
PHYSICAL REVIEW A 82, 042106 (2010)

High-energy electron-positron photoproduction cross section close to the end of the spectrum
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We consider the cross section of electron-positron pair production by a high-energy photon in a strong Coulomb
field close to the end of the electron or positron spectrum. We show that the cross section essentially differs
from the result obtained in the Born approximation as well as from the result which takes into account the
Coulomb corrections under the assumption that both electron and positron are ultrarelativistic. The cross section
of bremsstrahlung in a strong Coulomb field by a high-energy electron is also obtained in the region where the
final electron is not ultrarelativistic.
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I. INTRODUCTION

The production of an electron-positron (e+e−) pair by a
photon in a strong atomic field has been investigated already
for many years both theoretically and experimentally because
of the importance of this process for various applications;
see Refs. [1,2]. The cross section of this process in the Born
approximation is known for arbitrary energy ω of the incoming
photon (Refs. [3,4]) (we set h̄ = c = 1 throughout the paper).
The effect of screening in this approximation can be easily
taken into account using the atomic form factor [5]. For
heavy atoms, it is however necessary to take into account
the Coulomb corrections. These corrections are higher-order
terms of the perturbation theory with respect to the parameter
Zα, where Z is the atomic charge number and α = e2 ≈ 1/137
is the fine-structure constant, with e being the absolute value
of the electron charge. The formal expression of the Coulomb
corrections, exact in Zα and ω, was derived in Ref. [6]. This
expression has a very complicated form and it is expressed
essentially as an infinite sum over the angular momenta of
the created particles. This leads to difficulties in numerical
computations which grow as ω increases because higher and
higher values of the angular momenta of the created particles
have to be taken into account in the expression of the cross
section in order to reach convergence. Therefore, numerical
results have been so far obtained only for ω < 12.5 MeV
(Ref. [7]).

In the high-energy region ω � m (m is the electron mass),
considerations become greatly simplified. As a result, a simple
form of the Coulomb corrections was obtained in Refs. [8,9] in
the leading approximation with respect to m/ω. However, this
result has good accuracy only at energies ω � 100 MeV. The
theoretical description of the Coulomb corrections for the total
cross section at intermediate photon energies (5 ÷ 100 MeV)
was based for a long time on the “bridging” expression derived
in [10]. This expression is actually an extrapolation of the
results obtained at ω < 5 MeV. Results for the spectrum of
one of the created particles at intermediate ω were practically
absent. Recently, an important step was made in Ref. [11]
where the first corrections of the order of m/ω to the spectrum
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as well as to the total cross section of e+e− photoproduction in
a strong atomic field were derived. The correction to spectrum
was obtained in the region where both produced particles are
relativistic. It turns out that this correction is antisymmetric
with respect to replacement ε+ ↔ ε−, where ε+ and ε− are
the energy of the positron and the electron, respectively. Since
the correction to the total cross section resulted in being very
large, it is not related to the central region, where the created
electron and positron are ultrarelativistic, and it comes from
the region close to the end of the spectrum where ε+ ∼ m

or ε− ∼ m. In Ref. [11], the correction to the total cross
section was obtained with the use of the dispersion relation
for the forward Delbrück scattering amplitude but not by the
direct integration of the spectrum. Note that the account for the
correction to the total cross section leads to good description
of available experimental data at intermediate photon energies
(Ref. [12]).

In the present paper, we calculate the electron (positron)
spectrum in the process of e+e− photoproduction in a strong
Coulomb field in the case ε− ∼ m (ε+ ∼ m) and ω � m. We
show that the Coulomb corrections drastically differ from
that obtained in the region where ε+ � m and ε− � m. In
an analogous way, we have also derived the spectrum of
bremsstrahlung in a strong Coulomb field in the region where
the radiated photon’s energy is close to that of the initial
electron. In [6] the exact cross section of bremsstrahlung
in a strong Coulomb field is also discussed and in [13] a
different expression is found to be valid for initial electron
energies between a few and 50 MeV. A simpler form of the
bremsstrahlung cross section has been obtained in [8,9,14]
for an ultrarelativistic incoming electron with energy εi , in
the leading order in the parameter m/εi � 1 (in [14] also the
next-to-leading order correction has been calculated). Finally,
screening effects at high initial electron energies have been
calculated in [14,15].

II. GENERAL DISCUSSION

Following the usual Feynman rules (see, e.g., Ref. [16]),
the e+e− photoproduction cross section, at leading order in the
interaction between the photon field and the electron-positron
field, averaged over the polarization of the incoming photon
and summed up over polarizations of electron and positron has
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the form,

dσ = 4πα

2ω

(
−1

2

)
2πδ(ω − ε+ − ε−)

d p+
(2π )3

d p−
(2π )3

×
∑
λ−,λ+

MµM∗
µ,

Mµ =
∫

dx Ūp−,λ− (x)γ µVp+,λ+(x) eik·x, (1)

where (ω,k) is the four-momentum of the photon, (ε−, p−) and
(ε+, p+) are the four-momenta of the electron and the positron,
respectively, and λ− and λ+ are their polarization indexes.
Also, Up−,λ− and Vp+,λ+ are the corresponding positive-energy
and negative-energy wave functions in a strong Coulomb
field and γ µ are the Dirac matrices. In the following, we
will calculate the spectrum (i.e., the cross section integrated
over the angles of the vectors p+ and p−). Due to rotational
symmetry, this quantity is independent of the direction of the
photon momentum k. Therefore, we can average it over this
direction [i.e., integrate both sides of Eq. (1) over d	k/(4π )].
This results in the replacement,

eik·(x−y) −→ sin(ωR)

ωR
, (2)

where R = | y − x|. We can also use the known relations [17],∑
λ

∫
d	p

(2π )3
Up,λ(x)Ūp,λ( y) = i

2πpε
δG(x, y|ε),

(3)∑
λ

∫
d	p

(2π )3
Vp,λ(x)V̄p,λ( y) = −i

2πpε
δG(x, y| − ε),

where ε > 0 and δG(x, y| ± ε) is the discontinuity on the cut
of the electron Green’s function in the Coulomb field, to obtain

dσ

dε−
= − α

2ω

∫∫
dx d y Sp[γ ρδG(x, y|ε− − ω)

× γρδG( y,x|ε−)]
sin(ωR)

ωR
. (4)

Since the representation (3) of the quantity δG( y,x|ε−)
is independent of the basis employed, we can also write
δG( y,x|ε−) in the form,

δG( y,x|ε−) = − i

β−

∑
j,σ,µ

Uj,σ,µ(p−, y)Ūj,σ,µ(p−,x), (5)

and represent the spectrum as follows,

dσ

dε−
= iα

2ωβ−

∑
j,σ,µ

∫∫
dx d y Ūj,σ,µ(p−,x)γ ρ

× δG(x, y|ε− − ω)γρUj,σ,µ(p−, y)
sin(ωR)

ωR
, (6)

where β− = p−/ε−, σ = ±1. Here, Uj,σ,µ(p,x) is the
positive-energy wave function with total angular momentum
j , parity (−1)j+σ/2, and projection µ of the total angular
momentum along some quantization axis. The explicit form
of this function is presented in Appendix.

Below, we assume that ω � m. If the momentum of the
electron is p− ∼ m, then the formation length of the process
is of the order of the Compton wavelength 1/m and the
positron is ultrarelativistic with a typical angular momentum

l+ ∼ ω/m � 1. This circumstance allows us to use the
quasiclassical Green’s function obtained in Refs. [17,18]
starting from a convenient integral representation derived in
Ref. [19] of the exact Green’s function of the Dirac equation
in a Coulomb field. For the reader’s convenience, we present
the formula for the discontinuity of this Green’s function in
Appendix Eqs. (A8). Moreover, it can be seen that if p− � p+,
then the main contribution to the integral in Eq. (6) is given
by the region where the angles between vectors x and y are
not small (or close to π ). This is the region which also gives
the main contribution to the bound-free photoproduction cross
section at ω � m; see Ref. [20]. In this region the expression
in Eq. (A8) becomes essentially simpler; see Eq. (A9). By
substituting Eq. (A9) in Eq. (6) and by keeping the terms
which do not contain highly oscillating functions, we arrive at

dσ

dε−
= α

4πωβ−

∑
j,σ,µ

∫∫
dx d y

R2
Ūj,σ,µ(p−,x)

× (γ 0 cos φ − iγ · n sin φ)Uj,σ,µ(p−, y), (7)

where φ = ε−R + 2Zαs [the notation is explained in
Eq. (A9)]. By employing the explicit form (A1) of the electron
wave function, we finally arrive at the following expression
of the cross section of pair production in the case of the slow
electron,

dσ

dε−
= α

4π2ωβ−

∑
j,σ

(
j + 1

2

) ∫∫
dx d y
xyR2

(F cos φ − T sin φ),

F = f (x)f (y)Pl(t) + g(x)g(y)Pl′ (t),

T = 1

R
{f (x)g(y)[xPl′ (t) − yPl(t)] + g(x)f (y)

× [yPl′ (t) − xPl(t)]}, (8)

where t = x · y/(xy), l = j + σ/2, l′ = j − σ/2, and Pl(t)
are the Legendre polynomials. The cross section on the other
end of the spectrum (i.e., in the case of slow positron with
momentum p+ ∼ m) is given by Eq. (8) with the replacement
ε− → ε+, β− → β+ = p+/ε+, and Z → −Z. With the same
procedure, one can also derive the spectrum of bremsstrahlung
by a high-energy electron for the case where the final electron
with momentum p1 and energy ε1 is slow (p1 ∼ m). It turns
out that this spectrum is given by the same formula (8) with
the obvious substitutions p− → p1 and ε− → ε1. Note that the
correction to the bremsstrahlung spectrum of the order of m/ε1

in the case of initial and final electrons both ultrarelativistic
was obtained recently in Ref. [11] from the corresponding
results for pair production, and in Ref. [14] directly from the
matrix element of bremsstrahlung.

It can be shown that three integrations in Eq. (8) can be
performed analytically and the spectrum dσ/dε− becomes

dσ

dε−
= 2α

ωβ−

∑
j,σ

(
j + 1

2

) ∫ ∞

0

∫ ∞

0
dx dy

×
∫ 1

−1
dt

xy

R2
(F cos φ − T sin φ). (9)
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It is convenient to multiply the integrand in this formula by
unity written in the form,

1 ≡
∫ 1

0
du 2uδ

(
u2 − R2

(x + y)2

)
, (10)

to change the order of integration over the variables t and u,
and to take the integral over t (by exploiting the δ function).
After that, we pass from the variables x and y to the variables
ρ and v such that x = ρ(1 + v)/2 and y = ρ(1 − v)/2. As a
result we obtain

dσ

dε−
= α

ωβ−

∑
j,σ

(
j + 1

2

) ∫ ∞

0
ρdρ

∫ 1

−1
dv

×
∫ 1

|v|

du

u
(F cos  − T sin ),

F = f (x)f (y)Pl(t0) + g(x)g(y)Pl′ (t0),

T = 1

2u
{f (x)g(y)[(1 + v)Pl′(t0) − (1 − v)Pl(t0)]

+ g(x)f (y)[(1 − v)Pl′(t0) − (1 + v)Pl(t0)]},

x = ρ
1 + v

2
, y = ρ

1 − v

2
, t0 = 2

1 − u2

1 − v2
− 1,

 = ε−uρ + Zα ln

(
1 + u

1 − u

)
. (11)

This formula is still not convenient for numerical calculations
because of the strong oscillations of the integrand in the
vicinity of the point u = 0. In order to overcome this difficulty,
we write

F cos  − T sin  = Re M(u,v,ρ),
(12)

M(u,v,ρ) = (F + iT )ei.

Then, by using the properties of the integrand M(u,v,ρ), we
make the following transformation,

∫ 1

−1
dv

∫ 1

|v|

du

u

∫ ∞

0
ρ dρM(u,v,ρ)

= 1

2

∫ 1

−1
du

∫ 1

−1
dv

∫ ∞

0
ρ dρM(u,vu,ρ)

= i

2

∫ ∞

0
dr

∫ 1

−1
dv

∫ ∞

0
ρ dρ[M(−1 + ir,v(−1 + ir),ρ)

−M(1 + ir,v(1 + ir),ρ)]. (13)

In the first step we changed the integration order of the
variables u and v and then we performed the change of
variable v → vu. In the second step, we changed the contour
of integration, by exploiting the fact that the contribution
along the straight path from the point u1 = 1 + i∞ to the
point u2 = −1 + i∞ vanishes due to the exponential function
exp(i) [see Eq. (11) and also Fig. 1]. This form of integral is
appropriate for numerical calculations. Note that the integral
(13) has zero imaginary part, so that it is not necessary to take
the real part of it afterward.

FIG. 1. Contour of integration in the complex plane of the variable
u used to perform the integral in Eq. (13).

III. ASYMPTOTICS β− → 0

Let us consider the spectrum Eq. (11) in the limit
β− = p−/ε− → 0. Substituting the asymptotics (A5) of the
functions f (r) and g(r) in Eq. (11), we obtain

dσ

dε−
= απ

ωm2(Zα)

∑
j

(
j + 1

2

) ∫ ∞

0
ρ dρ

×
∫ 1

−1
dv

∫ 1

|v|

du

u
(F0 cos 0 − T0 sin 0),

F0 =
{
[κ2 + (Zα)2]J2γ (η1)J2γ (η2) + η1η2

4
J ′

2γ (η1)J ′
2γ (η2)

}

× [Pj+1/2(t0) + Pj−1/2(t0)] − 1

2

(
j + 1

2

)
× [J2γ (η1)η2J

′
2γ (η2) + J2γ (η2)η1J

′
2γ (η1)]

× [Pj+1/2(t0) − Pj−1/2(t0)],

T0 = Zα

2u

{
v[J2γ (η1)η2J

′
2γ (η2) − J2γ (η2)η1J

′
2γ (η1)]

× [Pj+1/2(t0) + Pj−1/2(t0)] − 4

(
j + 1

2

)
J2γ (η1)

× J2γ (η2)[Pj+1/2(t0) − Pj−1/2(t0)]

}
,

η1 = 2
√

Zαρ(1 + v), η2 = 2
√

Zαρ(1 − v),

0 = uρ + Zα ln

(
1 + u

1 − u

)
, t0 = 2

1 − u2

1 − v2
− 1. (14)

The integration over the variable ρ can be taken by using the
relation [21],∫ ∞

0
dxeicxJµ(a

√
x)Jµ(b

√
x)

= i

c
Jµ

(
ab

2c

)
exp

(
i
πµ

2
− i

a2 + b2

4c

)
. (15)

The remaining integrations over the variables v and u can
be performed numerically by employing the transformation
(13). The largest contribution to the sum over j is given by
the term with j = 1/2. The contribution of the term with
j = 3/2 is essentially smaller, whereas that with j = 5/2 is
less than 1% even for large Z. In our numerical calculations
here we have included terms with j = 1/2, j = 3/2, and
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FIG. 2. The cross section ωσ̃−1dσ/dε− of e+e− pair production
at zero electron velocity in units σ̃ = α(Zα)3/m2. Solid curve, our
results via Eq. (14); dashed curve, the results of Ref. [22] [see also
Eq. (16)]; dotted curve, the results of Ref. [7] obtained at ω = 40 MeV
and β− = 0.1265.

j = 5/2. The results for ωdσ/dε− in units of σ̃ = α(Zα)3/m2

at zero electron velocity are shown in Fig. 2 as a solid curve.
At Zα → 0 we obtain ωdσ/dε− = 4πσ̃ in agreement with
previous results. In Ref. [22] by Deck et al., the following
formula for ωdσ/dε− at zero electron velocity was suggested:

ω
dσ (D)

dε−
= 4π

α(Zα)3

m2

2πZα

exp(2πZα) − 1

(
1 − 4π

15
Zα

)
.

(16)

This formula is shown in Fig. 2 as a dashed curve and it is clear
from the figure that Eq. (16) is applicable only at small values
of Zα. Also, note that the cross section ωdσB/dε− in the Born
approximation vanishes in the limit β− → 0, since at β− � 1 it
scales as ωdσB/dε− ≈ 2α(Zα)2β−/m2. In Ref. [7] the results
for ωdσ/dε− were obtained at ω = 40 MeV and ε− = 1.008 m

(which corresponds to β− = 0.1265). These results are shown
in Fig. 2 as a dotted curve starting from Z = 11. One sees
an excellent agreement of our results with those of Ref. [7].
At Z = 1 there is disagreement because at small Z and β− =
0.1265 the contribution of the Born term is also important.
Finally, we observe that, as expected, the spectrum of positron
at small positron velocity tends to zero because in this case the
wave functions are exponentially small (see Appendix).

IV. CROSS SECTION AT NONZERO
ELECTRON VELOCITY

In order to obtain the spectrum for nonzero electron
velocity, we substitute the explicit form of wave function
(A1) in Eq. (11) and use the relation F (α,β−,x) = exF (β− −
α,β−,−x) for the confluent hypergeometric function. We come
to the following expression for the cross section at p− ∼ m:

dσ

dε−
= α

4ωβ−p2−

∞∑
L=1

Leπν |�(γ + 1 + iν)|2
[�(2γ + 1)]2

Re

×
∫ 1

−1
du

∫ 1

−1
dv

∫ ∞

0
dρ ρ2γ+1(1 − v2u2)γ eiM,

M = F1F2

γ − iν

[
iν

m2

ε2−
�+ − L

(
1 + β−

u

)
�−

]

− F̃1F̃2

γ + iν

[
iν

m2

ε2−
�+ + L

(
1 − β−

u

)
�−

]
+ [F1F̃2(1 + β−v) + F̃1F2(1 − β−v)]�+,

F1,2 = F [γ − iν,2γ + 1, − iρ(1 ± vu)],

F̃1,2 = F [γ + 1 − iν,2γ + 1, − iρ(1 ± vu)],

�± = PL(t̃) ± PL−1(t̃),

 =
(

u

β−
+ 1

)
ρ + Zα ln

(
1 + u

1 − u

)
,

t̃ = 2
1 − u2

1 − v2u2
− 1, (17)

where ν = Zα/β− and γ =
√

L2 − (Zα)2. Then, we perform
the transformation (13) and take analytically the integral over
the variable ρ using the relation (see mathematical Appendix
in Ref. [23]),∫ ∞

0
e−λzzγ−1F (α,γ,kz)F (α′,γ,k′z)dz

= �(γ )λα+α′−γ (λ − k)−α(λ − k′)−α′

×F

(
α,α′,γ,

kk′

(λ − k)(λ − k′)

)
, (18)

where F (a,b,c,x) is the hypergeometric function. After that
we take numerically the integrals over the variables v and u.

The cross section in Eq. (17) can be represented as

dσ

dε−
=

∞∑
L=1

dσL

dε−
. (19)

Unfortunately, the convergence of the series (19) is not fast,
and it is necessary to take into account terms dσL/dε− with
rather large L, especially at ε− � m. In order to overcome this
problem, we make the following approximation:

∞∑
L=1

dσL

dε−
≈

L0∑
L=1

(
dσL

dε−
− dσA

L

dε−

)
+ �A, �A =

∞∑
L=1

dσA
L

dε−
,

(20)

where L0 is a large integer and dσA
L /dε− is given

by the expression for dσL/dε− with the replacement
γ =

√
L2 − (Zα)2 → L. The convergence of the series∑∞

L=1(dσL/dε− − dσA
L /dε−) is much faster than the con-

vergence of
∑∞

L=1 dσL/dε−, and it is not necessary to take
a very large value of L0 (we have seen that by choosing
L0 = 5, an accuracy of about 10% is reached), while the series
�A can be summed analytically. Since the summation is not
straightforward, we report some steps in the next paragraph.

A. Calculation of � A

It is convenient to perform calculation of �A starting from
Eq. (4). After the replacement γ → L, the expression for
the discontinuity of the electron Green’s function is given by
Eq. (A8). By using this expression and by passing to the same
variables as in the derivation of Eq. (11), we can again employ
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the convenient transformation (13). In this way, the integral
over the variable v can be easily performed and one obtains

�A = − iα

4ωp2−

∫ ∞

0
du[MA(−1 + iu) − MA(1 + iu)],

MA(u) =
∫ ∞

0
dρ ρ3 eĩ

∫ +∞

−∞

dτ

sinh2 τ
exp[i(2ντ + ρ coth τ )]

×
[

1

β−

(
1 − u2

3

)
J0(w) − 2iZα(1 − u2) coth τ

× J1(w)

w
+ 2u

3
coth τJ0(w) − i

ρu(1− u2)

3 sinh2 τ

J1(w)

w

]
,

w = ρ
√

1 − u2

sinh τ
, ̃ = ρu

β−
+ Zα ln

(
1 + u

1 − u

)
. (21)

Since the contour of integration over τ passes in the positive
direction around the point τ = 0, we can make a shift τ →
τ − iπ/2 and take the integral over τ in MA(u) using the
relation [24]:

∫ +∞

−∞

dτ

cosh τ
exp(2λτ − b tanh τ )J2µ

( a

cosh τ

)

= e−ba2µ
�

(
1
2 + λ + µ

)
�

(
1
2 − λ + µ

)
[�(2µ + 1)]2

×F

(
µ − λ + 1

2
,2µ + 1,b +

√
b2 − a2

)

×F

(
µ − λ + 1

2
,2µ + 1,b −

√
b2 − a2

)
. (22)

Then we take the integral over ρ with the help of Eq. (18).
Finally, we have

MA(u) = 2i

[
− ν

β−

(
1 − u2

3

)
+ Zα(1 − u2) − 2

3
uν

]
I

(2)
11

+ (1 − iν)

{
2i

u
(1 − iν)

(
1 − u2

3

)
I

(1)
22

− i

u
(2 − iν)

(
1 − u2

3

) (
I

(1)
31 + I

(1)
13

)
+ 2i

3
(2 − iν)

(
I

(1)
31 − I

(1)
13

)
+ i

u

(
1 − u2

3

) (
I

(1)
12 + I

(1)
21

)
−

[
1

β−

(
1 − u2

3

)
+ 2u

3

](
I

(2)
12 + I

(2)
21

)
+

[
1

β−u

(
1 − u2

3

)
+ 2

3
(2 − u2)

](
I

(2)
21 − I

(2)
12

)
+

[
2Zα

u
(1 − u2) + i

3

(
4iν + 3

u2
− 5

)]

× (
I

(1)
21 − I

(1)
12

)}
,

I
(n)
jk = (−1)n

dnIjk(λ)

dλn

∣∣∣∣
λ=−i(1+u/β−)

,

Ijk(λ)

= λj+k−2iν[λ + i(1 + u)]iν−j [λ + i(1 − u)]iν−k

×F

(
j − iν,k − iν,2,

1 − u2

[λ + i(1 − u)][λ + i(1 + u)]

)
.

(23)

This expression is particularly suitable for numerical integra-
tion. In the next section we report our results obtained starting
from Eq. (17) in the approximation (20).

V. RESULTS AND DISCUSSION

The cross section dσB/dε− of the pair production process
in the Born approximation is well known (see, e.g., Ref. [16]).
In our limit (ω � m and p− � ω), it has the form,

dσB

dε−
= σ0

ω

2ε−
p3−

[
2ε−p− ln

(
ε− + p−

m

)
− p2

−

−m2 ln2

(
ε− + p−

m

) ]
, σ0 = α(Zα)2

m2
. (24)

In particular, at p− � m it is dσB/dε− = 2σ0p−/m, while at
p− � m the same cross section has the asymptotics,

dσB

dε−
= 4σ0

ω

[
ln

(
2ε−
m

)
− 1

2

]
. (25)

Now, the leading Coulomb correction to dσ/dε− at m �
ε− � ω reads [9]

dσ
(0)
C

dε−
= −4σ0

ω
f (Zα), f (Zα) = Re[ψ(1 + iZα) + C],

(26)

where ψ(x) = d ln �(x)/dx, C = 0.577 . . . is the Euler con-
stant. The correction (26) is independent of ε− and it is the
same for electron and positron (i.e., it is an even function of
Zα). The next-to-leading correction was calculated recently in
Ref. [11] and at m � ε− � ω it has the form,

dσ
(1)
C

dε−
= σ0

ω

π3m

2ε−
Re g(Zα),

(27)
g(Zα) = Zα

�(1 − iZα)�(1/2 + iZα)

�(1 + iZα)�(1/2 − iZα)
.

This correction has the opposite sign for electron and positron
since Re g(Zα) is an odd function of Zα and it increases the
cross section for slow electron while it decreases it for slow
positron. In Figs. 3 and 4 we show our results for the Coulomb
corrections ωσ−1

0 dσC/dε∓ = ωσ−1
0 (dσ/dε∓ − dσB/dε∓) to

the spectrum for the slow electron and positron, respectively,
at different values of Z (continuous curves). These results are
compared with the asymptotic expressions ωσ−1

0 dσ
(0)
C /dε∓

(dashed curves) and ωσ−1
0 (dσ

(0)
C /dε∓ + dσ

(1)
C /dε∓) (dotted

curves). On the one hand, one can see that for each Z our
results tend at large energies to the constant value −4f (Zα).
On the other hand, the next-to-leading correction dσ

(1)
C /dε∓

essentially improves the agreement between exact results and
asymptotic ones both for slow electron and positron.
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FIG. 3. The dependence of the Coulomb corrections ωσ−1
0 dσC/dε− (continuous line) with σ0 = α(Zα)2/m2 on the scaled electron energy

ε−/m at different values of Z. The dashed line represents the leading-order Coulomb corrections in the limit ε− � m, while the dotted line
also includes corrections proportional to m/ε−. The dashed and the dotted lines start at ε− = 5 m because the corresponding asymptotics are
valid at ε− � m.

In Ref. [11] the next-to leading correction to the total cross
section, σ

(1)
C ∝ m/ω, was also obtained. It reads

σ
(1)
C = mσ0

ω

[
−π4

2
Im g(Zα) − 4π (Zα)3f1(Zα)

]
, (28)

where the function f1(Zα) is related to the total cross section
σbf of the bound-free photoproduction,

σbf = 4πσ0(Zα)3f1(Zα)
m

ω
. (29)

ε+/m ε+/m

ω
σ
−1 0
d
σ
C
/d

ε +
ω
σ
−1 0
d
σ
C
/d

ε +

Z = 11 Z = 47

Z = 79 Z = 92

2 4 6 8 10 12 14 2 4 6 8 10 12 14

2 4 6 8 10 12 14
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2 4 6 8 10 12 14

FIG. 4. The dependence of the Coulomb corrections ωσ−1
0 dσC/dε+ (continuous line) with σ0 = α(Zα)2/m2 on the scaled positron energy

ε+/m at different values of Z. The dashed line represents the leading-order Coulomb corrections in the limit ε+ � m, while the dotted line
also includes corrections proportional to m/ε+. The dashed and the dotted lines start at ε+ = 5 m because the corresponding asymptotics are
valid at ε+ � m.
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The function f1(Zα) is of the order of unity for all values of
Z; see Ref. [11]. Since the Coulomb correction dσ

(1)
C /dε± has

the opposite sign for electron and positron in the region where
both particles are relativistic, the correction σ

(1)
C is determined

by the region where momentum of electron or positron is of
the order of m. The correction σ

(1)
C can be obtained from our

results using the relation,

σ
(1)
C =

∫ ∞

m

dε−

[
dσC

dε−
+ dσC

dε−
(Z → −Z) + 8σ0

ω
f (Zα)

]
.

(30)

Our numerical data are in a qualitative agreement with
Eq. (28) though accuracy is not very high because of strong
cancellations between all terms in the integrand in Eq. (30). By
employing Eqs. (28) and (30) we can qualitatively explain how
it could be that the agreement in Figs. 3 and 4 between exact
numerical results and the sum ωσ−1

0 (dσ
(0)
C /dε∓ + dσ

(1)
C /dε∓)

is essentially better at intermediate energies for the case of
the electron (Fig. 3) than of the positron (Fig. 4). We recall
that Eqs. (26) and (27) are asymptotical expressions valid at
very large electron (positron) energies [11]. At intermediate
energies, in order to reproduce our exact numerical results it
is necessary, in addition to zero- and first-order corrections
given in Eqs. (26) and (27), to add the next-order corrections
proportional to 1/εn

− (1/εn
+) with n � 2. These high-order

corrections can be written as a sum of an even function
of Z and of an odd function of Z, and only the even part
contributes to the correction σ

(1)
C to the total cross section

[see Eq. (30)]. As it follows from the analytical expression in
Eq. (28), this even part is positive and rather large due to the
numerical coefficient π4. Furthermore, the good agreement of
the exact numerical and the asymptotic results at intermediate
energies in the electron spectra implies that the odd part of
the next-order corrections has the opposite sign with respect
to the even part for the electron and almost the same absolute
value. As a result the high-order corrections for positron will
be positive and large, which is in agreement with Fig. 4. Of
course, a priori it is not possible to say why we have essentially
better agreement for the electron than for the positron but not
the opposite. In our opinion it is not possible to answer this
question without calculating next-order corrections. However,
we can say that the large value of σ

(1)
C is not compat-

ible with good agreement between exact and asymptotic
results at intermediate energies for both the electron and
positron.

As it has been pointed out above, the spectra of
bremsstrahlung for the ultrarelativistic initial electron
(positron) and the slow final one are given by Eq. (8) with the
substitutions p− → p1 and ε− → ε1 (p+ → p1 and ε+ → ε1),
where ε1 and p1 are the energy and the momentum of the
final electron (positron), respectively. In Ref. [11] it was
shown that this is also the case for the leading and the
next-to-leading contributions to the Coulomb corrections to
bremsstrahlung. Therefore, one can use Figs. 3 and 4 also for
the Coulomb corrections to the spectrum of bremsstrahlung
with the above substitutions. Unfortunately, there are no exact
numerical results for the spectrum of bremsstrahlung at large
energies of the initial particle, where our results are applicable.

This is due to the fact that at high energies numerical
tabulation of matrix elements exact in Zα for bremsstrahlung
is much more complicated than that for photoproduction
[25].

We conclude this section by discussing how it is possible to
apply our results for photoproduction on heavy atoms (i.e.,
how the effects of screening can be accounted for). As it
was pointed out above [see, e.g., the discussion following
Eq. (6)], since in the regions of the spectra considered here
one of the created has an energy of the order of m, the main
contribution to the high-energy photoproduction cross section
close to the end of the spectrum of electron (or positron) comes
from distances r ∼ 1/m. As a typical screening radius rscr we
consider the expression obtained in the Thomas-Fermi model
[i.e., rscr ≈ 1/(mZ1/3α)]. Since rscr � 1/m for all atoms, the
pair is essentially created “inside the electron shells” and the
effects of the screening can be accounted for by employing
the prescription formulated in Refs. [26–28]. In this model
the electron and the positron are assumed to be created in the
electric field of the nucleus and when they move away from
the atom, their energies are shifted by a quantity � due to the
electric field of the atomic electrons. Namely, the spectrum
of slow electron (positron) in the screened Coulomb field
is obtained from that in the unscreened field by means of
the shift ε− → ε− + � (ε+ → ε+ − �). Values of the energy
shift � for various atoms are presented in Refs. [26–28]
and in all cases it is �/m < 4 × 10−2 (see, in particular,
Table II in [28]). Thus, the effect of screening in the present
problem is important only for very small electron or positron
velocities.

VI. CONCLUSION

We have calculated exactly in the parameter Zα the cross
section of e+e− photoproduction in a Coulomb field at ω � m

and ε− � m (slow electron) or ε+ � m (slow positron). In
the wide region, our results differ essentially from those
obtained in the Born approximation as well as from the results
which take into account the Coulomb corrections obtained
at ε− � m and ε+ � m. Therefore, the Coulomb correction
to the spectrum can be approximated by its high-energy
asymptotics only at rather large ω (ω � 30 m). We have
found that the cross section of bremsstrahlung in a strong
Coulomb field by a high-energy electron in the region where
a final electron has the energy ε1 � m coincides with the
cross section of e+e− photoproduction at ε− � m (slow
electron). Finally, we have seen that the effect of screening
for photoproduction close to the end of the electron (positron)
spectrum is important only for very small velocity of electron
(positron).
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APPENDIX: WAVE FUNCTIONS
AND GREEN’s FUNCTION

The positive-energy wave function Uj,l,µ(p,r) with total
angular momentum j , parity (−1)j+σ/2 (σ = ±1), and projec-
tion µ of the total angular momentum on some quantization
axis has the form [16],

Uj,σ,µ(p,r) =
√

2

r

(
f (r)	j,l,µ(n)

−σg(r)	j,l′,µ(n)

)
,

f (r) =
√

1 + m

ε
e(πν/2) |�(γ + 1 + iν)|

�(2γ + 1)
(2pr)γ

× Im{ei(pr+ξ )F (γ − iν,2γ + 1, − 2ipr)},

g(r) =
√

1 − m

ε
e(πν/2) |�(γ + 1 + iν)|

�(2γ + 1)
(2pr)γ

× Re{ei(pr+ξ )F (γ − iν,2γ + 1, − 2ipr)},
l = j + σ

2
, l′ = j − σ

2
, ν = Zαε

p
, (A1)

κ = σ

(
j + 1

2

)
, γ =

√
κ2 − (Zα)2,

ξ = (1 − σ )
π

2
+ arctan

[
ν(ε − m)

ε(γ + κ)

]
,

σ = ±1, e−2iξ = κ + iνm/ε

γ + iν
, n = r

r
,

where F (α,β,x) is the confluent hypergeometrical function
and 	j,l,µ(n) is a spherical spinor. The negative-energy wave
function Vj,σ,µ(p,r) employed here can be obtained from
Uj,σ,µ(p,r) by the replacement ε → −ε.

If ε � m and r ∼ 1/m then pr � 1 and

f (r) = sin(pr − lπ/2 + Zα ln(2pr) + δκ ),

g(r) = cos(pr − lπ/2 + Zα ln(2pr) + δκ ),
(A2)

δκ = ξ + (l − γ )
π

2
− arg�(γ + 1 + iZα),

ξ = (1 − σ )
π

4
+ arctan

(
Zα

γ + |κ|
)

.

The high-energy asymptotics of the functions f (r) and g(r)
for negative-energy states (ε � −m) are given by Eq. (A2)
with the replacement Z → −Z.

Let us consider the case ε → m, v = p/ε � 1. At |y| →
∞ and fixed x,

|�(x + iy)| →
√

2πe−(π |y|/2)|y|x−1/2. (A3)

Then, at y → ∞, x → 0, and fixed u = xy we have

F (γ − iy,2γ + 1, − ix)

→ �(2γ + 1)

uγ

{
J2γ (2

√
u) + i

2y
[uJ2γ+2(2

√
u)

− 2γ
√

uJ2γ+1(2
√

u)]

}
, (A4)

where Jν(x) are ordinary Bessel functions. As a result, we find
the following expressions of the low-energy asymptotic of the
functions f (r) and g(r),

f (r) = σ

√
vπ

Zα
[(κ − γ )J2γ (2

√
u) + √

uJ2γ+1(2
√

u)],
(A5)

g(r) = σ
√

vπZαJ2γ (2
√

u), u = 2Zαmr.

It is seen that both f (r) and g(r) are proportional to
√

v and
thus are of the same order at Zα ∼ 1. However, if Zα �
1 then f (r) � g(r) at u ∼ 1. Using the relation Jν+1(x) =
(ν/x)Jν(x) − J ′

ν(x), where J ′
ν(x) = dJν(x)/dx, we can write

the expression for the asymptotics of the function f (r) in the
convenient form,

f (r) = σ

√
vπ

Zα
[κJ2γ (2

√
u) − √

uJ ′
2γ (2

√
u)]. (A6)

If ε → −m, v = p/|ε| � 1, then the functions f (r) and
g(r) are exponentially small. We have for Zα/r � mv2:

f (r) = −
√

vπZαe−(πZα/v)I2γ (2
√

u),
(A7)

g(r) =
√

vπ

Zα
e−(πZα/v)[(κ + γ )I2γ (2

√
u) + √

uI2γ+1(2
√

u)],

In the Coulomb field, the discontinuity of the quasiclassical
electron Green’s function on the cut reads [17,18]

δG(r2,r1|ε)

= ip

4π

∫ +∞

−∞

dτ

sinh2 τ
exp

[
i2Zα

ε

p
τ + ip(r1 + r2) coth τ

]

×
〈[

γ 0ε + m + p

2
γ · (n1 − n2) coth τ

]
J0(w)

+ iJ1(w)

w

{[
p2(r2 − r1)

2 sinh2 τ
+ Zαmγ 0

]
γ · (n1 + n2)

− Zαp coth τγ 0[1 − (γ · n2)(γ · n1)]

}〉
,

n1,2 = r1,2

r1,2
, w = p

√
2r1r2(1 + n1 · n2)

sinh τ
. (A8)

In Eq. (A8), the contour of integration over τ passes in the
positive direction around the point τ = 0. If p � m, r1 ∼
r2 ∼ 1/m, and (1 + n1 · n2) � m2/p2, then the argument of
the Bessel functions is large and Eq. (A8) becomes essentially
simpler:

δG(x, y||ε|) = − p

2πR
[iγ 0 sin(pR + 2Zαs)

− γ · n cos(pR + 2Zαs)],

δG(x, y| − |ε|) = p

2πR
[iγ 0 sin(pR − 2Zαs)

+ γ · n cos(pR − 2Zαs)],

n = x − y
R

, s = ln

[
x + y + R√
2(xy + x · y)

]
,

R = |x − y|. (A9)
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[24] A. Erdélyi et al., Tables of Integral Transforms (McGraw Hill,

New York, 1954).
[25] I. Øverbø, K. J. Mork, and H. A. Olsen, Phys. Rev. A 8, 668

(1973).
[26] H. K. Tseng and R. H. Pratt, Phys. Rev. A 4, 1835 (1971).
[27] H. K. Tseng and R. H. Pratt, Phys. Rev. A 6, 2049 (1972).
[28] I. Øverbø, Phys. Scr. 19, 299 (1979).

042106-9

http://dx.doi.org/10.1063/1.555629
http://dx.doi.org/10.1063/1.555629
http://dx.doi.org/10.1016/S0969-806X(00)00281-4
http://dx.doi.org/10.1098/rspa.1934.0140
http://dx.doi.org/10.1098/rspa.1934.0140
http://dx.doi.org/10.1007/BF02959918
http://dx.doi.org/10.1103/PhysRev.80.189
http://dx.doi.org/10.1103/PhysRev.80.189
http://dx.doi.org/10.1103/PhysRev.175.1978
http://dx.doi.org/10.1103/PhysRev.175.1978
http://dx.doi.org/10.1016/j.radphyschem.2005.09.003
http://dx.doi.org/10.1016/j.radphyschem.2005.09.003
http://dx.doi.org/10.1103/PhysRev.93.768
http://dx.doi.org/10.1103/PhysRev.93.788
http://dx.doi.org/10.1103/PhysRev.93.788
http://dx.doi.org/10.1016/0370-2693(77)90254-4
http://dx.doi.org/10.1103/PhysRevA.69.022708
http://dx.doi.org/10.1103/PhysRevA.69.022708
http://arXiv.org/abs/arXiv:hep-ph/0307388
http://dx.doi.org/10.1103/PhysRevA.5.2403
http://dx.doi.org/10.1134/1.1866193
http://dx.doi.org/10.1134/1.1866193
http://dx.doi.org/10.1016/j.radphyschem.2007.10.003
http://dx.doi.org/10.1016/0375-9601(83)90816-2
http://dx.doi.org/10.1016/0375-9601(83)90816-2
http://dx.doi.org/10.1016/0375-9601(82)90393-0
http://dx.doi.org/10.1016/0375-9601(82)90393-0
http://dx.doi.org/10.1016/0375-9474(69)90634-4
http://dx.doi.org/10.1016/0375-9474(69)90634-4
http://dx.doi.org/10.1103/PhysRevA.8.668
http://dx.doi.org/10.1103/PhysRevA.8.668
http://dx.doi.org/10.1103/PhysRevA.4.1835
http://dx.doi.org/10.1103/PhysRevA.6.2049
http://dx.doi.org/10.1088/0031-8949/19/4/001

