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Flat bands, Dirac cones, and atom dynamics in an optical lattice
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We study atoms trapped with a harmonic confinement in an optical lattice characterized by a flat band
and Dirac cones. We show that such an optical lattice can be constructed which can be accurately described
with the tight-binding or Hubbard models. In the case of fermions the release of the harmonic confinement
removes fast atoms occupying the Dirac cones while those occupying the flat band remain immobile. Using exact
diagonalization and dynamics we demonstrate that a similar strong occupation of the flat band does not happen
in the bosonic case and furthermore that the mean-field model is not capable of describing the dynamics of the
boson cloud.
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Recent developments in manipulating cold atoms in optical
lattices have opened new avenues for studying correlation and
band structure effects in a controlled way [1–5]. One-, two-,
and three-dimensional lattices with a variety of lattice struc-
tures have been proposed, including the kagome lattice [6–9],
which was originally suggested by Syôzi [10] and studied
intensively in the condensed-matter physics mainly due to
its magnetic properties [11–14] and also thermodynamical
properties [15]. In a simple tight-binding (TB) model the
kagome lattice is characterized by a completely flat band,
meaning that the energy is independent of the wave vector
k and that electrons occupying this band are localized. The
flat-band Hubbard model is a paradigm for ferromagnetism
and has recently been reviewed by Tasaki [16].

The kagome lattice is one example of a whole class of
two- (2D) and three-dimensional (3D) lattice structures which,
in the TB model, produce a flat band [17,18]. In 2D these
structures include square and hexagonal lattices and can have
one or several flat bands as well as crossing points where
two bands open as circular cones leading to Dirac fermions,
as in graphene [19]. The Dirac fermions are also known to
lead to interesting magnetic properties [20]. Allowing also the
p states in each lattice site to be occupied even more freedom
to create flat bands and Dirac cones is obtained. Wu et al. [8]
have studied the honeycomb (graphene) optical lattice with
p electrons and demonstrated the atom localization is due to
the flat band of the system. Bercioux et al. [21] have shown
that the T3 “dice” lattice has two Dirac cones and a flat band.

One of the simplest flat-band lattices is the edge-centered
square lattice with three atoms in a unit cell [22], depicted
in Fig. 1. In the TB model this lattice has three bands, the
center band is flat and the upper and lower bands meet the
flat band at the corners of the Brillouin zone where the Dirac
cones open. This means that at the same energy the particle can
have an infinite effective mass (flat band) or a zero effective
mass (Dirac fermions). Recently Shen et al. showed that these
massless Dirac fermions can exhibit perfect all-angle Klein
tunneling [23]. This is the lattice of interest in the present
work.

We first show that a laser field can be used to create a
lattice which accurately produces a flat band and Dirac cones
meeting at the same energy. The band structure is described
with a TB model, or in the case of interacting atom, with a
Hubbard model [2]. In the case of fermions with only one

spin state (spinless fermions) the Hubbard model equals the
noninteracting fermions since the Pauli exclusion principle
prevents two similar fermions from occupying the same lattice
point and on-site interaction has no effect. This provides us a
simple way to study a dynamical problem; for example, what
happens when a harmonic confinement, keeping the atoms in
the central region of the lattice, is removed?

In the case of bosons the many-particle problem of the
Hubbard model becomes more complicated. In this case we
solve the problem with the Hubbard model for a small system
of only three particles. However, this already demonstrates
that (i) the boson system behaves differently than the fermion
system and (ii) that frequently used mean-field models (e.g.
Gross-Pitaevskii), where the boson system is described with
only one single-particle wave function, fail to describe the
dynamics correctly.

The results show that, when the harmonic confinement is
removed, some of the atoms fly away fast while some remain
stuck in the immobile flat-band states. We anticipate that this
kind of experiment can be carried out in the near future using
both bosonic and fermionic atoms.

The edge-centered square lattice with three atoms in a
unit cell is illustrated in Fig. 1. We consider fist a simple
TB model with only one state per lattice site, assume only
nearest-neighbor hopping, and neglect the so-called differen-
tial overlap between neighbors. The band structure can be
easily solved [24] by diagonalizing a 3 × 3 matrix for each 2D
wave vector q = (qx,qy), resulting in energy levels

ε1(q) = −t
√

4 + 2 cos(qxa) + 2 cos(qya),

ε2(q) = 0, (1)

ε3(q) = t
√

4 + 2 cos(qxa) + 2 cos(qya),

where t is the strength of the hopping integral between
nearest neighbors and a the lattice constant. The corresponding
wave vectors vi = (vc,ve1,ve2), where the three components
refer to the corner and edge sites in the unit cell, are
(s = √

4 + eiqxa + e−iqxa + eiqya + e−iqya)

v1(q) = (−s, 1 + e−iqya, 1 + e−iqxa),

v2(q) = (0, 1 + eiqxa, 1 + eiqya), (2)

v3(q) = (s, 1 + e−iqya, 1 + e−iqxa).
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FIG. 1. (Color online) Top left: Edge-centered square lattice
and its unit cell shown with a dashed line. Top right: Optimized
potential, Eq. (3), with equally deep minima. Bottom left: Three
lowest bands corresponding to the potential of Eq. (3). The cusps are
at the corners of the Brillouin zone. Bottom right: Arrows show the
suggested directions of the laser fields causing potentials like cos2 x,
cos2(x + y), and cos2(2x), corresponding to the two steep minima
and one shallow minimum.

The energy bands consist of a flat band at zero energy and
two bands symmetrically below and above the flat band. All
bands meet at points at the corners of the Brillouin zone,
qx = qy = π/a. The band structure is shown in Fig. 1. The
wave function of the flat band has zero amplitude at the corner
point of the square lattice. This is the reason for the flatness:
The particles in these states do not hop to the neighboring sites
and can be viewed as localized. The effective band mass of the
particles is thus infinite.

Close to the zero energy the two other bands form “Dirac
cones,” and the velocity of the particles is independent

of the energy, ε1,3(kx − π/a,ky − π/a) ≈ ∓ta
√

k2
x + k2

y/4 =
∓tak/4, where k is the distance from the point of the cusp.
The linear dispersion relation means a zero effective mass.
Interestingly, in this lattice we have at the same energy region
particles with zero effective mass and infinite effective mass.
Note that the cones appear to be symmetric to rather high
energies, indicating that most of the particles in the lowest and
uppermost bands have nearly equal velocities.

Next we will consider how such a simple TB lattice
could be constructed for cold atoms in an optical lattice.
We do not go into the details of the interactions between
the atoms and the laser fields [1–3], but simply assume that
the effective potential caused by the standing electromagnetic
waves can be described with trigonometric functions [cos2(x)
or equivalently cos(2x)]. Clearly a square lattice can be made
as − cos2(ax/π ) − cos2(ay/π ), having minima at lattice sites
R = (na,ma). Minima at the edge centers can be constructed
with functions cos2[a(x + y)/2] + cos2[a(x − y)/2]. How-
ever, with a linear combination of these two it is not possible
to construct proper potential barriers between corner end
edge sites and an additional shorter wavelength function of
− cos2(2ax/π ) − cos2(2ay/π ) has to be added. The potential

optimized to give the band structure similar to that of the TB
band structure is

VOL(x,y) = V0{−0.9[cos2(ax/π ) + cos2(ay/π )]

+ 0.496{cos2[a(x + y)/2] + cos2[a(x − y)/2]}
+ [cos2(2ax/π ) + cos2(2ay/π )]}, (3)

where V0 gives the energy scale (see the following paragraph).
The resulting potential (nine unit cells) is shown in Fig. 1.
The band structure corresponding to the potential (3) was
computed using a 26 × 26 real space grid in the square unit
cell with lattice constant a. The ∇2 differential operator
(in the Schrödinger equation) was approximated with the
nearest-neighbor grid points. Periodic boundary conditions
and Bloch’s theorem were employed for each k point.
The numerical parameters in Eq. (3) were determined by
minimizing the width of the flat band using 100 × 100 k points
in the Brillouin zone. Figure 1 shows the three lowest bands
computed for the potential (3).

The parameter V0 in Eq. (3) is related to the mass of the
atoms m and the lattice constant a as V0 ≈ 497h̄2/(2ma2)
(where the numerical factor 497 comes from fitting of the
band structure to that of the TB model).

The overall width of the three lowest bands is
7.65h̄2/(2ma2) while the width of the flat band is only
0.11h̄2/(2ma2), meaning that the dispersion of the flat band is
only 1.5% of the total width of the three bands. The potential
of Eq. (3) has, of course, an infinite number of other bands,
but there is a huge gap of 140h̄2/(2ma2) between the three
lowest bands and the next band. With this example we have
demonstrated that a proper combination of cosine potentials
can produce a band structure which, with a high accuracy,
gives energy bands similar to those of the simple TB model.
Figure 1 shows schematically the laser arrangement needed
for making such an optical lattice.

We assume that the atoms trapped by the optical lattice have
contact with a repulsive short-range potential and we assume
the interaction is so strong that only one atom is allowed in
each lattice site. The many-particle problem then reduces to the
Hubbard Hamiltonian. We first consider fermionic atoms with
only one spin state (spinless fermions). In this case the many-
particle problem is noninteracting, since the Pauli exclusion
principle already prevents two atoms from occupying the same
site.

In the actual experiments the optical lattice is superimposed
on a harmonic confinement which localizes the particles (with
repulsive interaction) in the central region of the lattice. By
putting enough atoms in the lattice, the harmonic confinement
guarantees that in the central region the occupation of each
lattice site is nearly one. This means that all three bands are
filled at the central region of the harmonic confinement.

Our interest is to see what happens when the harmonic
confinement is removed but the optical lattice is kept in
place. This dynamical problem is easily solved for N spinless
fermions. The procedure is as follows: We solve the TB model
in a large finite lattice with a harmonic confinement and
fill the lowest N single-particle states. This is the fermionic
ground state �0(0) at time zero. Next we remove the harmonic
confinement and expand the states with the confinement in
terms of the states �0 calculated without the confinement. The
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(a) time = 0 (b) time = 2.5

(c) time = 5 (d) time = 7.5

FIG. 2. (Color online) Time evolution of 50 fermionic atoms
when the harmonic confinement is removed. Darker color refers to
higher density, ranging from 0 to 1. (a) shows the initial state with the
harmonic confinement of strength Uh = 0.4 (in units of h̄2/2ma2),
and (d) the ‘final’ state when atoms trapped by the flat band stay
localized while other atoms have flown away.

time dependence follows then from the time dependencies of
each individual state as

�0(t) =
∑

j

Cje
−iEj t/h̄�0

j (0), (4)

where Ej is the energy of the many-particle state j . In the case
of spinless fermions where each state is a Slater determinant
of single-particle states the time dependence further reduces
to the time dependencies of the single-particle states.

In practice we solved up to 100 atoms in a lattice of
25 × 25 unit cells. We use TB units with the hopping parameter
t = 1 and the nearest-neighbor distance b = a/2 = 1. The
harmonic confinement adds to diagonal terms to the TB
Hamiltonian matrix: Placing the center of the finite lattice
at the origin, the harmonic confinement changes the energy
level of a lattice site by Uhr

2, where Uh is the strength of
the harmonic confinement and r the distance of the lattice site
from the origin (in units of the lattice constant). Figure 2 shows
an example of such a simulation. The Harmonic confinement
localizes the atom cloud at the center of the finite lattice. The
maximum density is at the edge sites of the unit cell with
occupation about 0.8, while at the corner sites it is about
0.6. When the harmonic confinement is removed, the cloud
fast expands [Figs. 2(b) and 2(c)], but some of the atoms
stay trapped at the edge sites [Fig. 2(d)], forming a lattice of
localized atoms. The occupation of the edge states remains
close to 0.5. The TB band is exactly flat, so the atoms that are
trapped in Fig. 2(d) stay trapped forever.

The explanation of the observed dynamics is a direct result
of the single-particle properties of noninteracting fermions:
Those occupying the bands 1 and 3 are mobile and fly quickly
away (at the Dirac cones even with the same velocity), while
atoms occupying the flat band are immobile and stay in place.
Notice that the corner states of the unit cell are emptied since
the flat band does not have any amplitude in these sites.

The bosonic many-particle problem is usually simpler than
the fermionic case due to the symmetry of the wave function.
In our case, however, this is not the case. Even if we assume an
infinitely strong contact interaction, the bosonic case remains
a true many-particle problem, although the boson and fermion
problems are related [25]. A common approach is to use a
mean-field model for the Hubbard Hamiltonian (this is closely
related to the Gross-Pitaevskii [26,27] model): The interaction
term U (n̂i − 1)n̂i is replaced with U (〈ni〉 − 1)n̂i (where n̂i is
the occupation number operator). The first approximation is
to assume that all the bosons occupy the same quantum state
determined by the external confinement.

Making the interaction U very large, we prevent the
occupation of any lattice site to be much larger than one. In the
harmonic confinement we can then get the initial atom density
to be qualitatively similar to that of the fermionic case and one
would expect that by expanding the self-consistent bosonic
ground state in terms of the single-particle band states also the
flat band would be markedly occupied. However, this is not the
case. The occupation of the flat-band state remains less than
2% even when the interaction strength U is extrapolated to
infinity. This means that when the confinement was removed,
practically all the atoms of the cloud escape quickly.

In order to understand if the boson system behaves truly
differently than the fermion system, or if it is the mean-
field approach which is not appropriate for our system, we
performed a small-scale exact diagonalization of the Hubbard
Hamiltonian. The test size was 3 × 3 unit cells with periodic
boundary condition, that is, 27 sites altogether as shown in
Fig. 3. We assumed infinitely strong repulsive interaction
between the atoms (U = ∞) which reduced the boson basis
to states having at most one atom in a lattice site. Initially
the atoms were localized in a small region with strong
attractive potentials in five adjacent sites as shown in Fig. 3.
By diagonalizing the Hubbard Hamiltonian for three bosons
(and fermions) with and without the attractive potentials
at five sites, the time evolution could be solved exactly
using Eq. (4).

The time evolution is shown in Fig. 3 for bosons and
fermions. In the case of fermions the results are qualitatively
similar to those of the larger systems described previously.

0 1 2 3 4 5
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FIG. 3. (Color online) Left: Finite lattice used, with periodic
boundary conditions, for solving the Hubbard model for three bosons
or fermions. The initial potential at the cites denoted by red (dark
gray) and blue (light gray) were −20t and −5t , respectively. Right:
Time dependence of the occupation of red (dark gray) and blue (light
gray) sites after the potential of these sites were put to zero. Solid lines
are the results for fermions and the thick dashed lines are the results
for bosons. The thin dashed lines are results for a single-particle state
with the same initial density as the exact boson result, indicating that
the mean-field solution fails in this case. The time is in units of h̄/t .
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After a short time the atom density at the corner site decreases
to nearly zero while at the edge sites it stays quite large,
averaging to a value of about 0.3 after initial oscillations.
In the case of bosons the initial time dependence is very
similar, but soon both center and edge sites average to the
same value of about 0.1, which is close to the average filling
of the lattice 3/27 = 1/9. Figure 3 also shows the time
evolution of a single state which initially had the same density
distribution as the bosonic case. Clearly, this time evolution
is qualitatively different indicating that a mean-field (single
state) approximation for the bosonic system cannot describe
correctly the time evolution in the present case.

In conclusion, we have shown that by using cosine functions
a rather simple lattice can be constructed, which has a flat

band and Dirac cones meeting at the same energy. The three
lowest bands of the lattice can be accurately described with
a simple tight-binding model with only one state per site. By
confining atoms with a harmonic confinement in such a lattice,
fermion atoms stay trapped in the flat-band states even when
the harmonic confinement is removed.

The case of bosons is more complicated and requires
further study. Using the Hubbard model with infinitely strong
interaction (U → ∞) we demonstrated that the trapping of
the bosons is not as strong as in the case of fermions. A
similar result was obtained with the mean-field approximation
for bosons, although comparison to the exact solution of the
Hubbard model indicated that the mean-field model fails to
describe the boson dynamic correctly in the system studied.
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