
RAPID COMMUNICATIONS

PHYSICAL REVIEW A 82, 041801(R) (2010)

Electromagnetic transmission resonances for a single annular aperture in a metal plate
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We present a theory for the reflection phase and amplitude of the lowest-order TEM mode in an annular
aperture at the end of a metal plate. This reflection coefficient determines the frequency and peak width of
the Fabry-Perot transmission resonances. The theory assumes that the width of the aperture is subwavelength;
however, the annular radius can be quite large, and we show that the theory reproduces the reflection of a linear
slit in the limit of infinite radius. Finite-difference time-domain calculations agree well with the theory, in terms
of both the transmission resonance frequency values and the extracted reflectivity. The theory presented shows
that both the phase and amplitude of reflection can vary substantially with changes in geometry and frequency,
and that both are modulated by transverse resonances. This work has implications for filters, near-field aperture
probes, sensors, and metamaterials.
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Since the discovery of extraordinary optical transmission
(EOT) in 1998 [1], there has been an explosion of research on
the transmission through subwavelength apertures in metal
films. The shape of the aperture plays an important role
in the transmission characteristics [2–4]. The annular shape
is particularly interesting because it has modes with long
cutoff wavelengths inside the aperture [2,5], which underlies
theoretical predictions and experimental demonstrations of
increased transmission for annular aperture arrays [2,6–12]. At
visible-infrared wavelengths, a recent work has demonstrated
EOT through a single coaxial (annular) aperture by exciting
the lowest order mode that is radially polarized [13]. At
microwave frequencies, Fabry-Perot transmission resonances
have been observed from that radially polarized mode for
off-axis excitation, as required by symmetry [14]. For a perfect
electric conductor (PEC), which can reasonably approximate
the behavior of metals at longer wavelengths, that lowest-order
radially polarized mode is transverse electromagnetic (TEM),
which has the interesting properties of having no cutoff and of
having the same wave vector as a plane wave in free space. The
TEM mode can propagate in annular apertures of infinitesimal
dimension, which is interesting for extreme subwavelength
coupling. As pointed out previously [14], there are many
similarities between the annular aperture and a linear slit, since
the annular aperture can be thought of as a slit bent around
to join onto itself. For the linear slit, a theoretical work has
shown that the lowest-order TEM mode will give Fabry-Perot
transmission resonances [15]. The key contribution of that
work was to show that slit width is critical to the phase
and amplitude of reflection, which changes the frequency and
quality of the transmission resonances. Similarly for annular
apertures, the phase and amplitude of reflection play a vital
role in determining the properties of the resonances, as will
be described in this work. Unlike a slit, however, the annular
aperture shows transverse resonances.

In this work, the theory for reflection of the TEM mode at
the end of an annular aperture in a metal plate is presented.
This theory is accurate in the subwavelength regime, where the
width of the slit is significantly smaller than the wavelength,
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but is otherwise general. The theory shows quantitative
agreement with comprehensive numerical simulations. It is
seen from this theory that the phase and amplitude of reflection
can vary significantly as the geometry and frequency change,
and therefore they are critical in the design of annular apertures
in metal plates.

Figure 1 shows the annular geometry considered here,
as well as the radially polarized lowest-order mode. In the
cylindrical coordinate system (ρ,φ,z), an annulus with inner
radius a and outer radius b coaxial with the z axis and the
metal terminates at z = 0. The annulus is filled with dielectric
with relative permittivity εd , and the metal is assumed to be a
perfect electric conductor with thickness l.

The theory is based on matching the incident and reflected
waves of a single mode on one side of the boundary to the
continuum of radiating and evanescent modes of free space
on the other side of the boundary, which is a dielectric with
relative permittivity ε′

d . A similar approach has been used for
slits [15,16] and surface plasmons on cylindrical rods [17,18].
Neglecting the higher-order modes, the dominant single mode
is the radially polarized TEM mode, which is confined in
the annular region. The TEM mode propagates at arbitrary
frequency, since it has no cutoff, with wave vector equal to
the wave vector of a plane wave in the dielectric εd . The TEM
electromagnetic field incident on the end of the metal can be
normalized as

Eρ = eikdz

ρ
, (1)

Hφ =
√

εdε0

µ0

eikdz

ρ
, (2)

where kd = ω
√

µ0ε0εd , ω is the angular frequency, and ε0

and µ0 are the free-space permittivity and permeability.
The TEM mode is incident from z = 0− and we assume that
the reflection is entirely into the same mode (traveling in the
opposite direction). Therefore, for a < ρ < b, on the surface
of the end where z = 0−, the field can be expressed as

Eρ(ρ,φ,z = 0−) = (1 + r)
1

ρ
, (3)

Hφ(ρ,φ,z = 0−) = (1 − r)
√

ε0εd

µ0

1

ρ
, (4)
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FIG. 1. Schematic of annular aperture in a metal plate (i.e., a
coaxial aperture). The electric field polarization of the TEM mode is
also shown.

where r is the reflection coefficient. The field is zero in the
perfect electric conductor by definition.

For z = 0+, the electromagnetic fields are expanded in
terms of the free-space modes with the same rotational
symmetry:

Eρ(ρ,φ,z = 0+) =
∫ ∞

0
t(k)

√
k2

0ε
′
d − k2

ωε0ε
′
d

J1(kρ) dk, (5)

Hφ(ρ,φ,z = 0+) =
∫ ∞

0
t(k)J1(kρ) dk, (6)

where Jm is the Bessel function of the first kind of order m.
The transverse components of the electric and magnetic

fields are continuous across the boundary; however, in this
truncated (single) mode expansion, mode orthogonality on
both sides of the boundary is used to determine r . The first
orthogonality relation uses the orthogonal representation of the
magnetic field in the z > 0 region. Equating the expressions
for the electric fields, Eqs. (3) and (5), then multiplying both
sides by J1(k′ρ)ρ, which is the form of the magnetic field
modes for z > 0 times the radial component, and integrating
over ρ from 0 to ∞, we obtain

t(k) = (1 + r)
[J0(ka) − J0(kb)]ωε0ε

′
d√

k2
0ε

′
d − k2

, (7)

where the orthogonality for Bessel functions was used:∫ ∞

0
ρJm(uρ)Jm(vρ) dρ = δ(u − v)

u
, (8)

and the relation

J0(ua) − J0(ub)

u
=

∫ b

a

J1(uρ) dρ. (9)

Similarly, we consider the magnetic field by equating
Eqs. (4) and (6). The orthogonality of the TEM mode is used
by multiplying by the electric field distribution of Eq. (1) at
z = 0 and integrating over transverse area. This amounts to
multiplying by unity and integrating from a to b, since the
electric field distribution has the dependence 1/ρ and there is
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FIG. 2. Electromagnetic transmission of a z-polarized dipole
source and at distance 0.5b from the plate as measured through
coaxial aperture, as calculated by FDTD simulations. a = 0.9b,b = l.
Normalized to the same source with a semi-infinite metal plate.
Triangles show the frequency of resonances predicted by the analytic
theory and using Eq. (12). Dotted vertical lines at frequencies of
0.5c/b, 1c/b, 1.5c/b, 2c/b, and 2.5c/b show the positions of the
resonances when the phase of reflection is neglected.

a factor of ρ in the integration (i.e., 1
ρ
ρ = 1). Use of t(k) from

Eq. (7) gives

r = 1 − G

1 + G
, (10)

where G is

G =
√

µ0

ε0εd

ωε0ε
′
d

ln b
a

∫ ∞

0

[J0(ka) − J0(kb)]2

k

√
k2

0ε
′
d − k2

dk. (11)

Equation (11) can be integrated by standard means.
Figure 2 shows the Fabry-Perot resonances calculated

by comprehensive electromagnetic simulations using finite-
difference time-domain (FDTD) methods in cylindrical coor-
dinates [19]. The convergence of the FDTD simulations for
frequencies greater than 0.5c/l was ensured by variations to
the grid size, perfectly matched layer thickness, simulation
region size, and simulation time. The metal plate spanned
from z = −0.5l to z = 0.5b. A broadband electric dipole
source polarized along z was placed along the z axis at
z = −(l + 0.5b). The transmission intensity through the plane
at z = 0.5l was monitored. The transmission was normalized
to the same source and monitor locations, but for an infinitely
thick metal in the positive z direction, so that no longitudinal
Fabry-Perot resonances were present. The same transmission
resonances were obtained for radially polarized ring sources
placed in the middle of the slit at one end of the plate. All
dielectric materials were assumed to be vacuum.

By considering other slit widths (not shown), the FDTD
simulations show that Fabry-Perot resonances become sharper
as the annular slit width is decreased. This shows that the
reflection of the TEM mode increases as the slit is made
narrower. The slit width also influences the frequency of the
resonances, which is only dependent on the phase of reflection
for the TEM mode since its wave vector (propagation constant)
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is independent of slit width. Since the wave vector of the TEM
mode is the same as in free space, the changes in the amplitude
and phase of reflection that modify the Fabry-Perot resonances
are purely a geometric effect.

To compare the theory presented here with the FDTD
simulations more quantitatively, the Fabry-Perot resonance
condition is used. For εd,ε

′
d = 1, the phase of reflection, φr ,

gives the frequency of the Fabry-Perot transmission resonances
through

fres = c

l

(
N

2
− φr

2π

)
, (12)

where c is the speed of light in vacuum and N is the integer
resonance number.

Figure 2 also shows, with triangles, the transmission
resonance values predicted by the theory above, using Eq. (12).
Reasonable agreement is seen between the resonant frequen-
cies predicted by the simple theory presented here and the
comprehensive FDTD calculations. Small differences may
be attributed to the truncation of higher-order modes within
the slit. For comparison, the resonance transmission peaks
expected for the simplistic assumption that φr = 0 are shown
with dotted vertical lines. It is clear then that neglecting the
phase of reflection gives a significant spurious offset in the
resonance frequency.

It is also possible to estimate the reflectivity R = |r|2
from the FDTD simulations of the Fabry-Perot resonances
by comparing the maxima and minima in the transmission
spectrum. For a Fabry-Perot resonance with constant end-face
reflection amplitude, the ratio between the maxima and the
minima is given by

M =
(

1 + R

1 − R

)2

. (13)

Figure 3(a) shows the value of R calculated using the FDTD
method and with the theory presented in this paper, for a
thicker metal plate, l = 4b, to allow for closer resonances.
Good agreement is seen between the theory and simulations for
high frequencies. For lower frequencies, the FDTD simulation
is less accurate, which is due to the finite grid size and the
subwavelength features. Furthermore, this is the regime where
the approximation made in our theory is most valid. Therefore,
we believe that the theoretical values may be more accurate
than the numerical calculations in this regime. Figure 3(a)
shows oscillations in the reflectivity with variations in the
frequency.

Figure 3(b) shows the phase of reflection calculated by the
theory (and already compared with FDTD results in Fig. 2).
This figure is shown in order to demonstrate that oscillations
are also seen in the phase of reflection. To understand better
the oscillatory behavior, we consider the heart of the theory
presented here, as represented by Eq. (11). This equation
diverges when k2

0ε
′
d = k2. The value of the nondiverging part

of the integrand at that point plays a dominant role in the
integral itself. In particular, the value of [J0(ka) − J0(kb)]2

at the singular point will give changes to both the phase
and the amplitude, which produces the oscillations. The
physical interpretation here is that there are radially transverse
resonances at the ends of the annular aperture that correspond
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FIG. 3. (a) Amplitude of reflection extracted from FDTD cal-
culated transmission for l = 4b and a = 0.9b, as compared with
reflection calculated from the analytic theory of Eqs. (10) and (11).
(b) Phase of reflection calculated by the analytic theory for a = 0.9b,
showing oscillations.

to waves traveling radially along the metal surface at the ends
of the aperture and interfering constructively or destructively
to modify the reflection. These waves have the transverse
components of a longitudinal electric field polarization and
an azimuthal magnetic field. A similar behavior has been seen
for the double slit in a perfect metal [20]; however, here it is
seen for a single annular slit only.

The transverse resonances and the radial nature of the TEM
modes are two key differences between the theory presented
here and the equivalent theory for a single linear slit in a metal
film [15,21]. The linear and the annular slit theories should give
equivalent results in the limit of a very wide radius, which we
show in the following discussion. For a narrow annular slit
(b ≈ a), with εd = ε′

d = 1, Eq. (11) becomes

G = a

b − a

∫ ∞

0

[J0(ka) − J0(kb)]2

k

√
1 − (

k
k0

)2
dk. (14)

For fixed m and |x| → ∞, Jm(x) → ( 2
πx

)1/2 cos(x − mx
2 − π

4 ).
We introduce u = k

k0
here; after some algebra, G can be
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expressed as

G → a

b − a

∫ ∞

0

4 sin2
[

k0u(a−b)
2

]
πak0u2

√
1 − u2

du. (15)

Normalizing the slit-width dimension to wavelength a′ = b−a
λ0

,

G →
∫ ∞

−∞

1√
1 − u2

sin2(πua′)
π2u2a′ du, (16)

which is the same as Eq. (3) in Ref. [21]. This is expected
since the annular slit of infinite radius is equivalent to a
linear slit; that is, the curvature goes to zero, the radial

polarization becomes linear TM locally, and the transverse
resonances of the annulus become negligible. In summary, we
have derived a theory for the reflection for an annular slit in a
metal plate. The theory shows agreement with the Fabry-Perot
resonances calculated by the comprehensive FDTD method for
narrow slits. The theory shows the important role of transverse
resonances in the annular slit system, which are not present
in the simple linear slit. The theory is of interest to on-going
studies of coaxial structures in metal films, which could impact
many fields including near-field optics, optical sensing, and
metamaterials [22,23].
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