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We propose an exactly solvable model to reveal the physics of the interplay between interaction and disorder
in bosonic systems. Considering interacting bosons in a double-well potential, in which disorder is mimicked by
taking the energy level mismatch between the two wells to be randomly distributed, we find a “two negatives make
a positive” effect. While disorder or interaction by itself suppresses the phase coherence between the two wells,
both together enhance the phase coherence. This model captures several striking features of the disordered Bose-
Hubbard model found in recent numerical simulations. Results at finite temperatures may help explain why a re-
cent experiment did not find any evidence for the enhancement of phase coherence in a disordered bosonic system.
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Physics of disorder in both bosonic and fermionic systems
has been attracting great interest from physicists for decades.
While the effect of disorder on noninteracting particles can be
well described by Anderson localization [1], understanding the
interplay between interaction and disorder still remains chal-
lenging [2]. Recent developments in studying cold atoms pro-
vide new opportunities for revealing the nature of interacting
quantum particles in the presence of disorder [3]. In atomic sys-
tems, the strength of both interaction and disorder can be well
controlled experimentally, unlike in solid-state systems. There
has been significant recent progress in studying disorder effects
in both noninteracting and interacting atomic systems [4–10].

From the theoretical side, to understand even the spinless
bosons in the presence of both interaction and disorder is a
nontrivial problem. Scaling analysis, renormalization group
theory, and sophisticated numerical simulations are often used
[11–18]. It is desirable in this context to have some exactly
solvable models, which capture all the ingredients, such as
interaction, disorder, and finite-temperature effects. In this
letter, we propose and solve such a model, which makes it
possible to reveal the underlying physics transparently. Our
minimal model captures the interplay between interaction and
disorder in bosonic systems, showing conclusively that weak
disorder in the presence of interaction generically enhances
the phase coherence of the system.

The model we propose describes interacting bosons in
a disordered double-well potential. The Hamiltonian can be
written as

H = −t(b†LbR + c.c.) + U

2

∑
σ

nσ (nσ − 1) + ε

2
(nR − nL),

(1)

where b
†
L(bL) and b

†
R(bR) are the creation (annihilation)

operators in the left and right well, respectively, σ = L,R,
nL = b

†
LbL (nR = b

†
RbR) is the number operator in the left

(right) well, t is the tunneling amplitude between the two
wells, U > 0 is the onsite interaction, and ε is the energy
level mismatch between the two wells. A special case of
this model (ε ≡ 0) has been studied both theoretically and
in cold atom experiments [19–21]. In our case, ε is randomly

distributed according to a certain probability function P (ε),
thus simulating disorder. In experiments, this can be realized
by randomly tilting the double-well potential. The thermody-
namic quantities will be the ensemble averaged values. In this
paper, we will focus on the case P (ε) = 1/(2�),ε ∈ [−�,�],
where � characterizes the disorder strength. Other distribution
functions for ε do not change the qualitative conclusion
presented in this paper. Equation (1) can be viewed as a two-site
version of the extensively studied disordered Bose-Hubbard
(BH) model with random onsite energies.

Despite the simplicity of this model, many interesting
phenomena are found by solving this model with N particles.
An illuminating example is the case ε ≡ 0. It has been shown
that the ground state has a crossover from the coherent state
to the Fock state when U/t increases [21], which mimics the
well-known phase transition in the thermodynamic limit from
a superfluid condensate to a Mott insulator state in the full
BH model. The physics for either the crossover or the phase
transition between the phases is the same in the minimal model
and the BH model, namely, interaction suppresses number
fluctuations and spatial phase coherence. In the case where ε

is randomly distributed, we will see that the minimal model
qualitatively captures the physics of interacting bosons in a
disordered potential for a number of fundamental questions,
even though it cannot answer some quantitative questions,
such as where there is a direct transition from Mott insulator
to superfluid.

Before we discuss the details, we briefly summarize the
main qualitative questions that we are going to answer in this
paper. Q1: Whether disorder can enhance the phase coher-
ence between the two wells, defined by C = 〈b†LbR〉/N =
〈b†RbL〉/N , in some parameter regimes, in contrast to the intu-
ition that disorder must always destroy the phase coherence.
Q2: Whether interaction can also enhance the phase coherence
in the presence of disorder, even though without disorder it
is known that repulsive interaction usually suppresses phase
coherence. Q3: In the clean system, ε ≡ 0, the compressibility
of the system vanishes when the phase coherence is destroyed
by interaction. Is this still true in the disordered case?
Q4: How does the phase coherence between the two wells
depend on the temperature? We will see that the answers to
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these four questions provide insight into some striking features
of the quantum phase diagram of the disordered BH model.
Our answers to these questions on the minimal model also shed
light on a recent disagreement between the prediction of nu-
merical simulations [17,18] and experimental observations [9].

The answer to Q1: To solve the disordered problem, we
start from the case of N particles in the double well with a
fixed ε. We write the Schrödinger equation H |�〉 = E|�〉
in the Fock space. Define |l〉 = |NL,NR〉 = |N

2 − l,N
2 + l〉,

where l = 0,±1,±2, . . . ,±N/2. For simplicity, we assume N

is a large even number. Expanding |�〉 = ∑
l ψl|l〉, we obtain

(E − El)|l〉 = −tMl,l+1|l + 1〉 − tMl−1,l|l − 1〉, (2)

where El = Ul2 + εl + U
2 (N2/2 − N ), Ml,l+1 = Ml+1,l =√

N/2(N/2 + 1) − l(l + 1). The eigenenergies and eigen-
functions can be easily computed by exact diagonaliza-
tion. At zero temperature, the phase coherence between
the two wells can be characterized as Cε = 1

N
〈b†LbR〉ε =

1
N

∑
l Ml,l+1ψ

0
l ψ0

l+1, where ψ0
l is the ground-state wave

function in the Fock space, 〈O〉 is the expectation value of
the operator O in the ground state, and the subscript implies
a fixed ε. The results for the disordered case can then be
obtained by averaging those results for fixed ε according to
the distribution function P (ε),

〈O〉 =
∫ �

−�

dεP (ε)〈O〉ε . (3)

The results for Cε for both noninteracting case and finite
U are shown in Fig. 1(a). The numerical results with the total
particle number N = 100 have been chosen to illustrate the
physics, which does not depend on the exact value of the
total particle number. When U = 0, Cε quickly decreases with
increasing ε, since noninteracting particles can only tunnel
from one well to the other if the energy mismatch ε is smaller
than the tunneling t . The behavior of Cε as a function of ε

depends explicitly on U , as shown in Fig. 1. The dependence
of Cε on ε becomes more extended with increasing U , though
Cε(ε = 0) decreases with increasing U . More importantly, the
curves become nonmonotonic when the discretization of El

induced by interaction becomes significant for U >∼ tN . Local
maxima of Cε emerge at certain values of ε. For those values
ε∗ = U (1 − 2l∗), where l∗ is an integer number, El∗ = El∗−1
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FIG. 1. (Color online) (a) Cε as a function of ε/tN at different
interaction. (b) C as a function of �/tN . Dashed (purple), dash-
double-dotted (green), solid (brown), dotted (blue), dash-dotted (red)
represent U/tN = 0, 0.3, 1, 2.5, 9.95, respectively. Insets are results
for Cε and C for U/tN = 0 with the same labels as the main
figures.

is satisfied. In other words, the state |N/2 − l∗,N/2 + l∗〉 has
the same energy with the one |N/2 − l∗ + 1,N/2 + l∗ − 1〉.
There is no extra interaction energy cost for one particle
tunneling from one well to the other. The tunneling will be
enhanced at ε∗, forming gently varied bumps on the curves for
Cε . This nonmonotonic behavior of Cε becomes even more
dramatic when U increases. For large values of U , only in
narrow regions near ε, tunneling is strongly enhanced. As a
result, resonance features emerge with sharp peaks located at
ε∗ sitting on the slowly decaying envelope of Cε . In the large
U limit, El � El∗ = El∗−1 if l 	= l∗ or l∗ − 1, a two-level
approximation can be made, and it is straightforward to show
that Cε∗ ∼ Ml∗−1,l∗ . Cε∗ decreases slowly as ε∗ increases, as
shown in Fig. 1(a).

Now we turn to the quantity C = ∫ �

−�
dε Cε , which is

related to the area between ε ∈ [−�,�] below the curve of Cε .
When U is small, averaging Cε according to Eq. (3) smooths
out the small bumps on the curves. The nonmonotonic behavior
of C is largely suppressed, as shown by the solid (brown)
curve in Fig. 1(b). On the other hand, we have seen that the
resonance feature of the curves becomes significant for large
U . When � is not large enough, the contribution from regions
under the peaks to the total area is dominant. As a result,
peaks can still be clearly resolved for small values of �, as
shown by the dotted (blue) and dash-dotted (red) curves in
Fig. 1(b). For large �, the peaks become wiggles on the top of
the slowly decaying curves of C. It is also quite clear that C

first increases when the disorder strength � grows from zero,
if � < �∗, where �∗ = U is the location of the first peak.
This fact shows the significant difference of the disorder effect
between the noninteracting and interacting systems. In the
presence of interaction, the disorder effect is nonmonotonic.

It is helpful to look at the contours of C as a function of
�/t and U/t in order to obtain a complete picture. Figure 2
shows that for large U , the contours first bend to the right-hand
side when � increases from zero. We note that the contours
of C have wiggles at large U . These wiggles arise from the
structures in C as discussed in the last paragraph. For a fixed
value of U , away from the positions of the peaks, C changes
slowly, corresponding to the parts of the contour which are
nearly parallel to the � axis. When approaching the peaks, C

quickly increases. As a result, the contours bend toward the
U axis, forming a wiggly shape. The topology of Fig. 2 is
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FIG. 2. (Color online) Contour plot of C as a function of �/tN

and U/tN at zero temperature with the values of contours marked
down.
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very similar to the nontrivial structure of the phase boundary
obtained by recent numerical simulations for the disordered
BH model at an integer filling [17,18]. In the latter case, the
phase boundary can be viewed as the contour for the order
parameters 〈bi〉 = 0 in the thermodynamic limit.

We emphasize that the similarity of the topology between
Fig. 2 and the phase diagram of the disordered BH model
is not accidental. The lattice model can be viewed as the
thermodynamic limit of the two-site problem. Moreover, the
physics of the interplay between disorder and interaction is
the same in both cases. Interaction discretizes the energies
of the Fock states in each site and suppresses the tunneling
between different sites. However, disorder introduces relative
energy shifts of the Fock states at different sites. In a randomly
distributed disorder potential of large enough strength, there
are always possibilities for neighboring sites to have nearly de-
generate Fock states. Effectively, the tunneling of the particles
as well as the spatial phase coherence will then be enhanced.
If the disorder strength increases further, the weight of those
configurations favoring tunneling in all the configurations
of the random potential decreases. The phase coherence is
thus eventually suppressed by very strong disorder, as seen
also in the numerical simulations of the full disordered BH
model [15–18]. It is worthwhile to point out that a quantitative
understanding of the establishment of a long-range order in the
disordered BH mode requires taking into account long-range
correlations beyond neighboring sites [22]. Nevertheless, our
two-site model qualitatively reveals the underlying physics for
the enhancement of phase coherence through weak disorder.

The answer to Q2: Having answered Q1, the answer to
Q2 becomes clear. Figure 3(a) shows the dependence of C on
U/t at fixed �/t . For � = 0, interaction suppresses phase
coherence monotonically. For � 	= 0, interaction first en-
hances phase coherence before suppressing it. These results are
reminiscent of a similar behavior of the superfluid density as
a function of U/t in the full disordered BH model [15–17]. In
both cases, interaction screens the disordered potential, since
some particles occupy the sites with lower on-site energies
and thus smooth out the effective potential for the remaining
particles. The spatial phase coherence is then enhanced.
However, if interaction becomes very strong, interaction itself
eventually destroys phase coherence or superfluid.

We have so far seen an interesting “two negatives make
a positive” effect on the spatial phase coherence of a system
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FIG. 3. (Color online) (a) C as a function of U/tN at
�/tN = 0 (dashed, purple), 20.4 (dash-double-dotted, green),
55.5 (solid, brown), 83.7 (dotted, blue), and 140 (dash-dotted, red).
(b) compressibility (solid red) and C (dash-dotted blue) as a function
of �/tN at U/tN = 0.5. The dashed (magenta) line represents the
asymptotic value of C at large interaction limit.

owing to the interplay between interaction and disorder. With
only disorder or interaction, the spatial phase coherence is
suppressed by either the single-particle localization or the
emergence of a Mott state. When both interaction and disorder
are present, our exactly solvable model clearly shows that the
spatial phase coherence is enhanced in the parameter regime
where they are comparable in strength.

The answer to Q3: To extract the compressibility κε , we
first calculate the chemical potential, µε = [E0

ε (N + δN ) −
E0

ε (N )]/δN , where E0
ε (N ) is the ground-state energy of

N particles at fixed ε. From the dependence of µε on the
particle number N , κε = ∂N/∂µε can then be obtained. The
ensemble averaged compressibility κ can be calculated in the
same manner as C, i.e., κ = ∫ �

−�
dε κε . The dependence of κ

on � is shown in Fig. 3(b). For comparison, the result of C for
the same U is also shown.

An interesting feature of the compressibility in the minimal
model is that it remains constant for large disorder strength,
even though the phase coherence C decreases for very large
disorder. In the large ε limit, almost all the particles fall into
one of the two wells, E0

ε → UN (N − 1)/2 − εN . It is easy
to see κε → U−1. The ensemble averaged value κ for large �

is mainly determined by the contribution from κε in the large
ε region. As a result, κ also approaches a constant value U−1

when � is very large. We can view the state in this regime as
an analog of the Bose glass phase in the thermodynamic limit,
which has vanishing order parameter 〈bi〉 = 0 (or superfluid
density ρs = 0) but a finite compressibility κ . To fully
understand the Bose glass phase in the disordered BH model,
one needs to consider correlations beyond nearest neighboring
sites, which also contribute to the finite compressibility of
Bose glass phase, despite the absence of a long-range order.
Nevertheless, our two-site model provides a simple example
to demonstrate why the compressibility of a disordered system
can remain finite after the phase coherence has been destroyed
at large disorder strength.

The answer to Q4: We have seen that increasing disorder
at large interaction leads to an increase of phase coherence at
zero temperature. The topology of the phase diagram at zero
temperature obtained from recent numerical simulations of
the full disordered BH model also indicates a transition from
the insulating phase to the superfluid phase with increasing
disorder strength [17,18]. However, a recent experiment did
not find any evidence for the increase of the condensate fraction
with increasing disorder strength [9]. We will show that the
topology of the contours of C changes at finite temperatures,
namely, the contours may bend to the left-hand side when
the disorder strength increases from zero. This fact may help
understand why the experiment at finite temperatures did not
observe disorder enhanced phase coherence.

The value of the phase coherence at finite temperatures can
be calculated by Cβ,ε = (

∑
n e−βEnMl.l+1ψ

n
l ψn

l+1)/Z, where
the subscript β denotes the thermal average, φn

l is the nth
eigenfunction with eigenenergy En, Z = ∑

n e−βEn , and Cβ =∫ �

−�
dε Cβ,ε . The results for Cβ as a function of � for a fixed

U are shown in Fig. 4(a) at different temperatures. At low
temperatures, the wiggles on the curve of Cβ retain. When
temperature increases, the wiggles are gradually suppressed.
At high enough temperatures, the wiggles completely vanish,
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FIG. 4. (Color online) (a) Cβ as a function of �/tN at different
temperatures for a fixed interaction U/tN = 2. From top to bottom,
T/tN = 0.4, 1, 2, 3. (b) Contour plot of C as a function of U/tN

and �/tN at the temperature T/tN = 5.

leading to a monotonic decrease of Cβ . Consequently, the
topology of the contours of Cβ changes completely, as shown
in Fig. 4(b). Since the minimal model appears to describe the
full disordered model rather well qualitatively, it is reasonable
to assume that the phase diagram for the lattice model at finite
temperatures will change in a similar manner as Fig. 4(b). It

has also been pointed out that the weak superfluidity in the
so-called finger region, corresponding to the regions near the
wiggles in Fig. 2 in our case, can be easily suppressed by finite
temperature effects [17,23].

As a conclusion, we have proposed and solved a simple
double-well model which incorporates many key ingredients
of the disordered BH model. It strikingly captures a number
of novel features of the quantum phase diagram of the
full BH model. The “two negatives make a positive” effect
is expected to be a general feature when the strengths of
disorder and interaction are comparable. We believe that our
minimal model could be a simple theoretical paradigm for
understanding the details of the full disordered interacting
quantum phase diagram in many situations. We expect our
work will stimulate more theoretical studies to go beyond the
two-site model and take into account the long-range efforts in
a lattice for a complete understanding of the disordered BH
model.
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