, sharp
binning was shown not only to be optimal, but also to result in
a tight Bell inequality.

We construct a Bell-type inequality from the local observ-
ables Â(ϕ(i)

A ) and B̂(ϕ(j )
B ). Like the CHSH-type combination

of Eq. (1), we formulate B̂ = Ê(ϕ(1)
A ,ϕ

(1)
B ) + Ê(ϕ(1)

A ,ϕ
(2)
B ) +

Ê(ϕ(2)
A ,ϕ

(1)
B ) − Ê(ϕ(2)

A ,ϕ
(2)
B ), where the correlation operator is

defined as Ê(ϕ(i)
A ,ϕ

(j )
B ) = Â(ϕ(i)

A ) ⊗ B̂(ϕ(j )
B ). Since each local

observable is bounded as |〈Â(ϕ(i)
A )〉| � 1,|〈B̂(ϕ(j )

B )〉| � 1, we
obtain a Bell inequality from the expectation value of B̂:

|BN | = |Tr[σ̂ (N+N ′)B̂]| = ∣∣E
(
ϕ

(1)
A ,ϕ

(1)
B

) + E
(
ϕ

(1)
A ,ϕ

(2)
B

)

+E
(
ϕ

(2)
A ,ϕ

(1)
B

) − E
(
ϕ

(2)
A ,ϕ

(2)
B

)∣∣ � 2, (6)

where the correlation function is

E
(
ϕ

(i)
A ,ϕ

(j )
B

) =
∑

{nc+mC+nd+mD=N+N ′}
ε(nc,mC)

× ε(nd,mD)P (ϕ(i)
A ,ϕ

(j )
B )(ncmC ; ndmD). (7)

Here P (ϕ(i)
A ,ϕ

(j
B ,)(ncmC ; ndmD) is the joint probability for the

case that the outcome of Alice and that of Bob is the trace of the
projection operator onto the states |nc,mC〉cC and |nd,mD〉dD

for the measurement setting ϕ
(i)
A for Alice and ϕ

(j )
B for Bob.

Therefore, if we can demonstrate the violation of the given
Bell inequality (6) for a quantum state, σ̂ (N+N ′), then we can
conclude that the state is entangled and, if the conditions for
locality are met, also nonlocal.

IV. APPLYING THE BELL INEQUALITY TO PAIRS
OF MODE-ENTANGLED STATES

We now evaluate the Bell inequality (6) with different
mode-entangled states. In the following section, we apply
the Bell inequality to pairs of states of a zero-temperature,
noninteracting Bose-Einstein condensate of fixed number of
particles. In Sec. IV B, we apply the Bell inequality to states
that are useful for precision measurement, such as the so-called
N00N states and the “spin”-squeezed states.

A. Noninteracting Bose-Einstein condensate

The zero-temperature state of a noninteracting Bose-
Einstein condensate of fixed particle number that is symmet-
rically distributed between two modes is [5]

|ψN 〉 = 1
√

2
N

N∑

n=0

√
N !√

n!(N − n)!
|n,N − n〉. (8)

Here we apply our Bell inequality (6) to the pairs of states,
|ψN 〉⊗2.

Let us first consider the case of just a single particle
(N = 1), so that the composite state is |ψ1〉⊗2 = ( 1√

2
(|10〉 +

|01〉))⊗2. The correlation function is EN=1(ϕ(i)
A ,ϕ

(j )
B ) =

sin2[(φ(i)
A − φ

(j )
B )/2], with the corresponding Bell term, BN=1,

constructed via Eq. (6). When BN=1 > 2, the state distributed
between Alice and Bob is nonlocal. The left-hand plot in Fig. 2
shows a violation of BN=1 for a range of measurement settings.
We discuss the results in more detail in the following section.

We next consider N = 2 particles in each system so that
the composite state is |ψ2〉⊗2. Here the correlation function is
EN=2(ϕ(i)

A ,ϕ
(j )
B ) = sin4[(φ(i)

A − φ
(j )
B )/2], from which the Bell

term, BN=2, can be constructed. The center plot in Fig. 2
shows the Bell term, BN=2. While there is a violation of the Bell
inequality, compared to the N = 1 plot the maximum violation
is smaller and the range of measurement settings that give a
violation has also reduced. For N > 2 particles, the correlation
functions become more complicated. For simplicity, we show
only the plot of the Bell term, BN=3, for the composite state,
|ψ3〉⊗2, which is on the right-hand side of Fig. 2. Again the
magnitude of the violation and range of measurement settings
that give a violation are smaller than in the cases of |ψ1〉⊗2 and
|ψ2〉⊗2. Note that for all the Bell inequalities in this section the
value of the Bell term depends on the relative measurement
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FIG. 2. (Color online) (Left to right) Plots of the Bell terms, BN=1, BN=2, and BN=3, with the state (8). Bell quantity BN=1 has a maximum
violation of BN=1 = 2.41 at measurement settings φ

(1)
A = 0, φ

(2)
A = 1.57, φ

(1)
B = 3.93, and φ

(2)
B = 2.36. Bell quantity BN=2 has a

maximum violation of BN=2 = 2.36 at measurement settings: φ
(1)
A = 0, φ

(2)
A = 1.07, φ

(1)
B = 3.68, and φ

(2)
B = 2.60. The rightmost plot is the

Bell quantity BN=3. Here the maximum violation is B = 2.24 at the angles of φ
(1)
A = 0, φ

(2)
A = 1.00, φ

(1)
B = 3.64, and φ

(2)
B = 2.68.

settings between the parties, ϕ(i)
A − ϕ

(j )
B and not on the absolute

phases of the two states.
We have also checked our Bell inequality with pairs

of states, |ψN 〉 ⊗ |ψN ′ 〉, where N 	= N ′ for balanced beam
splitters (α = β = 1√

2
) on both sides and found the

correlation functions are E(ϕ(i)
A ,ϕ

(j )
B ) = 0 for (N,N ′) =

(1,2),(1,3), . . . ,(1,6),(2,3), . . . ,(2,6),(3,4), irrespective of
measurement settings. For unbalanced beam splitters (α 	= β)
on both sides, in general E(ϕ(i)

A ,ϕ
(j )
B ) 	= 0, but we have still

found no violation of (6) over all parameters for (N,N ′) =
(1,2). Note that E(ϕ(i)

A ,ϕ
(j )
B ) for (N,N ′) is equal to that for

(N ′,N ).

B. Highly entangled states

We now apply the Bell inequality to states which contain
more entanglement compared to the state of a noninteracting
Bose-Einstein condensate.

1. N00N states

The so-called N00N states and their generalizations have
been used, among other things, to gain drastic improvements
in precision measurements [30–32] over the standard quantum
limit. Here we check our Bell inequality (6) with pairs of the

FIG. 3. (Color online) The left-hand plot shows the identical Bell
terms, BN=2, m=0 and BN=4, m=1, with the state (9). The maximum
violation here is BN=2, m=0 = BN=3, m1 = 2.41 at one of the four
measurement settings: φ

(1)
A = −0.13, φ

(2)
A = 0.65, φ

(1)
B = 0.26, and

φ
(2)
B = −0.52. The right-hand plot shows the Bell term, BN=3, m=0,

whose maximum value is BN=3, m=0 = 1.71; hence, there is no
violation for all measurement settings.

following states:

|N,m〉 = 1√
2

(|N − m,m〉 + |m,N − m〉). (9)

Note that these states were also called MssM states in [32],
standing for “many-some + some-many.”

We first consider the composite state, |N = 2,m = 0〉⊗2 =
[1/

√
2(|20〉 + |02〉)]⊗2, and compute the correlation function

to be EN=2,m=0(ϕ(i)
A ,ϕ

(j )
B ) = cos2(ϕ(i)

A − ϕ
(j )
B ). The individual

state, |N = 2,m = 0〉, was created in [33] via second-order
tunneling. The corresponding Bell term, BN=2,m=0, is plotted
in Fig. 3. As with the case of |ψ1〉⊗2, the maximum violation
here is BN=2,m=0 = 2.41; however, the number of regions of
violation has increased from one to four, which corresponds
to the enhanced phase sensitivity that such a state would
bring in a precision measurement. Moreover, the Bell term
BN=2,m=0 is identical to BN=4,m=1 for the state |N = 4,m =
1〉⊗2 = [1/

√
2(|31〉 + |13〉)]⊗2. Conversely, we have checked

our Bell inequality for the states |N = 3,m = 0〉⊗2 =
[1/

√
2(|30〉 + |03〉)]⊗2 |N = 3,m = 1〉⊗2 = [1/

√
2(|21〉 +

|12〉)], and |N = 4,m = 0〉⊗2 = [1/
√

2(|40〉 + |04〉)]⊗2 and
we have found that there is no violation for all measurement
settings.

2. Squeezed states

Spin squeezing [34,35] is a mechanism that generates
states that surpass the standard quantum limit in precision
measurements. Here the N particles, that are distributed
between the two spatial modes, are described by a fictitious
J = N/2 spin [36]. The two modes would represent the two
states required to perform interferometry if that were our
objective.

Spin squeezing is achieved when the fluctuations in one
angular momentum direction are reduced, while the coherence
is preserved in at least one of the other two directions. We
take here Ŝz = (1/2)(â†â − b̂†b̂),Ŝy = (i/2)(â†b̂ − b̂†â) and
Ŝx = (1/2)(â†b̂ + b̂†â), where â and b̂ are the annihilation
operators for modes, a and b. The squeezing between the two
modes is given by

E2
S = N (
Ŝz)2

〈Ŝx〉2 + 〈Ŝy〉2
, (10)

with ES < 1 corresponding to a spin-squeezed state.
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FIG. 4. (Color online) The squeezing parameter, ES , (left) and
the maximum violation of the Bell inequality (6) (right) for c �
1/

√
2. The state is spin squeezed when ES < 1. Our Bell inequality

detects weakly entangled states (0 � c < 1/2), where the squeezing
inequality (10) does not.

While in experiments [37] spin squeezing is generally
achieved via a nonlinear interaction with on order of
103 particles, here we consider a toy example, which will allow
comparisons to the other results in this section. We apply our
Bell inequality to the composite state, |ψ2(c)〉⊗2, where

|ψ2(c)〉 = c|20〉 +
√

1 − 2c2|11〉 + c|02〉. (11)

The parameter c controls the amount of squeezing between the
two modes; when c = 1/2 the state is that of a noninteracting
Bose-Einstein condensate, |ψ2〉, and when c = 1/

√
2 the

N00N state, |N = 2,m = 0〉, from earlier in this section
is reached. The squeezing parameter, ES , is plotted on the
left-hand side of Fig. 4 for different values of c.

Figure 5 shows the Bell term (6) for three different values
of c of increasing squeezing, namely c = 0.6, c = 0.65, and
c = 0.7. For c = 0.6, the Bell term still behaves in a similar
manner to the N = 2 noninteracting case from Fig. 2; there
is one region of violation, but the squeezing has increased the
maximum violation from BN=2 = 2.36 to BN=2(c = 0.6) =
2.394. The landscape of the Bell term, however, changes
considerably as the squeezing gets larger still. For c = 0.65,
there are two clear regions of violation indicating the amplitude
of the |11〉 subspace is decreasing and the phase-enhancing
{|20〉,|02〉} subspace is playing a more significant role. The
maximum violation for c = 0.65 is BN=2(c = 0.65) = 2.405.
The final plot on the right-hand side of Fig. 4 shows the Bell
term for a state which predominantly consists of |20〉 + |02〉,
with a very small amount of |11〉 included. Here we see four
clear domains of violation and a maximum violation that is
identical to the state |N = 2,m = 0〉.

C. Weakly entangled states

We can also apply our Bell inequality to weakly entangled
states by taking the state (11) and allowing the parameter c

to be set below the value for the noninteracting Bose-Einstein
condensate case; that is, c will be less than 1/2. By applying
the standard von Neumann entropy to (11) one can detemine
that the state |ψ2(c)〉 becomes separable only when c = 0.
Here the state is |11〉, which would correspond to the Mott
regime of the Bose-Hubbard model.

Figure 6 shows the Bell term (6) for the state |ψ2(c)〉⊗2

for values of c where the entanglement is less than in the
noninteracting BEC case. For all values of c there is just one
region of violation. As the entanglement in the state decreases,
so does the maximum violation, as can be seen more clearly in
Fig. 4. The Bell terms also become increasingly flattened with
decreasing entanglement. When c = 0 the Bell term is flat and
there is no violation of the Bell inequality.

V. DISCUSSION

In the previous section, we applied the Bell inequality (6)
to various mode-entangled states of fixed particle number.
For the case of the noninteracting Bose-Einstein condensate
in Sec. IV A, there was a decrease in both the size of
the violation and in the range of measurement parameters
over which a violation occurred with an increasing number
of particles. Restrictions on the measurement space due to
the particle-number-superselection rule prevent the maximum
violation (2

√
2) of (6) occurring for any particle number, N ,

over any set of parameters, {ϕ(1)
A ,ϕ

(2)
A ,ϕ

(1)
B ,ϕ

(2)
B }. We can explain

this in the following way.
Let us take the state |ψ1〉⊗2 = [ 1√

2
(|10〉 + |01〉)]⊗2. If on

each run of our Bell test one particle were always guaranteed to
end up with each party, then the maximum violation would be
obtainable with the correct choice of measurement parameters.
One can see this by applying the Bell inequality (6) to the renor-
malized state found by projecting |ψ1〉⊗2 onto the subspace
spanned by {|1010〉aAbB,|1001〉aAbB,|0110〉aAbB,|0101〉aAbB}.
However, in practice, there is always a finite probability for
one party to detect both particles on their side of the system,
which implements a local particle-number measurement on
each of the four modes a, A, b, and B and will not distinguish
between the quantum and classical correlations (see Sec. II for

FIG. 5. (Color online) The Bell terms (6) for the state (11) for c = 0.6,c = 0.65, and c = 0.7 as a function of two of the measurement
settings (the other two are fixed to maximize the Bell term). The maximum violation increases with increasing squeezing, namely
BN=2(c = 0.6) = 2.394,BN=2(c = 0.65) = 2.405, and BN=2(c = 0.7) = 2.413. The number of regions of violation grows with increasing
squeezing, which is an indicator that the standard quantum limit in a precision measurement would be overcome.

042116-5



LIBBY HEANEY, SEUNG-WOO LEE, AND DIETER JAKSCH PHYSICAL REVIEW A 82, 042116 (2010)

FIG. 6. (Color online) The Bell terms (6) for the state (11) for c = 0.1,c = 0.2,c = 0.3, and c = 0.4 as a function of two of the measurement
settings. The entanglement of the state increases from left to right, as does the range and the size of the violation of the Bell inequality. Specifically,
the maximum violations for the four plots are B(c = 0.1) = 2.032,B(c = 0.2) = 2.116,B(c = 0.3) = 2.220, and B(c = 0.4) = 2.307.

a brief discussion of this point). It is this mixing of outcomes
from the two different measurement spaces that stops the Bell
terms, BN , from reaching their maximum value.

On the other hand, we know from Gisin and Peres [39]
that for a spin singlet state of any size, s, one can always find
measurement settings that give the maximum violation of 2

√
2

to an inequality identical to (6). The measurement operators
used in [39] that gave rise to the maximum violation are block
diagonal; with each block consisting of a 2 × 2 rotation matrix,
R̂y(α) = σ̂z cos α + σ̂x sin α, where σ̂z and σ̂x are the usual
Pauli operators. This contrasts with our measurement operators
(2) that are block diagonal in the n × n subspaces of constant
n particles. Since, due to the superselection rule, we cannot
rotate our measurement operators with transformations that
mix the subspaces of different particle number, it is impossible
to reach the measurement space used in [39] and hence it is
also impossible to obtain the maximum violation of the Bell
inequality.

Indeed, for a class of quantum optical down-conversion
Bell tests, Popescu et al. [40] analyzed the CHSH inequality
when the measurement space also included outcomes that
were unfavorable and they found that maximum violation of
the inequality was 1 + √

2 ≈ 2.41. This is identical to the
maximum violation we obtained in Fig. 2 for N = 1 and for
the |N = 2,m = 0〉 state.

The decrease in the the range of violating measurement
parameters with an increasing number of particles is also
due to the restrictions on the measurement space. This
can be compared to an early result by Mermin [38], who
considered a Bell inequality for pairs of spin s particles. There
Mermin created a restriction on his measurement space by
considering only Stern-Gerlach-type devices whose operation
depends solely on the orientation of the quantization axis
and thus cannot make projections onto arbitrary states of
the subsystems. In agreement with the results in Sec. IV A,
Mermin found that as the size of the spin increased, the range of
angles for which the contradiction arose decreased. Speaking
somewhat loosely, this restriction is similar to the fact that here
when one party receives M particles, the remaining 2N − M

particles are always detected by the other party, irrespective
of the measurement setting chosen by each party. Certain
combinations of measurement outcomes are just impossible.

In fact, Wiseman and Vaccaro suggested in [19] that to
correctly determine the entanglement for superselection-rule
restricted states, one should first project such states into the
subspace of fixed particle number, calculate the von Neumann

entropy for the resulting renormalized states and then take
their average. If one does this for pairs of states, |ψN 〉⊗2, the
amount of entanglement peaks for N = 2 and then goes to zero
by N = 9. Since we are also measuring in the subspaces of
fixed particle number, we should likewise not expect to detect
any entanglement for higher numbers of particles. In order to
see a maximum violation, one would need to make arbitrary
measurements on the modes by coupling, for instance, to a
Bose-Einstein condensate reservoir as in [21,26].

Our Bell inequality only shows violations for the pairs of
N00N states with N = 2,m = 0 and N = 4,m = 1. This is
due to the measurements in our inequality being linear in
particle number and including no higher-order correlation
functions. As the basic group [41] that forms the correlations
in the N00N states increases, that is, for N − 2m > 2, one
would need second-order observables (and higher) to detect
the correlations. In contrast to the noninteracting case, the
entanglement of pairs of the N00N states as measured by
Wiseman and Vaccaro’s projected von Neumann entropy [19]
remains constant for all N , so that in principle the nonlocality
of these states should be detectable within a different scheme.

We also checked the Collins-Gisin-Linden-Massar-
Popescu (CGLMP) inequality [42] with the joint probabilities
P (ϕ(i)

A ,ϕ
(j
B ,)(ncmC ; ndmD) for the noninteracting Bose-Einstein

condensate and found no violation. This suggests that our Bell
inequality is particularly suited for detecting entanglement of
pairs of states restricted by superselection rules. Moreover,
our Bell inequality is able to detect the mode entanglement
of even weakly entangled states of two modes, A and B,
that is, in state |ψN 〉, when the well-known spin-squeezing
inequalities [35,37] do not.

VI. IMPLEMENTATION WITH MASSIVE PARTICLES

Finally, we discuss how to test this Bell inequality under
realistic conditions. For massive particles one can create
the mode-entangled state, |ψN 〉, by cooling N bosons into
the ground state of a double-well potential [44,45]. We require
an identical pair of such systems for our Bell test. The
double wells would be positioned so that together they form a
squarelike shape (see Fig. 1 for a rough indication of the setup).
The potential barriers between each of the wells would initially
be high while maintaining the coherence of the particles.

To implement the beam-splitting operation, each party
lowers the potential barrier between their wells for a desired
time depending on the beam-splitter coefficients, α and β,
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generating an exchange of particles between modes a and
A [46]. Similar beam-splitter networks were used in [47] to
detect multipartite entanglement between bosonic particles
(as opposed to between bosonic modes, as in this article),
and subsequent work [48] showed that high-precision beam
splitters for ultracold bosonic atoms can be realized based
on current experimental technology. In our test, the different
measurement settings are controlled by changing the relative
phase between the two modes â and Â for Alice and b̂ and
B̂ for Bob by each party locally changing the bias of one
mode (potential well) relative to the other by applying, for
instance, a dispersive laser pulse for a desired time [46]. The
number of particles in each of the wells is then counted. While
it is at the moment difficult to resolve different numbers of
massive particles, steps in this direction have been made [49].
Each party would randomly choose a different measurement
setting on each run of the test and the resulting value of the
corresponding Bell term would be generated statistically over
many runs. Note that for massive particles it is unlikely that
the measurements here would be performed at a speed faster
than any communication between the modes, so locality would
not be assured, as is actually the case for all recent Bell tests
with massive particles (note that a proposal was recently put
forward for a loophole-free Bell test using massive particles
via entanglement swapping [43]).

We note that one could also test this Bell inequality with
mode-entangled states of photons, which would allow the
locality loophole to be closed. To generate the entangled state,
|ψN 〉, one would send two lots of N photons through two 50:50
beam splitters, one output of each would be sent to Alice and
the other output of each to Bob’s side of the experiment. These
outputs would in turn then be passed through another beam
splitter, one for Alice and one for Bob, each with the desired
reflectivity. To switch between the measurement settings each
party would pass one of their modes through a different phase

plate prior to the final beam splitter. Photon number would then
be measured by each party in the output ports of the second set
of beam splitters and the magnitude of the Bell term generated
over many runs of the test.

VII. CONCLUSIONS

In this article, we have addressed the problem of testing
a Bell inequality on quantum states that are restricted by
the particle-number-superselection rule. In particular, we have
focused on states with a fixed number of massive particles so
that the particle-number-superselection rule is in effect. We
derived a Bell inequality that makes it possible to bypass the
superseletion rule—in order to perform measurements other
than local particle-number measurements, two copies of the
states are used. We test the Bell inequality with different
mode-entangled states and find that for a nonintereacting Bose-
Einstein condensate, while the violation is not maximal, we
detect some entangled states that the CGLMP Bell inequality
cannot. Moreover, the Bell inequality presented here can
detect not only spin-squeezed mode entanglement, but also
relatively weak mode entanglement. Our Bell inequality can
be implemented with current technology.
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(1997).
[41] C. N. Yang, Rev. Mod. Phys. 34, 694 (1962).
[42] D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu,

Phys. Rev. Lett. 88, 040404 (2002).
[43] W. Rosenfeld, M. Weber, J. Volz, F. Henkel, M. Krug,
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