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Estimating Turaev-Viro three-manifold invariants is universal for quantum computation
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The Turaev-Viro invariants are scalar topological invariants of compact, orientable 3-manifolds. We give a
quantum algorithm for additively approximating Turaev-Viro invariants of a manifold presented by a Heegaard
splitting. The algorithm is motivated by the relationship between topological quantum computers and (2 + 1)-
dimensional topological quantum field theories. Its accuracy is shown to be nontrivial, as the same algorithm,
after efficient classical preprocessing, can solve any problem efficiently decidable by a quantum computer. Thus
approximating certain Turaev-Viro invariants of manifolds presented by Heegaard splittings is a universal problem
for quantum computation. This establishes a relation between the task of distinguishing nonhomeomorphic
3-manifolds and the power of a general quantum computer.
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The topological quantum computer is among the most
striking examples of known relationships between topology
and physics. Such a computer encodes quantum information in
a quantum medium on a two-dimensional (2D) surface, whose
topology determines the ground space degeneracy. Surface
deformations implement encoded operations, and can apply
arbitrary quantum circuits. It is natural to try to identify the
topological origin of this computational power.

One answer is that the power stems from the underlying
(2 + 1)D topological quantum field theory (TQFT) [1]. The
TQFT assigns a Hilbert space H� to a 2D surface �, and
a unitary map U (f ) : H� → H�′ to every diffeomorphism
f : � → �′, subject to a number of axioms [2]. However,
this answer is not fully satisfactory; the definition of a TQFT is
involved, and uses mathematics that appears in similar form in
the theory of quantum computation. A second answer, arising
in [3–6], is that quantum computers’ power comes from their
ability to approximate the evaluation, at certain points, of the
Jones polynomial of the plat closure of a braid.

Here we give an alternative topological description of the
power of quantum computers, in terms of the Turaev-Viro
3-manifold invariants. Restricting TQFTs to closed manifolds
results in scalar invariants. We show that approximating certain
such invariants is equivalent to performing general quantum
computations. That is, we give an efficient quantum algorithm
for additively approximating Turaev-Viro invariants, and
conversely we show that for any problem decidable in
bounded-error, quantum polynomial time (BQP), there is
an efficient classical reduction to the Turaev-Viro invariant
approximation problem. The classical procedure outputs
the description of a 3-manifold whose certain Turaev-Viro
invariant is either large or small depending on whether the
original BQP algorithm outputs 1 or 0.

Turaev and Viro [7] defined a family of invariants for
compact, orientable 3-manifolds. Each invariant, for k ∈ N,
is specified by algebraic data derived from the quantum
group SO(3)k . These data include �k/2� + 1 inequivalent
irreducible representations, commonly referred to as particles
or topological charges. Particle i has quantum dimension
di > 0. Furthermore, a certain six-index tensor F

ijm

kln , known as
the quantum 6j symbol, encodes the associativity for triples of
representations.

Any compact 3-manifold M is homeomorphic to a finite
collection of tetrahedra glued along their faces [8]. Beginning
with such a triangulation, assign F to each tetrahedron and a
d, interpreted as a gluing tensor, to every edge. The invariant
TVk(M) is the contraction of this tensor network, which can
be expanded as

TVk(M) = D−2|V | ∑

labelings

∏

edges

dh

∏

tetrahedra

F
ijm

kln√
dmdn

. (1)

Here, the sum is over edge labelings of the triangulation by
particles of SO(3)k . The index h is the particle associated to
an edge, while i,j,k,l,m,n are the particles associated to the
six edges involved in a tetrahedron, ordered appropriately [7].
The prefactor depends on the number |V | of vertices in the
triangulation and the total quantum dimension D =

√∑
i d

2
i

of SO(3)k . The topological invariance of TVk(M) follows from
the fact that any two triangulations of M can be related by a
finite sequence of local moves [9] which leave (1) invariant.

Instead of by a triangulation, we will assume that the
manifold M is presented by a “Heegaard splitting.” Consider
two genus-g handlebodies (e.g., the solid torus for g = 1).
They can be glued together, to give a 3-manifold, using
a self-homeomorphism of the genus-g surface. The set of
orientation-preserving self-homeomorphisms modulo those
isotopic to the identity form the mapping class group MCG(g)
of the surface. It is an infinite group generated by the 3g − 1
Dehn twists illustrated in Fig. 1. A Heegaard splitting thus
consists of a natural number g and an element x ∈ MCG(g),
defining a manifold M(g,x). The element x is specified as a
word in the generators, of length |x|. Every compact, orientable
3-manifold has a Heegaard splitting.1 Our result is as follows:

1This representation is unique up to (i) a “stabilization” move
(g,x) ∼= (g + 1,x̃) obtained by taking the connected sum with
a 3-sphere and using a standard genus-1 Heegaard splitting of
the latter, and (ii) multiplications x ∼= yxz by elements y,z

of the subgroup MCG+(g) ⊂ MCG(g) of self-homeomorphisms
of the genus-g surface which extend to self-homeomorphisms of
the handlebody [11–13].
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FIG. 1. A Dehn twist is a 2π rotation about a closed curve. The
Dehn twists about the 3g − 1 curves shown above generate the full
mapping class group of the genus-g surface [10].

Theorem 1. For any fixed k � 3, there is a quantum algo-
rithm that, given a Heegaard splitting M(g,x) and constants
δ,ε > 0, runs in time poly(g,|x|, log 1/δ,1/ε) and, except with
probability at most δ, outputs an estimate of k(M(g,x)) to
within ±D2(g−1) ε.

Conversely, for k � 3 such that k + 2 is prime, it is BQP-
hard to decide whether D2(1−g) TVk(M(g,x)) is greater than
2/3 or less than 1/3. More precisely, given any quantum circuit
ϒ of T two-qubit gates acting on n qubits |0n〉, with output
either 0 or 1, one can classically find in polynomial time a
word x in the standard Dehn-twist generators of MCG(g),
with g = n + 1 and |x| = poly(T ), such that

∣∣ Pr[ϒ outputs 1] − D2(1−g) TVk(M(g,x))
∣∣ < 1/6. (2)

In previous work, Garnerone et al. [14] have given a
quantum algorithm for estimating the Turaev-Viro invariants
for a manifold presented by Dehn surgery, but the hardness
of their estimation remains open. In an unpublished article,
Bravyi and Kitaev [15] have given an efficient classical algo-
rithm to approximate the Turaev-Viro invariant for the SU(2)2

group. They also prove that estimating the SU(2)2 Turaev-Viro
invariant of a 3-manifold with boundary, presented using
Morse functions, is BQP-complete. Allowing a boundary is
a crucial difference, as it allows feeding in certain “magic”
states, as labelings of the boundary components, to obtain
universality. Our approach using Heegaard splittings and
SO(3)k is complementary and provides a concise formulation
of a BQP-complete problem for closed manifolds, without
requiring magic states.2

As in this previous work, our proof of Theorem 1 begins
not with Eq. (1), but with an alternative formulation of the
Turaev-Viro invariant in terms of the Witten-Reshetikhin-
Turaev (WRT) invariant [17,18]:

TVk(M) = |WRTk(M)|2. (3)

This was shown by Turaev [19] and Walker [2] (see too
[20,21]). The WRT invariant itself has multiple equivalent
definitions. Unlike the previous work that used a definition
based on a Dehn-surgery presentation of M , we will use the
Crane-Kohno-Kontsevich formulation [22–24] of the WRT
invariant. This is given by

WRTk(M(g,x)) = Dg−1〈vk,g|ρk,g(x)|vk,g〉. (4)

2Furthermore, a quantum algorithm of Arad and Landau [16] can
efficiently approximate the Turaev-Viro invariants for a manifold
presented by a triangulation, but the naive algorithm’s approximation
factor will be trivial.

FIG. 2. (Color online) Three examples of decompositions of the
genus-2 surface �2 into three-punctured spheres. Trivalent adjacency
graphs of the punctured spheres are shown in red.

Here |vk,g〉 is a certain unit-normalized vector in a Hilbert space
Hk,g , and ρk,g : MCG(g) → GL(Hk,g) is a certain projective
representation.3 Equivalence of the definitions is shown in
[25]; see also [26], Sec. 2.4.

We now briefly describe the objects Hk,g , ρk,g and |vk,g〉.
Further details are in [22–24,27]. First, fixing a particular k, the
quantum group SO(3)k has a distinguished trivial particle 0 and
specifies fusion rules, quantum dimensions di , the quantum
6j symbol F

ijm

kln , and the R matrix R
jk

i . These tensors satisfy
algebraic identities discussed in, e.g., [27,28].

Let g ∈ N, g � 2. The space Hk,g can be defined by
specifying an orthonormal basis. Decompose the genus-g
surface �g into three-punctured spheres (or “pants”) by cutting
along 3g − 3 noncontractible curves, as illustrated in Fig. 2.
Dual to such a decomposition is a trivalent graph �. A basis
vector |�〉� is a fusion-consistent labeling of the edges of �

by particles of SO(3)k . Fusion consistency is defined by the
fusion rules, i.e., a set of triples of labels that are allowed
to meet at every vertex. Define the states B� := {|�〉�}� to be
orthonormal, and their span to beHk,g . Note that this definition
gives a natural encoding of Hk,g into qudits, with one qudit to
store the label of each edge of �.

The above definition depends on �, but alternative pants
decompositions simply represent different bases B� for the
same Hilbert space. To convert between all possible pants
decompositions of �g , two identities are needed:

=
n

F ijm
kln

, (5)

=
k

Si
jk

. (6)

3Invariance follows essentially from the fact that |vk,g〉 is invariant
under the action of MCG+(g). As the representation is projective,
WRTk is a 3-manifold invariant only up to a multiple of e2πic/24

where c is the so-called central charge.
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The F move, in Eq. (5), relates bases that differ by a “flip”
of a cut between two three-punctured spheres. In the qudit
encoding, it is a five-qudit unitary, with four control qudits.
The S move, in Eq. (6), applies when two boundaries of a
single three-punctured sphere are connected. It is a two-qudit
unitary, with one control qudit.

As discussed in [2], Si
jk can be computed from the quantum

dimensions, the 6j symbols, and the R matrix by the identity

DSi
jk = DSi

jk

∑

l

F ikk
ljj

dl√
di

R
kj

l R
jk

l = i
k

j
,

where the sum is over all l such that (j,k,l) is fusion consistent.
(The last expression uses ribbon graph notation. It reduces to
the Hopf link when i is the trivial particle, giving the usual
S matrix which diagonalizes the fusion rules according to the
Verlinde formula.)

The action ρk,g of MCG(g) on Hk,g can now be specified
by the action of the Dehn-twist generators on basis vectors.
For a Dehn twist about a curve σ , apply a sequence of F and S

moves to change into a basis B� , i.e., a pants decomposition of
�g , in which σ divides two three-punctured spheres. In such a
basis, the Dehn twist acts diagonally: if the edge of � crossing
σ has label i, the twist applies a phase of Rii

0 (or its conjugate,
depending on the direction of the twist).

To complete the definition of WRTk(M(g,x)) from Eq. (4),
it remains to define the state |vk,g〉. Pants-decompose �g such
that every cut through a handle is meridional, as illustrated on
the right-hand side of Eq. (6). The dual graph � to one such col-
lection of cuts is illustrated in Fig. 3(a). Then |vk,g〉 is the state
in which every edge of � is labeled by the trivial particle 0.

Theorem 1 will follow from locality and density properties
of the representations ρk,g . The importance of such properties
of mapping class group representations has been recognized
earlier in the context of topological quantum computation,
where the focus is most commonly on punctured spheres
and quantum circuits are translated into closed links (arising
from braids) [1]. In contrast, we deal with genus-g surfaces,
translating circuits into closed 3-manifolds and relating them
to invariants.

x1

0

x2

x2

(a)

(b)

xg

0 0· · ·

FIG. 3. (Color online) (a) A g-qubit state |z〉, z ∈ {0,1}g , can be
encoded into Hk,g for the genus-g handlebody. (b) Any two-qubit
gate can be approximated within the codespace using the Dehn twists
involving the two corresponding handles.

Let us now prove Theorem 1. The Turaev-Viro and WRT
invariants for M(g,x) can be approximated essentially by
implementing ρk,g(x). The algorithm maintains a classical
register storing the graph �, together with a quantum register
containing the current state in Hk,g in the basis B� . The
algorithm uses an N -dimensional qudit for each edge of
�, where N = �k/2� + 1 is the number of particle types in
SO(3)k . The action ρk,g(xj ) of the j th Dehn twist can be
applied by using a sequence of F and S moves, i.e., certain
local unitaries, to change to a basis in which xj acts diagonally.
Since xj is one of the generators from Fig. 1, starting with the
graph � of Fig. 3(a) (for which every edge is labeled 0 in
|vk,g〉) at most one F and one S move are needed. An estimate
to within ε of the desired matrix element 〈vk,g|ρk,g(x)|vk,g〉
can be given, except with probability δ, using O(log(1/δ)/ε2)
Hadamard tests, as in [3].

To prove BQP-hardness we reduce from the BQP-complete
problem of deciding whether |〈0g|ϒ |0g〉|2 is larger than 5/6 or
less than 1/6, given the g-qubit quantum circuit ϒ [3]. Fix k �
3 such that k + 2 is prime. Given ϒ consisting of T two-qubit
gates, our aim is to construct efficiently the Heegaard splitting
(g,x) of a manifold M = M(g,x) such that D2(1−g)TVk(M)
approximates |〈0g|ϒ |0g〉|2. As illustrated in Fig. 3(a), we use
one handle of a genus-g handlebody to encode each qubit.
Such a labeling is fusion consistent, and the encoding of the
initial state |0g〉 is exactly |vk,g〉 ∈ Hk,g . As shown in [29,30],
by our choice of k the representation ρk,g has a dense image,
up to phases, in the group of unitary operators on Hk,g for
g � 2.

By the density for g = 2 and the Solovay-Kitaev theorem
[31], it follows that any two-qubit gate can be approximated in
the codespace to precision 1/(6T ) by applying a (log T )c-long
sequence of the five Dehn twists shown in Fig. 3(b) for some
constant c. Thus we obtain a polynomial-length word x =
x1 · · · xT (log T )c in the Dehn-twist generators whose action ap-
proximates ϒ on the codespace. Then 〈vk,g|ρk,g(M(g,x))|vk,g〉
approximates 〈0g|ϒ |0g〉.

This completes the proof. We remark that our results
generalize as follows. The topological invariance of TVk

follows from certain properties of the category of irreducible
representations of SO(3)k . Barrett and Westbury [32] showed
that more generally, any spherical category gives rise to a
3-manifold invariant.4 Similarly, our algorithm also applies
to any multiplicity-free unitary modular tensor category. The
hardness result requires density and thus applies also to, e.g.,
SU(2)k for k � 3 and k + 2 prime [29,30].

The additive approximation error in Theorem 1 is exponen-
tial in g. Complexity-theoretic reasons make it unlikely that
a multiplicative or otherwise presentation-independent error
can be efficiently computed [33].

This work demonstrates how quantum physics, in the form
of TQFTs, can inspire new quantum algorithms for problems
based on topology and tensor networks. The approach taken
here realizes in a sense the traditional vision of quantum
computers as universal simulators for physical systems, but

4In [27], Eq. (3) is discussed in a more general category-theoretic
setting.
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with a different outcome: it provides a purely mathematical
problem whose difficulty exactly captures the power of a
quantum computer.
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