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Kraus representation of quantum evolution and fidelity as manifestations of Markovian
and non-Markovian forms
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It is shown that the fidelity of the dynamically evolved system with its earlier time-density matrix provides
a signature of non-Markovian dynamics. Also, the fidelity associated with the initial state and the dynamically
evolved state is shown to be larger in the non-Markovian evolution compared to that in the corresponding
Markovian case. Starting from the Kraus representation of quantum evolution, the Markovian and non-Markovian
features are discerned in its short-time structure. These two features are in concordance with each other and they
are illustrated with the help of four models of interaction of the system with its environment.
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I. INTRODUCTION

The central themeof open quantum systems and their dy-
namical properties is to develop a description of the interaction
of a quantum system with its environment [1]. The significance
of this area of research has been known for a long time and need
not be emphasized, as indicated by a large body of literature
on the subject. Most recently this has been a subject of intense
study. A general form of the local time master equation describ-
ing this is given by Chruscinski and Kossakowski [2], which
also gives references to the literature. They define clearly
the meaning of the terms “Markovian” and “non-Markovian”
incarnations of evolution as the absence and presence, re-
spectively, of the initial time in the local generator of the
master equation. Several manifestations of non-Markovianity
have been proposed recently [3–5], where non-Markovian
reflections are recognized based on the departure of the evo-
lution from strict Markovianity. While an abstract framework
to identify whether a given quantum dynamical channel is
Markovian or not has been put forth in Ref. [3], recently Breuer
et al. [4] proposed a quantification based on the maximum in-
crease of the distinguishability of two different initial quantum
states over the entire dynamical evolution. Evaluation of this
measure, however, requires optimization of the total increase of
the trace distance over all pairs of initial states. More recently
[5], deviations from Markovianity, in terms of the specific
dynamical behavior of quantum correlation—when part of an
entangled system evolves under a trace-preserving completely
positive quantum channel—as been explored. When complete
tomographic information about the dynamical map is available
a necessary and sufficient condition of non-Markovianity is
also formulated [5]. All the above manifestations of non-
Markovianity are built mainly by identifying deviations from
the characteristic property of a Markovian channel, being an el-
ement of one-parameter continuous, memoryless, completely
positive semigroup. In this paper, we propose fidelity difference
as a non-Markovian incarnation (avatar)—which is yet another
significant feature capturing the departure from the Markovian
semigroup property of evolution.
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We begin with the well-known Kraus representation [6]
of the reduced density matrix of the system interacting with
an environment. In Sec. II we begin by recalling the known
result [7,8] that if the Kraus operators exhibit a small-time
dependence of a particular form, the Markovian master equa-
tion, known as the Lindblad-Gorini-Kossakowski-Sudarshan
(LGKS) [9,10] master equation, is recovered. This observation
points toward the generality of the Kraus representation of
the quantum evolution in subsuming both the Markov and
non-Markov versions, depending on the structure of interaction
between the system and its environment.

In Sec. III we propose to use fidelity [11] F [ρ(t),ρ(t + τ )]
as a measure to examine the nature of propensity of the evolved
density matrix ρ(t + τ ) with the earlier time-density matrix
ρ(t). This offers a direct approach to the conventional view of
Markovianity, namely that the fidelity F [ρ(t),ρ(t + τ )] would
increase from its initial value F [ρ(0),ρ(τ )] and approach unity
asymptotically. This is thus a test, for any deviation from this
behavior would reflect non-Markovian incarnation. We also
bring out the significance of our fidelity test in comparison
with the recently proposed trace distance based quantification
of non-Markovianity [4].

In Sec. IV, we illustrate our results through some examples.
Here, we have considered the exactly known models of Kraus
representation given by Yu and Eberly, who investigated
the issue of sudden death of entanglement in the two-qubit
system, evolving under Markovian [12] and non-Markovian
[13] environments. The small time nature of these model Kraus
representations illustrate the Markovian and non-Markovian
natures in these examples. The fidelity F [ρ(t),ρ(t + τ )] in the
Markovian case is shown to increase with time t , as expected.
On the other hand, in the non-Markovian limit, we show
that the fidelity difference F [ρ(t),ρ(t + τ )] − F [ρ(0),ρ(τ )]
fluctuates between positive and negative values, bringing out
the essence of non-Markovianity. Further, we observe that the
fidelity F [ρ(0),ρ(t)], which corresponds to the memory of the
initial state carried by the dynamically evolving state - is larger
in the non-Markovian limit, when compared with that in the
Markovian case in this model.

We also investigate another exactly known Kraus represen-
tation [14,15] of the Jaynes-Cummings model of interaction
of a qubit with the radiation field. Unlike the other dynamical
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models discussed here, this example is exactly solvable and
starts with the full Hamiltonian for which the unitary evolution
operator can be constructed and as such, we examine here
the corresponding dynamical equations associated with both
the atom and photon systems. We explore the small time
behavior of the Kraus operators in this model to recognize
the Markovianity and secondly, we identify that the fidelity
difference F [ρ(t),ρ(t + τ )] − F [ρ(0),ρ(τ )] of the atom, ini-
tially in an excited state, fluctuates between positive and
negative values during evolution, which is a clear signature
of non-Markovianity.

Recently, Chruscinski and Kossakowski (CK) [16] consid-
ered an interesting illustration of non-Markovian dynamics of
a single qubit, either through a nonlocal master equation with a
memory kernel or equivalently via a seemingly simpler local in
time equation. Both the descriptions are complimentary to each
other: while the nonlocal equation involves a time-independent
memory kernel, the corresponding local approach is governed
by a highly singular generator. In other words, it has been
illustrated that non-Markovianity manifests differently in local
and nonlocal approaches. Here we show that in this example,
too the fidelity diference function captures the essense of
non-Markovianity.

Our analysis of these examples bring out typical charac-
teristics of non-Markovian dynamics. Section V is devoted to
concluding remarks.

II. KRAUS REPRESENTATION OF QUANTUM DYNAMICS

For simplicity of presentation, we drop the system and
environment Hamiltonians and consider only their mutual in-
teraction. The dynamics of a system density matrix interacting
with an environment is given in terms of Kraus representation
as

ρ(t) =
∑

i

Ki(t)ρ(0)K†
i (t), (1)

with the unit trace condition Tr[ρ(t)] = 1 leading to∑
i

K
†
i Ki = I, (2)

I denoting the identity matrix.
We first recall [7,8], how the well-known LGKS master

equation describing Markovian dynamics is obtained from
Eq. (1). Following Preskill [7], we separate one term, say
K0(t) in the sum over i in Eq. (1), and choose the rest
of the terms Ki(t), i �= 0 to have the following forms for
small-time t :

Ki(t) ≈ √
t Li, i �= 0, (3)

when Eq. (2) reduces to

K0(t) ≈ I − t

2

∑
i �=0

L
†
i Li . (4)

Expressing the Kraus operators in the short-time limit in terms
of the new L operators, (1) takes the standard LGKS form,
termed as the Markovian master equation,

ρ(t) − ρ(0) ≈ t LM ρ(0),

i.e.,

dρ

dt
= LMρ =

∑
i �=0

(
LiρL

†
i − 1

2
(L†

i Liρ + ρ L
†
i Li)

)
. (5)

[Derivation of the master equation (5) from the Kraus
representation (1) in similar lines as above is also outlined
in Ref. [8].]

It may be pointed out that in Ref. [16] a complete
phenomenological treatment of local-time evolution of open
quantum systems, based on a generalization of the LGKS
representation of Markovian dynamics, is discussed. This
basically entails a local time-dependent prefactor in the RHS
of Eq. (5). A generalized non-Markovian master equation,
which is local in time, has also been derived in Ref. [8] and the
short-time memory effects, retained from the environment, are
shown to lead to dissipations deviating from typical Markovian
features [17]. In the subsequent discussions in Sec. IV, we
explore in four different examples whether the Kraus operators
exhibit the desired small-time behavior leading to the LGKS
master equation or not.

III. FIDELITY AND ITS IMPLICATION
FOR MARKOVIANITY

Following Jozsa [11], we define the fidelity F [ρ(t),ρ(t+τ )]
as the propensity of finding the state ρ(t) in the later time state
ρ(t + τ ), τ > 0:

F [ρ(t),ρ(t + τ )] = [Tr{
√√

ρ(t)ρ(t + τ )
√

ρ(t)}]2, (6)

which is bounded by 0 � F [ρ(t),ρ(t + τ )] � 1 and satis-
fies the symmetry property, F [ρ(t),ρ(t + τ )] = F [ρ(t + τ ),
ρ(t)].

Fidelity obeys another significant property (i.e., monotonic-
ity) [18]:

F (�ρ1,�ρ2) � F (ρ1,ρ2), (7)

where � denotes a completely positive map, which serves
as a characteristic feature of Markovian dynamics as indi-
cated in the following. Recall that the Markovian evolution
guarantees a completely positive, trace-preserving dynamical
map �(t),

ρ(0) → ρ(t) = �(t)ρ(0), (8)

which also forms a one-parameter semigroup obeying the
composition law [2–5,8,16]

�(t1)�(t2) = �(t1 + t2), t1,t2 � 0, (9)

a characteristic feature of Markovian dynamics. Therefore, it is
clear that the fidelity function F [ρ(t),ρ(t + τ )] involving the
system density matrix evolving under Markovian dynamics
satifies the inequality [19],

F [ρ(t),ρ(t + τ )] ≡ F [�(t)ρ(0),�(t)ρ(τ )]

⇒ F [ρ(t),ρ(t + τ )]

� F [ρ(0),ρ(τ )]. (10)

Any violation of this inequality is a clear signature of non-
Markovian dynamics, indicating that the associated dynamical
map does not obey the the composition law (9), and hence,

042107-2



KRAUS REPRESENTATION OF QUANTUM EVOLUTION AND . . . PHYSICAL REVIEW A 82, 042107 (2010)

the dynamics has built-in memory effects. Deviation from
the trend (10) is, however, a sufficient, though not necessary,
reflection of non-Markovianity. We propose to examine non-
Markovianity in terms of the fidelity difference function

G(t,τ ) = F [ρ(t),ρ(t + τ )] − F [ρ(0),ρ(τ )]

F [ρ(0),ρ(τ )]
, (11)

negative values of which necessarily imply non-Markovianity.
We identify the non-Markovian signature in terms of the
fidelity difference function in some dynamical models in
Sec. IV.

It is worth pointing out the distinction between the
quantification proposed by Breuer et al. [4] and our fidelity
test of non-Markovianity proposed here. It is well known
that the distinguishability of two states ρ1,ρ2, measured in
terms of the trace distance D(ρ1,ρ2) = 1

2 ||ρ1 − ρ2|| never
increases [18] under all completely positive, trace-preserving
maps, i.e., D(�ρ1,�ρ2) � D(ρ1,ρ2). If the pair of states
ρ1,2 are evolving under the influence of a dynamical Marko-
vian map, i.e., ρ1,2(t) ≡ �(t)ρ1,2(0), the semigroup compo-
sition law (9) imposes that [4,20] D[ρ1(t + τ ),ρ2(t + τ )] ≡
D[�(τ )ρ1(t),�(τ )ρ2(t)] � D[ρ1(t),ρ2(t)], for all t,τ � 0.
This decisive property of Markovian processes, viz., the trace
distance of any fixed pair of quantum states never increases,
has been employed in Ref. [4] to uncover the non-Markovian
feature in open system dynamics, in terms the following
quantity:

N = max
ρ1,2(0)

∫
σ>0

dt σ [t,ρ1,2(0)],

σ [t,ρ1,2(0)] = d

dt
D[ρ1(t),ρ2(t)],

which measures the total increase of the trace distance between
any optimal pair of states ρ1,2 during the entire time evolution.
Evidently, this quantification requires optimization over the
set of all initial pairs of states ρ(1,2)(0). Here, we have
exploited the divisibility property (9) of the Markovian map
differently [as illustrated in (10)] to obtain an inequality for
the overlap F [ρ(t),ρ(t + τ )], which involves a dynamically
evolving quantum state ρ(t + τ ) and its earlier time version
ρ(t), in contrast to that for the trace distance of pairs of states
ρ1,ρ2 under time evolution as in Ref. [4].

IV. DYNAMICAL MODELS

We now proceed to explicitly investigate the small-time
behavior of Kraus representations and the nature of the fidelity
functions in some simple models of open-system dynamics.

(a) Yu and Eberly [12] considered the following model
Kraus operators for a simplified dynamical system of two
qubits interacting with environment along with its initial
density matrix, for which we can verify both the small-time
limit to see if we can get the LGKS master equation and
also fidelity to assure us of the interpretation of Markovian

evolution or otherwise in our view. The initial state of the
two-qubit system is chosen to be in the simple form

ρAB = 1

9

⎛
⎜⎜⎝

1 0 0 0
0 4 λ 0

0 λ 4 0

0 0 0 0

⎞
⎟⎟⎠ , (12)

where 0 � λ � 4. The Kraus operators corresponding to the
dynamical evolution of the qubits are given by

K0(t) =

⎛
⎜⎜⎜⎝

γ 2(t) 0 0 0

0 γ (t) 0 0

0 0 γ (t) 0

0 0 0 1

⎞
⎟⎟⎟⎠ ,

K1(t) =

⎛
⎜⎜⎜⎝

γ (t)ω(t) 0 0 0

0 0 0 0

0 0 ω(t) 0

0 0 0 0

⎞
⎟⎟⎟⎠ ,

(13)

K2(t) =

⎛
⎜⎜⎜⎝

γ (t)ω(t) 0 0 0

0 ω(t) 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ ,

K3(t) =

⎛
⎜⎜⎜⎝

ω2(t) 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ ,

where γ (t) = exp[−�t/2], ω(t) =
√

[1 − γ 2(t)]; � repre-
sents the strength of the environmental transverse noise. The
dynamically evolved two-qubit density matrix is given by

ρAB(t) =
3∑

i=0

Ki(t)ρ(0)K†
i (t)

= 1

9

⎛
⎜⎜⎜⎝

1 0 0 0

0 4 λ γ 2(t) 0

0 λ γ 2(t) 4 0

0 0 0 0

⎞
⎟⎟⎟⎠ . (14)

In the small-time limit, i.e., �t � 1, we have ω(t) ≈√
� t, γ (t) ≈ (1 − � t/2). Expressing the Kraus operators in

this limit as

K0(t) ≈ I − � t

2
L0, L0 =

⎛
⎜⎜⎜⎝

2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

⎞
⎟⎟⎟⎠ ,

K1(t) ≈
√

� t L1, L1 =

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

⎞
⎟⎟⎟⎠ ,
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K2(t) ≈
√

� t L2, L2 =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ ,

K3(t) ≈ � t L3, L3 =

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ ,

We thus obtain the LGKS master equation describing the
dynamics as in (5),

dρAB

d t
= � LM ρAB

= �(L1 ρAB L
†
1 + L2 ρAB L

†
2) − �

2
(L0 ρAB + ρAB L0),

L0 = L
†
1L1 + L

†
2 L2. (15)

The fidelity function F [ρAB(t),ρAB(t + τ )] may be readily
evaluated for the two-qubit state (14):

F [ρAB(t),ρAB(t + τ )]

= 1
81 {1 +

√
[4 + λ γ 2(t)][4 + λ γ 2(t + τ )]

+
√

[4 − λ γ 2(t)][4 − λ γ 2(t + τ )]}2. (16)

The variation of fidelity as a function of dimension-
less scaled time � t is shown in Fig. 1. It may be
seen that F [ρAB(t),ρAB(t + τ )] increases from its initial
value F [ρAB(0),ρAB(τ )] and approaches unity asymptotically,
which is a typical Markovian behavior.

(b) Recently Yu and Eberly [13] considered a slight
variation of the above model leading to non-Markovian
noise. The Kraus operators assoicated with the noisy evo-
lution of a two-qubit system are obtained by replac-
ing γ (t) → p(t) = exp[−f (t)], f (t) = �

2 [t + 1
γ

(e−γ t − 1)],

ω(t) → q(t) =
√

1 − p2(t). In this non-Markovian model, γ

denotes the environmental noise bandwidth and � is the noise

0 1 2 3 4

0.9986

0.9988

0.9990

0.9992

0.9994

0.9996

0.9998

1.0000

t

F
ρ

t
,ρ

t

FIG. 1. (Color online) Fidelity F [ρ(t),ρ(t + τ )] of the dynamical
state ρ(t + τ ) with its earlier time-density matrix ρ(t), as a function
of dimensionless scaled time �t . Here, we have chosen �τ = 1, and
λ = 0.5. The fidelity increases from its initial value F [ρ(0),ρ(τ )]
and approaches 1 in the limit �t → ∞, as anticipated in Markovian
dynamics. All quantities are dimensionless.

property assoicated with the qubit. In the limit γ → ∞, we get
f (t) → �

2 t , and hence the Markovian dynamics is recovered.
In the short-time limit, viz., γ t � 1, we have, p(t) ≈ 1 −

�γ t2

4 and q(t) ≈ t

√
�γ

2 and clearly, this structure does not lead
to the standard LGKS master equation and hence brings out
the non-Markovian nature of the model. In the short-time limit,
the same operators as in (15) appear, but in the following form:

ρAB(t) − ρAB(0) ≈ �γ t2

2
(L1 ρAB L

†
1 + L2 ρAB L

†
2)

−�γ t2

4
(L0 ρAB + ρAB L0), (17)

or
dρAB

dt
= γ � t

2
LM ρ(0).

[Here, LM is the same as in (15).] In other words, one
may recast the dynamical equation in this model as a non-
Markovian master equation, with a linear time prefactor in the
LGKS master equation (5).

Choosing a simple initial two-qubit state in the X form [13]

ρAB(0) = 1

3

⎛
⎜⎜⎜⎝

α 0 0 0

0 1 1 0

0 1 1 0

0 0 0 1 − α

⎞
⎟⎟⎟⎠ (18)

(where α denotes a real, positive parameter) the dynamics does
preserve the X structure, with the diagonal elements of the den-
sity matrix remaining unaltered and the off-diagonal elements
acquiring a time dependence [ρAB(t)]kl = [ρAB(0)]kl p

2(t).
The fidelity associated with ρAB(t) may be readily evaluated
to be

F [ρAB(t),ρAB(t + τ )] = 1
9 {1 +

√
[1 + p2(t)][1 + p2(t + τ )]

+ q(t)q(t + τ )}2. (19)

In Fig. 2 we have plotted the fidelity difference G(t,τ ) [see
Eq. (11)] as a function of dimensionless scaled time �t , in
the non-Markovian limit γ � 1. A negative fidelity difference
reveal the non-Markovian feature.

0.000 0.002 0.004 0.006 0.008 0.010

5 10 11

0

5 10 11

1 10 10

t

G
t,τ

FIG. 2. (Color online) Fidelity difference G(t,τ ) as a function
of the dimensionless scaled time �t , in the non-Markovian limit
γ = 10−4. (Here, we have chosen the parameters � = 1 and τ = 1.)
Negative values of this function imply violation of the inequal-
ity (10) and hence indicate non-Markovianity. All quantities are
dimensionless.
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FIG. 3. (Color online) Fidelity F [ρ(0),ρ(t)] of the initial state
ρ(0) with dynamically density matrix ρ(t), as a function of dimension-
less scaled time �t , in both Markovian (dashed curve; γ = 10) and
non-Markovian (solid curve; γ = 0.01) limits; we have also chosen
the parameter � = 1. It may be seen that the fidelity larger in the
non-Markovian case, when compared to that in the corresponding
Markovian case. All quantities are dimensionless.

We also find that the fidelity of the initial state with the
dynamically evolved density matrix, viz., F [ρ(0),ρ(t)], has
larger value when γ � 1 (non-Markovian limit) compared to
that in the limit γ 	 1 (Markovian case) highlighting that the
memory of the initial state is larger during non-Markovian
dynamics. This is depicted in Fig. 3, where we have plotted
F [ρAB(0),ρAB(t)] as a function of � t both in the Markovian
and non-Markovian limits.

(c) The Jaynes-Cummings model (JCM) [14,15] is a model
of a two-level atom (qubit) interacting with a radiation field.
This example, unlike the three models discussed above,
starts with the Hamiltonian for the system for which the
evolution operator can be constructed and we will examine
here the master equations for both the atom and photon
subsystems. Incidentally, in this model, there is sudden death
of entanglement of the qubit with the radiation field [14]—a
characteristic of non-Markovian evolution.

For simplicity of presentation, we consider here the res-
onant case where the qubit energy is equal to that of the
radiation and the initial state of the atom is taken to be its
excited state, ρA(t = 0) = |↑〉〈↑|. The initial state of the
radiation is taken to be in a coherent state ρR(t) = |α〉〈α|,
|α〉 = e− |α|2

2
∑∞

n=0
αn√
n!

|n〉; |α| denoting the intensity of the
radiation. The Kraus representation for both the qubit and the
radiation subsystems are explored in Ref. [15].

The dynamically evolved qubit density matrix is given by
the mixed state [14,15]

ρA(t) =
∞∑

N=0

KN (t)ρA(0) K
†
N (t),

(20)
KN (t) = WN↑(t) |↑〉〈↑| + WN↓(t) |↓〉〈↑|,

WN↑(t) = cos(gt
√

N + 1) 〈N |α〉,
(21)

WN↓(t) = −i sin(gt
√

N ) 〈N − 1|α〉,
or ρA(t) = |a|2 ρ(0) + |b|2 σ−ρ(0) σ+

+i ab∗ ρ(0) σ+ − ia∗b σ−ρ(0). (22)

Here, g denotes the interaction strength of the radiation with
the qubit and

|a|2 =
∞∑

N=0

|〈N |α〉|2 cos2(gt
√

N + 1),

|b|2 =
∞∑

N=0

|〈N − 1|α〉|2 sin2(gt
√

N ), (23)

ab∗ =
∞∑

N=0

cos(gt
√

N + 1) sin(gt
√

N ).

In the small-time limit, the associated Kraus operators KN (t)
of (20) go as the square of time and as such, we do obtain a
LGKS-type master equation with a linear time prefactor, as
above in model (b), indicating a non-Markov feature.

We now focus on a much simpler situation, where the initial
radiation state is chosen to be the vacuum state ρR(0) = |0〉〈0|,
to illustrate the non-Markovian behavior from the fidelity
consideration. The dynamically evolved qubit state then
assumes the following simple form [obtained by substituting
α = 0 in (22) and (23)]:

ρ
↑
A(t) = cos2(gt) |↑〉〈↑| + sin2(gt) |↓〉〈↓| (24)

in which situation the fidelity F [ρ↑
A(t),ρ↑

A(t + τ )] is readily
found to be

F [ρ↑
A(t),ρ↑

A(t + τ )] = {| cos(gt) cos[g(t + τ )]|
+| sin(gt) sin[g(t + τ )]|}2 . (25)

The fidelity difference G(t,τ ) [see Eq. (11)] plotted in Fig. 4,
reveals negative fluctuations and hence is a clear manifestation
of non-Markovian evolution.

It would be interesting to explore the evolution of a radiation
subsystem as well in this model. For simplicity we choose the
same initial states of the atom (excited state) and the radiation
field (coherent state) to obtain the dynamical state of the photon
as

ρR(t) = V↑↑(t)ρR(0)V †
↑↑(t) + V↓↑(t)ρR(0)V †

↓↑(t), (26)

0.00 0.02 0.04 0.06 0.08 0.10

1 10 15

5 10 16

0

5 10 16

1 10 15

gt

G
t,τ

FIG. 4. (Color online) Fidelity difference G(t,τ ) in JCM with
an initially excited atomic system, as a function of dimensionless
scaled time gt . We have chosen the parameter gτ = 10. Negative
fluctuations of the function G(t,τ ) reveal non-Markovian behavior.
All quantities are dimensionless.
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where the corresponding Kraus operators are given by

V↑↑(t) =
∞∑

n=0

cos(gt
√

n + 1) |n〉〈n|,
(27)

V↓↑(t) = −i

∞∑
n=0

sin(gt
√

n + 1) |n + 1〉〈n|.

The small-time behavior of the photon Kraus operators could
be readily recognized as

V↑↑(t) ≈ IR − 1
2 (gt)2 L0,

(28)
V↓↑(t) ≈ −igtL1,

where the Lindblad operators L0,L1 are related to the photon
creation and annihilation operators a†, a as follows:

L0 = a a† =
∞∑

n=0

(n + 1)|n〉〈n|

L1 = a† =
∞∑

n=0

√
n + 1 |n + 1〉〈n|.

Just as in the case of qubits, we get the LGKS type master
equation with a linear time prefactor, indicating a non-
Markovian behavior.

(d) Chruscinski and Kossakowski [16] presented an inter-
esting model to elucidate non-Markovian quantum dynamics
described either by a nonlocal master equation or by a
local-time formulation. Here, the master equation governing
the dynamics of a single qubit system given by

dρ

dt
=

∫ t

t0

K(t − u)ρ(u) du (29)

consists of a time-independent memory kernel K(t) = 1
2L0,

where L0 is a pure dephasing generator,

L0ρ = σzρσz − ρ. (30)

(Here σz denotes the z component of Pauli spin operator of the
qubit.)

In an equivalent approach, the completely positive, trace-
preserving map �(t,t0) characterizing the dynamics ρ(t) =
�(t,t0)ρ(t0) satisfies a local in-time equation,

d�(t,t0)

dt
= L(t − t0)�(t,t0) (31)

in terms of a highly singular generator

L(t − t0) = tanh(t − t0)L0. (32)

Despite the fact that the local-in-time dynamics involves a
singular generator, the dynamical map has a regular solution
given by [16]

�(t,t0) = 1
2 [1 + cos(t − t0)] I + 1

2 [1 − cos(t − t0)] (L0 + I )

(33)

and the evolved qubit density matrix is therefore obtained as

ρ(t) = �(t,0)ρ(0) =
(

ρ11(0) ρ12(0) cos t

ρ∗
12(0) cos t ρ22(0)

)
, (34)

exhibiting oscillations in qubit coherence.

0.0 0.5 1.0 1.5

6 10 17

2 10 17

2 10 17

6 10 17

t

G
t,τ

FIG. 5. (Color online) Fidelity difference G(t,τ ) corresponding
to the dynamical state (36), as a function of (dimensionless) time
t ; here, τ = π/6. Negative values of G(t,τ ) point toward non-
Markovian behavior. All quantities are dimensionless.

The above dynamics may also be characterized in terms of
a two element Kraus operator set

K0(t) = cos(t/2) I =
(

cos(t/2) 0

0 cos(t/2)

)
,

(35)

K1(t) = sin(t/2) σz =
(

sin(t/2) 0

0 − sin(t/2)

)
,

leading to the dynamical evolution ρ(t) = ∑
i=0,1

Ki(t)ρ(0)K†
i (0). Evidently the small-time form of the

Kraus operators [K0(t) ≈ I (1 − t2/2) and K1(t) ≈ t
2 σz] lead

to a master equation of the LGKS form—with a linear-time
prefactor.

Further, considering the initial qubit state to be a pure state
with ρ11(0) = ρ22(0) = ρ12(0) = 1

2 , we obtain the evolved
system as

ρ(t) = 1

2

(
1 cos(t)

cos(t) 1

)
. (36)

We obtain the fidelity F [ρ(t),ρ(t + τ )] as

F [ρ(t),ρ(t + τ )] = 1
2 [1 + cos t cos(t + τ )

+| sin t sin(t + τ )| ] . (37)

We have plotted the fidelity difference G(t,τ ) in Fig. 5. The
negative values assumed by the fidelity difference G(t,τ ) (see
Fig. 5) point toward the violation of the inequality (10)—
which highlights the non-Markovian incarnation in this
model.

V. CONCLUSIONS

From the Kraus representation of the dynamical evolution
and fidelity as a measure of determining the propensity of the
initial state in the time evolved state, we have elucidated the
manifestation of Markovian or non-Makovian incarnations.
We have also proposed fidelity difference to capture the
essence of non-Markovianity. With the help of some examples,
we have explored the nature of small-time behavior of the dy-
namical Kraus form of quantum dynamics, which covers both
Markovian and non-Markovian processes (in the conventional
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sense), depending on the form of interaction of the system with
its environment as well as its initial state. We have shown that
in the density-matrix evolution governed by non-Markovian
dynamics, the fidelity difference fluctuates between positive
and negative values—a clear signature of non-Markovianity.
Moreover, the memory of the initial state carried by the

dynamically evolving state, characterized in terms of the
fidelity, is shown to be larger in the non-Markovian limit
compared to that in the Markovian case. These two features,
viz., the small-time behavior of Kraus operators and the
fidelity, together confirm the Markov or non-Markov behavior
in a consistent way.
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