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Nonclassical states that are characterized by their nonpositive quasiprobabilities in phase space are known to
be the basis for various quantum effects. In this work, we investigate the interrelation between the nonclassicality
and entanglement, and then characterize the nonclassicality that precisely corresponds to entanglement. The
results naturally follow from two findings: one is the general structure among nonclassical, entangled, separable,
and classical states over Hermitian operators, and the other a general scheme to detect nonclassical states.
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I. INTRODUCTION

In the seminal paper of the quantum theory of light, Glauber
has shown that quantum systems reveal their nonclassicality
by nonpositive quasiprobability distributions in phase space
that classical systems fail to describe [1]. By not relying
only on the correlational effects among quantum systems, the
nonclassicality turned out to be the basis for various quantum
effects. In past decades, quantum states with correlations
that could not be prepared by local operations and classical
communications (i.e., entanglement) had been extensively
investigated; their essential role was to outperform classical
counterparts in information processing. The presence of the
nonclassicality is more primitive than entanglement as the
nonclassicality has to exist if entangled states are to be
generated [2]. Or equivalently, multimode classical states
can never be entangled, and all entangled states are already
nonclassical. For instance, the nonclassicality of the initial
system is a quantity preserved under transformations via
linear optical elements [3] that are often used in entanglement
engineering, such as quantum computation [4]. Consequently,
the preexisting nonclassicality dictates or already limits the
entanglement that can be manipulated. Therefore, to have
a precise estimate of the nonclassicality in connection to
entanglement is, not only of theoretical interest, a line that
allows us to decide the intrinsic capability of given quantum
systems in information processing.

In this work, we characterize entanglement in terms of the
nonclassicality with the nonclassicality measure in Ref. [5].
The nonclassicality that precisely corresponds to entanglement
is refined. The result is derived from the geometry of quantum
states over quasiprobability distributions, which is based on the
nonclassical states detection method that we shall show later.
These findings are also of fundamental importance, devoted to
discovering the convex geometry of physical, separable, and
classical states out of Hermitian operators.

This paper is organized as follows. We first introduce
a map that detects all nonclassical states. The map can
also be translated to witness operators, which may be
called as nonclassicality witnesses. By using the map,
we identify positive operators (i.e., physical states) out of
positive s-ordered quasiprobability distributions. Remark-
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ably, all the positive s-ordered quasiprobability distributions,
except the normally ordered one, do not necessarily cor-
respond to physical states. This then leads to the geo-
metric refinement of the nonclassicality that finally defines
the entanglement parameter: the nonclassicality depth of
entanglement.

II. DETECTING NONCLASSICAL STATES

Let us begin by introducing nonclassical states and the
nonclassicality measure. Quasi-probability distributions in
phase space are in general parametrized by the ordering
parameter s which takes values in [0,1] and have the range
from the Glauber-Sudarshan P function (s = 0) to the Husimi
Q function (s = 1). For the symmetric ordering s = 1/2,
the quasiprobability distribution corresponds to the Wigner
function. For a given quantum state, when its quasiprobability
distribution for any s has negative values, the state is referred to
as nonclassical. For instance, negativity in the Wigner function
has been often used as the signature of nonclassicality [6].
Then, in general, it holds that if a quantum state has negative
probabilities in some s-ordered representation, its P function
must have negative probabilities. This can be easily seen by the
regularization processing of nonpositive P functions, which is
shown in the following.

A multimode state ρ can be uniquely written in terms of
the P function as [7]

ρ =
∫ n∏

i=1

d2ziP (z1, . . . ,zn)
n⊗

i=1

|zi〉〈zi |, (1)

where |zi〉 in the ith mode are coherent states. When the
P function has negative values, the state is referred to as
nonclassical. A nonpositive P function can be transformed
into a true (i.e., non-negative) probability distribution by the
following regularization processing:

Rτ [P ](α1, . . . ,αn) =
∫ n∏

i=1

d2α′
i

πτ
e−|α−α′

i |2/τP (α1, . . . ,αn),

(2)

where 0 < τ � 1 and R0[P ](α) = P (α). Note that once
Rτ [P ] � 0 it holds that Rτ ′[P ] � 0 for all τ ′ � τ , from which
the minimum τ that regularizes a given P function, denoted
by τm[ρ] throughout the paper, has been defined as a measure
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to quantify the nonclassicality and called the nonclassicality
depth [5,8]. In fact, the regularization with s corresponds to
the transformation of the quasiprobability distribution from
the normally ordered representation to an s-ordered one. The
Q function is given when s = 1, and can be expressed as
Q(α) = 〈α|ρ|α〉 � 0 with coherent states basis |α〉. It is clear
that Q functions are always non-negative. Therefore, if a given
Hermitian operator ρ cannot be regularized with s � 1, then
one can conclude that the operator is nonpositive. This also
means, due to the fact that the Q function is nonpositive,
that there exists some coherent state |β〉 to detect a negative
expectation of the Q function [i.e., Q(β) = 〈β|ρ|β〉 < 0].

Lemma 1. A Hermitian operator of unit trace is nonpos-
itive if it cannot be regularized by the transformation in
Eq. (2).

It is clear that classical states form a convex set, since a
convex combination of non-negative P functions is automat-
ically non-negative and thus constitutes a new P function of
the corresponding mixed state. The convex structure implies
that the characterization of the set of classical states can be
greatly simplified by the so-called witness operators developed
significantly in the entanglement theory. For Hermitian opera-
tors, the Hahn-Banach theorem can be applied so that one can
always find a Hermitian operator W such that for all classical
states σ , tr(Wσ ) � 0 while tr(Wρ) < 0 for some nonclassical
states ρ, which may, therefore, be called nonclassicality
witnesses [9].

We now introduce the map that detects all nonclassical
states. Here, detection means that nonclassical states are
mapped to nonpositive operators so that the nonclassical states
are detected by negative expectation values. The map can be
defined on the P function as follows:

�a[P (zi)] = Pa(zi) = 1

a2
P

(
zi

a

)
, (3)

which in fact describes, for a ∈ [0,1], the state that has
transmitted the beam splitter with transmittance T = a2.
(See Fig. 1.) The expression of the map can also be obtained
on the level of states by considering state transformation under
the beam splitter and then taking a > 1. Note that non-negative
P functions remain non-negative under the map �a .

Proposition 1. For a nonclassical state ρ, there exists a > 1
such that �a[ρ] �� 0.

Proof. For simplicity, let us introduce the characteristic
function of ρ through the Fourier transformation of the P

)(I )(T

)(R

2aT =

FIG. 1. (Color online) The (I), (T), and (R) are input, transmitted,
and reflected states. The map in Eq. (3) when 0 � a � 1 describes
the relation between the input and the transmitted states. For a > 1,
the map in Eq. (3) can be thought of as a “nonphysical” direction
from (T) to (I).

function, χ (x) = ∫
d2αP (α)eαx∗−α∗x . By regularizing the P

function with τ , the characteristic function is transformed to
Kτ (β) = e−τ |β|2χ (β). The Bochner’s theorem tells that the
regularized function is positive if and only if the characteristic
function is positive definite [11].

Suppose that the P function of a nonclassical state ρ can
be regularized to a positive distribution with τm. The map �a

is applied to the state, and then the characteristic function
denoted by χa(β) can be expressed as χa(β) = χ (aβ). Now,
we want to see the τa,m that regularizes �a[ρ] on the level
of the characteristic function, Ka,τ (β) = e−τa |β|2χa(β). Since
Kτ (β) is positive if and only if τ � τm, Ka,τ (β) is positive
if and only if τa � a2τm, and so is Rτ [�a(P )], from which
τa,m = a2τm. If a is large enough that τa,m > 1, this implies
that �a[ρ] cannot be regularized and therefore, according to
Lemma 1, �a[ρ] is nonpositive. In particular, a map �a with
a > 1/

√
τm (which is larger than 1 since τm � 1) can detect

nonclassical states having τm. Since τm > 0 for all nonclassical
states, the map �a can detect all nonclassical states. �

The preceding proof can also derive the useful relation,
�a ◦ Rτ [P ] = Ra2τ ◦ �a[P ], which provides a geometrical
structure of s-ordering representation as follows.

Lemma 2. Let τm[ρ] denote the nonclassicality depth of
state ρ. By using the map �a , the nonclassicality depth is
mapped to τm[�a[ρ]] = a2τm[ρ].

The idea behind the map comes from the fact that non-
physical operations may cause certain effects which cannot be
interpreted as being physical. For instance, in the entanglement
theory, nonphysical operations, such as positive but not com-
pletely positive maps, detect all entangled states, exploiting
negative expectation values. As such, the map �a with
a > 1 transforms nonclassical states into operators, providing
negative expectation values. Together with Lemma 2, it can
also be seen that the map is nonphysical in that �a with
a > 1 describes the reverse direction from the output to the
input states, increasing the nonclassicality depth, which is of
course nonphysical as a time-reversal process. In this way,
only classical states are not detected since their nonclassicality
depth is constantly zero.

Example. A nonclassical state that is not detected by the
criteria shown in Ref. [12] was presented in Ref. [13], and its
P function is P (α) = 2

π
e−|α|2 − δ(α). We now apply the map

�a to detect that ρ is nonclassical,

〈β|�a[ρ]|β〉 = 2

a2 + 1
exp

(
− |β|2

1 + a2

)
− exp(−|β|2),

which is nonpositive for a sufficiently large a. �
The map in Eq. (3) can be translated into what we may

call nonclassicality witnesses. For �a[ρ] that cannot be
regularized, the Q function is not positive, meaning that there
exists coherent state |β〉 such that Q(β) = 〈β|�a[ρ]|β〉 < 0.
Being constrained to keep the expectation value the same,
the dual map �∗

a can be obtained and applied to evolution of
the coherent state, Wβ = �∗

a[|β〉〈β|], such that the following
holds:

tr(ρWβ) = tr(|β〉〈β|�a[ρ]).

Note that the collection of all Wβ can completely characterize
the set of classical states, since (i) classical states form a

042105-2



ENTANGLEMENT, DETECTION, AND GEOMETRY OF . . . PHYSICAL REVIEW A 82, 042105 (2010)

convex set, and (ii) �a detects all nonclassical states. Although
coherent states are applied here due to the Q function, in
general, any Hermitian operators that overlap with negative
ranges of �a[ρ] can be in the case.

III. GEOMETRY OF NONCLASSICAL STATES

So far, we have seen quantum states in terms of positive
distributions in s-ordering representation, based on which the
map �a with a > 1 is shown to increase the nonclassicality
depth so that physical states are sent away to nonpositive
ones. However, positive quasiprobability distributions do not
mean physical operators in general [14–16]. For instance, the
Q function of the following operator, A = k|0〉〈2| + |1〉〈1| +
k∗|2〉〈0|, which is the unit trace and Hermitian but not positive,
has the positive Q function, QA(β) = |k|2(β + β∗)2 � 0. In
which value of s do positive quasiprobability distributions
mean positive operators? In the following text, s = 0 is shown
to be the only case.

First, positive operators form a convex set, including
separable and classical states. Let us then show that there exists
a nonpositive operator that can be regularized with very small τ
in Eq. (2). The nonclassical state, ρ = (1 − ε)|0〉〈0| + ε|2〉〈2|,
is arbitrarily close to the vacuum as ε tends to 0. Applying
the map, �a[ρ] = ∑2

i=0 ri |i〉〈i| with r0 = (1 − 2εa2 + εa4),
r1 = 2εa2(1 − a2), and r2 = εa4. Note that the coefficients
ri are the eigenvalues of �a[ρ], meaning that �a[ρ] becomes
nonpositive whenever a > 1 (since r1 < 0). The regularization
of �a[ρ] is

Rτ [P ](z) = 1

τ
exp

(
−|z|2

τ

) {
r0 + r1

( |z|2
τ 2

− 1 − τ

τ

)

+ r2

[
|z|4
2τ 4

− 2(1 − τ )

τ 3
|z|2 +

(
1 − τ

τ

)2
]}

.

From the above, the depth of the nonclassicality is

τm[�a[ρ]] = a2√ε√
1 − ε + √

ε
,

which can be arbitrarily small for a > 1 by taking ε, which
tends to be a very small number. In summary, this shows that
outside the set of positive states there exists a nonpositive
operator which can still have a very small nonclassicality
depth. This leads to the following conclusion.

Proposition 2. For all s ∈ (0,1], there exist positive
quasiprobability distributions that may correspond to nonpos-
itive Hermitian operators.

Based on Proposition 2, plus the fact that separable and
classical states form convex sets, respectively, the positive
operators can be drawn over the axis of the nonclassicality
depth as is shown in Fig. 2. Note that, in general, quantum
states of the same nonclassicality depth form a convex set.
Figure 2 is drawn as well based on the following facts.
First, there are separable states having the unit nonclassicality
depth as τm[ρA ⊗ ρB] = 1 if and only if either τm[ρA] = 1 or

E

1=mτ
0=mτ

P

C

10 << τm

S

Classical

(A)

S

C

ρ

sρ

cσ

(B)

E

FIG. 2. (A) Physical states are shown over the axis of the
nonclassicality depth. Positive operators (P ) are only a subset from
τ = 0 to τ = 1, including the set of separable states (S) which
consists of all classical states. (B) The convex geometry of separable
and classical states leads the entanglement parameter that takes into
account the nonclassicality, the NcDE in Eq. (7).

τm[ρB] = 1. Separable states also consist of all classical states
since classical states are already separable. Next, there are
entangled states having a nonunit nonclassicality depth, which
can be seen by the state

ρp = p|φ+〉〈φ+| + (1 − p)
I

4
, (4)

where |φ+〉 = (|00〉 + |11〉)/√2 and I = ∑1
i,j=0 |ij 〉〈ij |. The

regularization is given as

Rτ [P ](zA,zB) = 1

4τ 2
exp

(
−|zA|2 + |zB |2

τ

)
Aτ (zA,zB),

Aτ (zA,zB) = 2p

∣∣∣∣1 + zAzB

τ 2

∣∣∣∣
2

+ (1 − p)
|zAzB |2

τ 4

+ 2p

(
1 − τ

τ

)2

+ (1 − p)

(
2τ − 1

τ

)2

+ |zA|2 + |zB |2
τ 3

(2τ − 1 − p), (5)

from which τm[ρp] = (1 + p)/2 for the state. It is known that
the state ρp is separable if and only if p � 1/3 [17]. Hence,
as the value p decreases from 1 to 0, τm[ρp] decreases from
1 to 1/2, at which the state τm[ρp] passes through the border
between the separable and the entangled states when τ = 2/3
(or, equivalently, p = 1/3). All this constitutes the geometry
of physical, entangled, separable, and classical states, as shown
in Fig. 2.

IV. ENTANGLEMENT OF NONCLASSICAL STATES

Based on the convex geometry shown in Fig. 2, we
are now ready to geometrically characterize what part of
the nonclassicality corresponds to the correlational property,
entanglement. This is inspired by a geometric entanglement
measure, the robustness of entanglement in Ref. [18] that was
based on the convexity of separable states. As such, here we
are based on the convexity of classical states. For a multimode
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p
Entangled

m
τ

3

1=p

e
N

FIG. 3. The NcDE (plotted by ×) Ne of the state ρp is fitted. Note
that ρp is entangled if and only if p � 1/3. The circle shows the
nonclassicality depth τm of the state for each p: τm[ρp] = (1 + p)/2.
The normalized NcDE is plotted by +, which is proportional
to the entanglement parameter, negativity (solid line), N (ρp) =
(3p − 1)/2.

nonclassical state ρ, since classical states are a subset of
separable states there always exists a separable state ρs by
admixing ρ with a classical σ , as follows:

ρs = min
κ

1

κ + 1
(ρ + κσ ). (6)

Note that ρs lies on the boundary of separable states in Fig. 2.
Using the state ρs , one can divide the nonclassicality depth
into two: one from entangled to separable states and the other
from separable to classical states.

Definition of the nonclassicality depth of entanglement
(NcDE). The NcDE of ρ with respect to the classical state
σ , denoted by Ne(ρ‖σ ), is Ne(ρ‖σ ) = τm[ρ] − τm[ρs], with
the state ρs found by Eq. (6). The NcDE of a state ρ is

Ne(ρ) = min
σ∈C

Ne(ρ‖σ ), (7)

where the minimization runs over the set of all classical
states C.

It is clear that by definition the NcDE of separable states
is zero. Then, for an entangled state ρ, the nonclassical depth
is strictly larger than the ρs defined in Eq. (6) for all classical
states σ . This can be seen by the inequality that for nonclassical
ρ and classical σ , it holds τm[ρ] > τm[(1 − ε)ρ + εσ ] for all
0 < ε � 1. The details are shown in the Appendix. Hence,
the NcDE is an entanglement parameter first derived from the
nonclassicality of quantum states.

In general, to obtain the NcDE, one should minimize the
N (ρ‖σ ) over all classical states, and then apply a separability
criteria to obtain a separable state ρs that is interpolated by
ρ and σ . Moreover, the optimization processing in the NcDE
runs for all bosonic systems, including non-Gaussian states,

for which little is known about the separability criteria. It is
thus generally hard to explicitly evaluate.

To illustrate the NcDE with an example, let us now
explicitly compute the NcDE for the state ρp in Eq. (4). Since
the optimization generally difficult, the NcDE is computed
here with respect to the ansatz state, σ, as follows. As can be
seen in Eq. (5), the state σ that classicalizes ρp should remove
the nonpositive part of the P function of ρp. That is, the P

function of σ is

Pσ (zA,zB) = |zA|2 + |zB |2
2π2τ 3

exp

(
−|zA|2 + |zB |2

τ

)
. (8)

Let ρ(β) denote the mixture of ρp with the classical state
σ , ρ(β) = (ρp + βσ )/(1 + β), which is classical if and only
if β � π2τ−2(1 + p − 2τ )/2. Then, one can find the minimal
value of βs such that ρ(βs) is separable. Note that ρp is defined
in a (2 ⊗ 2)-dimensional Hilbert space and σ is separable.
Therefore, decomposing the state σ with a two-dimensional
number basis {|0〉,|1〉} and the rest [i.e., (2 ⊗ 2) subsystems
are only relevant], one can apply the known separability
criteria [17]. Finally,

βs = (3p − 1)(1 + τ )4

6τ
. (9)

The nonclassicality depth of the state, τm[ρ(βs)], can be
obtained by numerics, and the NcDE of the state is plotted
in Fig. 3. The NcDE behaves similarly with the known
entanglement measure, the negativity.

V. CONCLUSION

To conclude, we provide the general method of detecting
nonclassical states and find the geometry of physical states over
positive s-ordered quasiprobability distributions. It is shown
that the positive s-ordered quasiprobability distribution can
generally correspond to nonpositive operators. Together with
the convexity of positive operators, the set of positive (i.e.,
physical) states are characterized. Based on the geometry,
we have finally derived the entanglement parameter from the
nonclassicality, the NcDE.
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APPENDIX

We prove the inequality for a nonclassical state ρ and a
classical one σ ,

τm[ρ] > τm[(1 − ε)ρ + εσ ] (A1)
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for 0 < ε � 1, where τm is defined as the minimum amount of
thermal noise in the regularization processing,

Rτ [P ](α) =
∫

d2α′

πτ
e

|α−α′ |2
τ P (α′). (A2)

First, let Pρ(z) denote the P function of a nonclassical state
ρ, for which there exists the minimum value τ1 that the P

function is regularized [i.e., Rτ1 [Pρ](z) � 0]. Hence, we have
τ1 = τm[ρ].

Let τ2 denote τm[(1 − ε)ρ + εσ ] for 0 < ε � 1 and a classi-
cal state σ , i.e., Rτ2 [(1 − ε)Pρ + εPσ ] � 0, where Pσ is the P

function of σ . Note that since σ is classical Rτ [σ ] is positive for
all τ � 0. Also note that the regularization is linear, Rτ2 [(1 −
ε)Pρ + εPσ ] = (1 − ε)Rτ2 [Pρ] + εRτ2 [Pσ ]. This means that,

by τ2 in (A2), the function Pρ is not yet regularized but
transformed such that

Rτ2 [Pρ] � − ε

1 − ε
Rτ2 [Pσ ]. (A3)

The right-hand side of (A3) is negative, meaning again that
by τ2 in (A2) the P function Pρ is not regularized. Therefore,
there exists the minimum value τ > 0 that regularizes Rτ2 [Pρ],
i.e.,

Rτ [Rτ2 [Pρ]] � 0. (A4)

Let us recall the identity Ra+b[P ] = Ra[Rb[P ]]. Hence, we
arrive at the identity, for τ > 0, τ1 = τ + τ2. It is thus proved
that τm[ρ] > τm[(1 − ε)ρ + εσ ].
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