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Optimized driving of superconducting artificial atoms for improved single-qubit gates

J. M. Chow,1 L. DiCarlo,1 J. M. Gambetta,2 F. Motzoi,2 L. Frunzio,1 S. M. Girvin,1 and R. J. Schoelkopf1

1Departments of Physics and Applied Physics, Yale University, New Haven, Connecticut 06520, USA
2Department of Physics and Astronomy, Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

(Received 7 May 2010; published 27 October 2010)

We employ simultaneous shaping of in-phase and out-of-phase resonant microwave drives to reduce single-
qubit gate errors arising from the weak anharmonicity of transmon superconducting artificial atoms. To reduce
the effect of higher levels present in the transmon spectrum, we apply Gaussian and derivative-of-Gaussian
envelopes to the in-phase and out-of-phase quadratures, respectively, and optimize over their relative amplitude.
Using randomized benchmarking, we obtain a minimum average error per gate of 0.007 ± 0.005 using 4-ns-wide
pulses, which is limited by decoherence. This simple optimization technique works for multiple transmons
coupled to a single microwave resonator in a quantum bus architecture.
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The successful realization of quantum information process-
ing hinges upon the ability to perform high-fidelity control
(gates) of quantum two-level systems or qubits. A value
of 10−4 error per gate (EPG) is typically quoted as the
necessary threshold for fault-tolerant quantum computation
[1,2], although more recent work [2] using two-dimensional
codes place this level closer to 10−3. For any qubit, the
optimal achievable gate performance is set by the ratio of
gate time to coherence time. However, quantum information
processing architectures often approximate qubits by two
levels of quantum objects with multilevel structure. Effective
single-qubit gates are realized with driving fields resonant with
the two-level transition. Leakage outside the qubit subspace
and phase shifts induced by the presence of other levels can
dominate the effective single-qubit gate error. It is an important
practical challenge to minimize these deleterious effects using
simple optimization schemes that are also applicable in a
multiqubit setting.

Optimization of coherent drives for single-qubit gates in
large Hilbert spaces has previously been investigated for ion
trap [3] and nuclear magnetic-resonance [4] systems, where
systematic phase errors rather than decoherence dominate
gate performance. The addition of off-resonant drives and
dynamical detuning were shown to reduce the dominant
phase error. In superconducting quantum circuits, in contrast,
single-qubit gate performance typically has been dominated by
decoherence. Until recently, it has been possible to decrease
single-qubit gate errors to ∼1% using shorter and shorter
coherent drives [5]. However, at gate times of ∼10 ns, the
weak anharmonicity in superconducting artificial atoms, such
as the transmon [6] or the phase qubit [7] presents an apparent
impasse. Furthermore, with recent progress in coupling more
qubits [8], performing quantum algorithms [9], and detecting
entanglement [10,11], the further improvement of effective
single-qubit gates in an ever larger Hilbert space becomes an
important next step.

In this Rapid Communication, we implement a simple
control protocol to improve single-qubit gates in a circuit
QED device with two superconducting transmons. We use
pulse shaping of a single coherent drive following the recent
theoretical exploration [12] of derivative removal via adiabatic
gate (DRAG) to simultaneously suppress leakage and phase
errors. We demonstrate the improvement of single-qubit gates

on both transmons using the first-order correction in DRAG,
by switching from rotations induced by Gaussian-enveloped
microwave tones to rotations performed using Gaussian and
derivative-of-Gaussian envelopes on two quadratures. We tune
up the pulses using a set of calibration rotation experiments
with results that agree with the model outlined in Ref. [12].
Randomized benchmarking (RB) is employed to show the
reduction of the average single-qubit gate error [5,13,14]. For
the shortest gate width of 4 ns, we find an improvement by a
factor of ∼15 down to a minimum EPG of 0.007 ± 0.005. This
is a factor ∼3 improvement over the lowest EPG attainable
using only Gaussian pulses, but more importantly is at the limit
imposed by two-level decoherence and the current experimen-
tal instrumentation. Independently, the DRAG technique has
also been implemented at the University of California at Santa
Barbara with phase qubits [15].

The DRAG control technique of Ref. [12] prescribes a
simple pulse-shaping protocol for reducing single-qubit gate
errors due to the presence of a third level. Neglecting the
cavity, which is detuned away from any transitions, the driven
three-level system, or qutrit, is described by the Hamiltonian,

H = h̄
∑

j=1,2

[ω0,j |j 〉〈j | + E(t)λj (σ+
j + σ−

j )], (1)

where σ−
j = |j − 1〉〈j | and σ+

j = |j 〉〈j − 1| are lowering and
raising operators, ω0,j are transition energies to the ground
state, and λ1 = 1, λ2 = λ = �1,2/�0,1, give the relative drive
coupling strengths of the 0 ↔ 1 and 1 ↔ 2 transitions, �0,1

and �1,2, respectively. We can define the anharmonicity of
the system as the difference between the 0 ↔ 1 and 1 ↔ 2
transition frequencies α1 = ω1,2 − ω0,1. The drive is only
turned on for a fixed gate duration tg and given by E(t) =
Ex(t) cos (ωdt) + Ey(t) sin (ωdt), where Ex,y are independent
quadrature controls.

Given a large |α1| � ω0,1, the effective Rabi drive rate
�1,2 to induce any direct or time-dependent transitions to
|2〉 can be negligible. However, for a system such as the
transmon, |α1| is only ∼3%–5% of ω0,1. There are two
specific gate errors that arise due to this reduced anharmonicity.
With a non-negligible �1,2, it becomes possible for the gate
targeting the 0 ↔ 1 transition to directly populate |2〉, leaving
the qubit subspace. However, a second and more dominant
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FIG. 1. (Color online) (a) Gaussian and derivative pulse shapes
applied to the in-phase and quadrature control channels, respectively,
for implementing DRAG to first order. (b) Measured 〈σz〉 on transmon
L [semitransparent red (lightly shaded) bars], after applying the
indicated pairs of π and π/2 rotations to the ground state. The
slash-filled bars correspond to a master-equation simulation of a
three-level system with parameters of the sample tested. The gray
(darker shaded) bars reflect ideal values. (c) Similarly measured 〈σz〉
on transmon L but using DRAG pulses with derivative scale factor
βL = 0.4 [semitransparent (lightly shaded) bars], also overlaid on the
ideal values [gray (darker shaded) bars].

error is a temporary population of |2〉 during the course
of a control pulse to the 0 ↔ 1 transition, leading to the
addition of a phase rotation to the intended gate. Although
Gaussian control pulses [characterized by a standard deviation
σ , see Fig. 1(a)] are often the paradigm due to their narrow
frequency bandwidth B = 1/2πσ , leakage errors can occur as
gate times are reduced such that B is comparable to |α1|. A
simplified correction protocol for leakage errors prescribed in
Ref. [12] is to apply an additional control on the quadrature
channel Ey(t) = βĖx(t) and a dynamical detuning of the drive
frequency δ(t) = Ex(t)2(λ2 + 4βα1)/4α1λ, where β is a scale
parameter. For this paper, we adopt the simplified picture of
a qutrit driven without dynamical detuning [16] such that the
optimal β = −λ2/4α1.

The experiments are performed in a circuit QED sample
consisting of two transmons coupled to a coplanar waveguide
resonator. The sample fabrication and experimental setup
are described in Ref. [9]. The two transmons (designated
L and R) are detuned from one another with ground- to
excited-state (0 ↔ 1) transition frequencies of ω

L,R
0,1 /2π =

8.210,9.645 GHz, and the ground-state cavity frequency is
ωC/2π = 6.902 GHz. The anharmonicities of the transmons
are found using two-tone spectroscopy measurements [17]

to be α
L,R
1 = −330,−300 MHz, and coherence times are

measured to be T
L,R

1 = 1.2,0.9 µs and T
∗L,R

2 = 1.5,1.1 µs.
To implement DRAG to first order and perform single-

qubit gates on the transmons, we use an arbitrary-wave-form
generator (Tektronix 5014, 1 GS/s, 250-MHz bandwidth) to
shape microwave-frequency pulses through a vector genera-
tor (Agilent E8267D), permitting rotations about either the
x or the y axis of each qubit. We fix the drive frequency at
ω0,1, and the pulse amplitudes and phases define the rotation
angle and axis orientations, respectively. When performing an
x rotation, Ex(t) is a Gaussian pulse shape [Fig. 1(a)], while
the derivative of the Gaussian is applied simultaneously on
the other quadrature Ey(t) = βĖx(t). All of the pulses are
truncated to 2σ from the center, and a buffer time of 5 ns
ensures complete separation between concatenated pulses.

A simple test sequence is used to optimize the scale
parameter β as well as to demonstrate the effect of using
first-order DRAG pulses versus single-quadrature Gaussians.
The sequence consists of pairs of π and π/2 pulses around both
the x and the y axes. An important feature of this sequence is
that the final average z projection of the single qubit 〈σz〉 will
ideally take on values from the set S = {+1,0,−1}, making
any deviations easily visible.

Using Gaussian pulse shaping with σ = 1 ns and imple-
menting the test sequence for transmon L, we find significant
deviations from S, as shown in the solid red (lightly shaded)
bars of Fig. 1(b). The theoretical results for each pair of
rotations are shown with solid gray (darker shaded) bars
in the background. Note that there are some concatenated
rotations for which |〈σz〉| > 1, which is because the mea-
surement calibration is performed using a π pulse, which
is itself nonideal and plagued by the same errors induced
by the third level. We observe that the errors are large and
systematic. They are a combination of both leakage and phase
rotations.

We repeat the same test sequence but applying the derivative
of the Gaussian to the quadrature channel. By varying β, it is
possible to find an optimal value such that the measurements
of 〈σz〉 agree very well with the theoretical predictions. The
semitransparent red (lightly shaded) bars of Fig. 1(c) show
measured 〈σz〉 for transmon L using β = 0.4. Here, deviations
from the ideal gray (darker shaded) bars decrease to <2%.
Also, we have applied the DRAG protocol for transmon R,
finding the optimal value β = 0.25 (data not shown). From
the experimental determination of β and α1, we can infer
the second excited state coupling strengths λL,R = 1.82,1.41,
(
√

2 without the presence of the cavity). Using λL and the
three-level model of Eq. (1), a master equation simulation for
the Gaussian shaping gives the red slash-filled bars in Fig. 1(a),
in good agreement with the experiment.

We can understand the deviation of λ from
√

2 due to the
cavity modifying the drive strengths �0,1 and �1,2 via its
filtering effect as well as its different coupling to higher levels
of the transmon. Specifically, for a transmon in a cavity, we
have

�j−1,j = gj−1,j

ωC − ωj−1,j

, (2)

where j = 1,2 for the transmon excitation level and gi,j is the
matrix element coupling the i ↔ j transmon transition to the
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cavity [6]. Using the relevant parameters of the two transmons
in the experiment and including only the fundamental mode
of the cavity, we find λL,R = 1.85,1.57, within 12% of those
determined from the test sequence. There are other corrections
to λ due to the higher modes of the cavity, however, these can
be difficult to estimate as a result of cutoff dependence.

We characterize the degree of improvement for single-qubit
gates by using the technique of RB [13]. RB allows us
to determine the average EPG through the application of
long sequences of alternating Clifford gates (Rπ/2

x,y ) and Pauli
gates, chosen from {1,Rπ

x ,Rπ
y ,Rπ

z } [18]. We use the RB
pulse sequences originally given in Ref. [13] and adapted
to superconducting qubits in Ref. [5] for both the Gaussian
and the derivative pulse shaping for transmon L. We truncate
the randomized sequences at various lengths and compare
the resulting measurement of 〈σz〉 to the ideal final state to
obtain the gate fidelity F [5]. There is an exponential decrease
in F with an increasing number of gates in the randomized
sequences. This RB protocol is then repeated for various pulse
widths σ ∈ {1,2,3,4,6} ns.

Using the Gaussian shaping, we find a large reduction in
fidelity with the shortest pulses σ = 1 ns [Fig. 2(a)]. The
scattered gray points give F for 32 different randomized
sequences applied as a function of the number of gates in
the sequences. When averaged together, we observe a simple
decay of F̄ as a function of the number of gates (solid black
squares). Fitting the data with an exponential decay (solid
black line), we extract an average EPG, EPG = 1 − F̄ of
0.13 ± 0.02. However, when employing the first-order DRAG,
we find a dramatic improvement in the gate performance at
σ = 1 ns [Fig. 2(b)]. There is a significant reduction in the
spread of the gray points corresponding to all the different
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FIG. 2. Randomized benchmarking for transmon L with σ = 1 ns
using (a) Gaussian pulses, and (b) additional Gaussian derivative
pulses on the quadrature channel. The scattered gray points are
extracted fidelities for 32 RB sequences, truncated at different
numbers of gates. A remarkable reduction in the extracted average
EPG (black squares) of the benchmarking results is observed going
from (a) to (b). The error bars indicate the variance of all the RB
sequences and are smaller than the squares in (b).
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FIG. 3. (Color online) Comparison of single-qubit gate errors
with and without DRAG. EPG for the left qubit extracted from RB
for different gate lengths using both Gaussian pulses (red squares) and
first-order DRAG pulses (blue dots) down to σ = 1 ns, the shortest
permissible by the arbitrary waveform generator. Excellent overlap of
the EPG with theory (black solid line) suggests that the DRAG pulses
successfully eliminate the errors due to the presence of higher levels.
Using DRAG, we reach EPG down to 0.007, which is otherwise
unattainable on this sample with Gaussian pulses.

randomized sequences, and a fit (solid black line) to the
exponential decay of the average fidelity (solid black squares)
gives EPG = 0.007 ± 0.005.

Figure 3 summarizes the improvement to EPG for different
σ by using DRAG. The solid squares are the EPG found using
Gaussians, revealing a minimum of 0.02 ± 0.007 at σ = 3 ns,
before considerably increasing for shorter pulse lengths. Ex-
cellent agreement is found with a master equation simulation
(dashed line) of the gate error for a qutrit system incorporating
only decoherence times and coupling strengths measured in
independent experiments. Using first-order DRAG, we find
the solid circles in Fig. 3, which follow a monotonic decrease
in EPG with decreasing σ . Here again, we have included a
master equation prediction (solid line) of just a single qubit
with the same parameters, also giving excellent agreement with
the experimentally determined values and demonstrating that
DRAG has effectively reduced the response of the transmon
to that of a qubit.

Finally, implementing DRAG on both transmons simul-
taneously, we can produce and detect two-qubit states with
high accuracy. Performing state tomography to obtain the
two-qubit density matrix ρ via joint readout [11,19] requires
15 linearly independent measurements, corresponding to the
application of all combinations of I , Rπ

x , R
π/2
x , and R

π/2
y on

the two qubits prior to measurement. Thus, errors in these
single-qubit rotations applied simultaneously on both qubits
can result in incorrect determination of ρ. The two-qubit Pauli
set 	P [11] can be used to visualize ρ for the state |1〉L ⊗ |1〉R

having used Gaussian [Fig. 4(a)] and DRAG [Fig. 4(b)] pulse
shaping. 	P consists of ensemble averages of the 15 nontrivial
combinations of Pauli operators on both qubits. The ideal 	P
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FIG. 4. (Color online) Measured two-qubit Pauli sets for state
|1,1〉 with (a) Gaussian pulses and (b) DRAG pulses (βL = 0.4, βR =
0.25) applied to the quadrature channels of both transmons L and R.
The ideal Pauli set is shown in dark gray.

of the state is characterized by unit magnitude in 〈ZI 〉, 〈IZ〉,
and 〈ZZ〉 and zero for all other elements. We can see that
with the standard Gaussian pulse shaping, there are substantial
(∼50%–100% of unity) deviations on ideally zero elements,
whereas with the DRAG pulses, the Pauli set bars are very
close to their ideal values.

By implementing a simple approximation to the optimal
control pulses for a multi-transmon coupled-cavity system,
we have reduced gate errors below the 10−2 level, limited by
decoherence. The agreement of the various experiments with
and without DRAG pulse shaping with a qutrit model reflects
that gate errors due to the coupling to a higher excited state
can be minimized while continuing to shorten gate time. The
limitations of DRAG and optimal control can be explored in
the future with a tenfold decrease in gate time to approach
∼1 ns through improved electronics and a tenfold increase in
coherence times to ∼10 µs, placing us right at the quoted
10−4 fault-tolerant threshold [12]. Furthermore, DRAG is
extendable to systems of more than two multilevel atoms
for quantum information processing, and has already been
employed to enhance single-qubit gates in a circuit QED device
with four superconducting qubits [20].
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