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Recently a study [J. K. Saha and T. K. Mukherjee, Phys. Rev. A 80, 022513 (2009)] on the doubly excited
3P e states of helium reports some resonance states that are not in conformity with previously published works
[Y. K. Ho and A. K. Bhatia, Phys. Rev. A 47, 2628 (1993)]. Owing to discrepancies between the works,
we investigate the resonance parameters (positions and widths) of the doubly excited Feshbach resonances of
the 3P e symmetries associated with N = 3, 4, and 5 He+ thresholds using a different choice of correlated wave
functions in the framework of the complex-coordinate rotation method and the stabilization method. Resonance
parameters below the N = 4 and N = 5 He+ thresholds obtained from the present calculations are not consistent
with the results and discussions made in the recent work. Here we point out an error in assessment made by Saha
and Mukherjee in an earlier work as well as the lack of numerical accuracy of the results for some high-lying
doubly excited states reported by Saha and Mukherjee. The bound 2p2 3P e and 2p3p 3P e state energies obtained
from this calculation are consistent with the best reported results but not with the reported values of Saha and
Mukherjee.
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Investigation of doubly excited states of helium atoms
using highly correlated wave functions is of special interest
because these states can be determined precisely. Results
with a high degree of accuracy can be achieved depending
on the accuracy of the wave functions and computational
performance. Recently, a study [1] on the doubly excited 3P e

states of helium using the stabilization method reports some
resonance states that are not in conformity with previously
published works [2] using the complex-coordinate rotation
(CCR) method. This study [1] also reported metastable bound
state energies much lower than the best reported results [3]. The
main purpose of this Comment is to clarify the discrepancies
of the results reported in recent works [1]. In the present work,
we employ a different type of correlated wave function than
used in the previous works [1,2]. We have also reoptimized our
calculation on the 2p2 3P e and 2p3p 3P e state energies of the
helium atom with an increasing number of basis terms [4,5].
Several theoretical works have been reported on the metastable
bound 2p2 3P e states of helium [6–15]. The 3P e resonance
energies of He below the N = 3 He+ threshold have also been
reported [15]. Besides such theoretical developments, several
experiments have also been performed on the doubly excited
3P e state ([16,17], and references therein).

To extract resonance parameters, we have used the CCR
[18–20] and stabilization methods [21–27]. Highly accurate
correlated exponential wave functions with exponents gen-
erated by a quasirandom process are used to represent the
correlation effect. In the present work, we have identified
two, three, and four series of resonances below the N = 3,
4, and 5 He+ thresholds, respectively. All calculations are
performed in quadruple precision arithmetic (32 significant
figures) on IBM and ALPHA-DEC work stations in the UNIX,
FEDORA, and CENT operating systems. Atomic units (a.u.) are
used throughout this work. We have examined the convergence
of the calculations with the increasing number of terms in the
basis functions. Owing to experimental interest in 3P e states,

and to the discrepancy of a recent work [1] with previously
published work [2], it is important to reinvestigate the doubly
excited 3P e states using a different type of correlated wave
function. Details on the doubly excited nonautoionizing and
autoionizing states can be found in earlier works [1–15].

The nonrelativistic Hamiltonian describing the helium
atom is

H = T + V = −1
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where r1 and r2 are the radial coordinates of the two electrons,
and r12 is their relative distance. For triplet P unnatural parity
states of the He atom, we employ highly correlated wave
functions [27–29]:

� = (1 − P̂12)
Nb∑
i=1

L∑
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Ai(−1)εY l1,l2
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× exp [(−αir1 − βir2 − γir12)ω], (2)
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where the functions Yl1,l2
LM (r1,r2) are the bipolar harmonics or

Schwartz harmonics, r̂i = ri/ri(i = 1, 2); Ylimi
(r̂i) denotes the

usual spherical harmonics; CLM
l1m1,l2m2

are the Clebsch-Gordan
coefficients; αi,βi,γi are the nonlinear variation parameters;
Ai(i = 1, . . . ,N) are the linear expansion coefficients; l1 +
l2 = L + ε,L = 1,ε = 1,Nb is the number of basis terms;
and the operator P̂12 is the permutation of the two identical
particles 1 and 2. The scaling factor ω is set equal to 1 for
bound state calculations and is varied for resonance state
calculations. Following a quasirandom process [4,5,27], the
nonlinear parameters αi, βi , and γi are chosen from the three
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TABLE I. Doubly excited 3P e resonance states of helium below the N = 4 and N = 5 He+ thresholds. The numbers in the square brackets
denote the powers of 10. The numbers in the subscripts show the uncertainty in the last digit.

Present work, Saha and Mukherjee [1], Ho and Bhatia [2],
complex-rotation method stabilization method complex-rotation method
(using exponential wave (using Hylleraas-type (using Hylleraas-type wave

functions) wave functions) functions)

State Er �/2 Er �/2 Er �/2

Eth(N = 4) = −0.125
4p4p −0.194 442 11 0.165 2832[−2] −0.197 38 0.163 5[−2] −0.194 442 0.165 25[−2]
4d4d −0.178 256 91 0.240 3221[−2] −0.178 78 0.229 5[−2] −0.178 257 0.240 35[−2]
4p5p −0.161 223 01 0.951 51[−3] −0.161 36 0.945[−3] −0.161 223 0.951[−3]
4f 4f −0.155 176 811 0.129 2512[−3] −0.155 20 0.135[−3] −0.155 176 8 0.129 25[−3]
4d5d −0.151 549 81 0.883 21[−3] −0.151 54 0.77[−3] −0.151 549 5 0.883[−3]
4p6p −0.148 032 22 0.525 02[−3] −0.148 08 0.84[−3] −0.148 031 5 0.525[−3]
4f 5f −0.142 341 42 0.164 22 [−3] −0.142 35 0.255[−3] −0.142 341 5 0.164 25[−3]
4d6d −0.142 341 12 0.419 24[−3] −0.142 07 0.370[−3] −0.142 341 0.418 95[−3]
4p7p −0.140 8411 0.288 11[−3] −0.140 90 0.400[−3] −0.140 84 0.285[−3]
4d7d −0.137 2931 0.3112[−3] −0.137 42 0.290[−3] −0.137 295 0.306[−3]
4f 6f −0.137 1522 0.5624[−4] −0.137 16 0.55[−4] −0.137 15 0.55[−4]
4p8p −0.136 521 0.1643[−3] −0.136 55 0.24[−3]
4d8d −0.134 1801 0.221[−3] −0.134 05 0.20[−4]
4f 7f −0.134 071 0.323[−4] −0.133 75 0.90[−4]

Eth(N = 5) = −0.08
5p5p −0.126 3782 0.108 71[−2] −0.126 39 0.108 5[−2]
5d5d −0.119 3011 0.176 91[−2] −0.119 37 0.875[−3] −0.119 30 0.177[−2]
5f 5f −0.109 4631 0.156 11[−2] −0.109 96 0.925[−3] −0.109 463 0.156 1[−2]
5p6p −0.107 2651 0.7651[−3] −0.107 65 0.5[−3] −0.107 265 0.765[−3]
5g5g −0.102 0972 0.113 52[−3] −0.102 99 0.102[−2] −0.102 096 0.113 45[−3]
5d6d −0.098 6021 0.4531[−3] −0.098 28 0.424[−3] −0.098 602 0.453[−3]
5f 6f −0.096 641 0.6891[−3] −0.096 56 0.453[−3] −0.096 640 5 0.637[−3]
5g6g −0.095 2541 0.4422[−4] −0.095 26 0.201[−3] −0.095 253 85 0.442 5[−4]
5p7p −0.095 1312 0.7431[−3] −0.095 13 0.74[−3]
5d7d −0.093 441 0.221[−3] −0.093 65 0.226 5[−3] −0.093 44 0.205[−3]
5f 7f −0.091 511 0.482[−3] −0.091 66 0.327[−3] −0.091 51 0.425[−3]
5p8p −0.091 112 0.431[−3] −0.091 12 0.368 5[−3] −0.091 105 0.43[−3]
5g7g −0.090 7251 0.211[−4] −0.090 72 0.172 5[−4] −0.090 724 5 0.21[−4]
5d8d −0.090 2452 0.5211[−4] −0.090 26 0.127[−3]
5f 8f −0.088 631 0.312[−3] −0.089 08 0.299 5[−3]

positive intervals [A1,A2], [B1,B2], and [C1,C2] and are
written in matrix form as

{αi βi γi} = {〈〈k
√

2〉〉A21 + A1 〈〈k
√

3〉〉B21

+B1 〈〈k
√

5〉〉C21 + C1}, (4)

where the symbol 〈〈· · ·〉〉 denotes the fractional part of a
real number, k = i(i + 1)/2, A21 = A2 − A1, B21 = B2 − B1,
C21 = C2 − C1. The exponential wave functions supported
by the quasirandom process are widely used in several other
works [4,5,27–29]. We have used the stabilization method
[21–27] and the complex-rotation method to extract resonance
parameters [18–20].

In the stabilization method, a resonance position can be
identified from the flat plateau of the stabilization diagram,
obtained by plotting the energy level E(ω) for varying ω.
To extract resonance parameters (resonance position, Er ,
and resonance width, �) for a particular resonance state,
we calculate the density of the resonance states, ρn(E), in
the stabilized plateau for each single energy level in the

stabilization diagram following the earlier works of Ho et al.
[21–27]. After calculating ρn(E) for all the energy levels of
the stabilization diagram, we fit these ρn(E), one set at a
time, to the Lorentzian form as used in earlier works [21–27].
The fit that gives the best fit [27] to the Lorentzian form is
considered the desired result for that particular resonance.
Using the stabilization method, we are able to extract the 3pnp
3P e (n = 3–9) and 3dnd 3P e (n = 3–8) resonance parameters.
These resonance parameters below the N = 3 He+ threshold
are in reasonable agreement with those reported by Saha and
Mukherjee [1] and in good agreement with those reported by
Ho and Bhatia [2].

In the CCR method [18–20,29], the interparticle radial
coordinates rij are transformed into rij = rij exp(iθ ), where θ

is real and positive. The Hamiltonian H takes the form

H = T exp (−2iθ ) + V exp (−iθ ). (5)

Under such a transformation, one needs to calculate the matrix
element for the kinetic energy term and the potential energy
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TABLE II. Effective quantum numbers n∗ and effective resonance
widths (n∗)3� for the 3P e states of He below the N = 4 and N = 5
He+ thresholds, Eth.

Eth(N = 4) = −0.125 a.u. Eth(N = 5) = −0.08

State n∗ (n∗)3� State n∗ (n∗)3�

4p4p 2.683 326 9 0.063 867 4 5p5p 3.283 439 2 0.076 956 7
4d4d 3.064 058 6 0.138 265 8 5d5d 3.566 836 5 0.160 548 9
4p5p 3.715 290 6 0.097 592 7 5f 5f 4.119 519 1 0.218 259 2
4f 4f 4.070 505 4 0.017 434 5 5p6p 4.282 350 9 0.120 154 0
4d5d 4.339 646 7 0.144 361 8 5g5g 4.756 837 8 0.024 433 2
4p6p 4.659 263 7 0.106 204 1 5d6d 5.184 479 7 0.126 253 6
4f 5f 5.369 612 2 0.050 843 1 5f 6f 5.481 612 6 0.226 973 0
4d6d 5.369 658 7 0.129 805 0 5g6g 5.725 232 5 0.016 589 4
4p7p 5.618 154 8 0.102 177 3 5p7p 5.748 455 7 0.282 275 0
4d7d 6.377 582 1 0.161 346 1 5d7d 6.099 375 5 0.099 841 0
4f 6f 6.414 475 1 0.029 665 4 5f 7f 6.590 939 7 0.274 861 1
4p8p 6.588 078 5 0.093 788 6 5p8p 6.708 539 4 0.259 646 4
4d8d 7.380 124 0 0.176 865 7 5g7g 6.827 887 4 0.0133 693
4f 7f 7.424 741 9 0.026 195 3 5d8d 6.986 007 1 0.035 526 7

5f 8f 7.611 663 9 0.273 420 1

term of Eq. (1) separately and then scale them according to
Eq. (5). Resonance position can be identified by observing the
complex energy levels E(θ ,ω). The resonance positions and
widths can be extracted when the discrete complex eigenvalues
are stabilized with respect to the nonlinear parameters in the
wave functions and to the rotational angle θ . The complex
resonance eigenvalue W = Er − i�/2 corresponding to the
stationary region represents the resonance energy, Er , and
the width, �. For the details of the complex-rotation method,
readers are referred to review articles [18]. Using the CCR
method, we have extracted resonance parameters below the
N = 3, 4, and 5 thresholds of He+. Resonance parameters
below the N = 4 and N = 5 He+ thresholds are presented
in Table I. The number x in the superscript in Table I shows
the uncertainty in the resonance parameters in the last quoted
digits that would be lying in the range (−x, x).

To classify the resonance states below the N = 4 and N = 5
thresholds, we have calculated the effective widths, (n∗)3 �.
The effective quantum number (n∗) for 3P e resonance states
are obtained using the formula

E = −1

2

[(
Z

N

)2

+
(

Z − 1

n∗

)2]
, (6)
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FIG. 1. (Color online) Energy level diagram for different series
of resonance states associated with, and converging on, the N = 5
He+ threshold (threshold energy −0.080 a.u.), with n � 5.

where N, E, and Z denote the inner electron quantum number,
the energy of the state below the total ionization, and the
atomic number, respectively. We present the effective quantum
numbers and the effective resonance widths in Table II. Our
calculated resonance parameters are in good accordance with
the reported results of Ho and Bhatia [2]. Ho and Bhatia have
employed correlated Hylleraas-type wave functions involving
the powers of interparticle distances. Our work is comparable
with the reported resonance parameters of Saha and Mukherjee
[1] below the N = 3 threshold (not shown here because of
limited page space). However, the result is not in agreement
below the N = 4 and N = 5 thresholds. As in the work
of Ho and Bhatia [2], we have obtained the seventh and
eighth 3P e resonance positions Er below the N = 4 threshold
at −0.142 341 4 a.u. and −0.142 341 a.u., respectively, and
these are the members of two different series (see Table II)
having different widths. These two resonance states are not
in agreement with the reported resonance parameters of
Saha and Mukherjee [1]. It appears from Table I that their
calculated results lose accuracy from this state to all the higher
lying states. We have also obtained the resonance energy of
−0.095 13 a.u. for the eighth resonance state below the N =
5 threshold, which are in conformity with Ho and Bhatia [2]
but not in agreement with Saha and Mukherjee [1]. It is also
important to mention here that the stabilization method can

TABLE III. Comparisons of the bound-excited metastable 3Pe state energies with the other calculations.

Calculation E (2p2 3Pe) (a.u.) E (2p3p 3Pe) (a.u.)

Using 700-term basis functions (2) −0.710 500 155 678 316 −0.567 812 898 724 643
Using 800-term basis functions (2) −0.710 500 155 678 338 −0.567 812 898 725 080
Using 900-term basis functions (2) −0.710 500 155 678 339 −0.567 812 898 725 396

Other calculations
Saha et al. [1] −0.710 500 165 215 26 −0.567 812 899 807 06
Hilger et al. [3] −0.710 500 155 678 33 −0.567 812 898 725 15
Kar and Ho [4] −0.710 500 155 678 3
Mukherjee et al. [12] −0.710 500 155 656 78
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produce resonance parameters for some lower lying states
depending on the size of the basis; however, accurate resonance
position and resonance widths can be obtained using the CCR
method. The spacing statement in the energy level diagram
(see Fig. 4 of [1]) presented in Ref. [1] is not valid for
resonance states with multiple series converging on a given
excited state of the He+ threshold but is valid for bound
states or bound metastable states with only one series. For
the resonances associated with the He+ (N = 5) threshold,
Saha and Mukherjee [1] did not find agreement with those
resonances in Ref. [2] and concluded that one of the N =
5 states reported in Ref. [2] should be discarded. But this
was an error in assessment made by Saha and Mukherjee [1].
The correct interpretation of the present results and of those
in Ref. [2] is the following. For doubly excited 5lnl’ 3Pe

states, there are four series converging on the N = 5 He+
threshold. They are the 5pnp, 5dnd, 5fnf, and 5gng states, with
n � 5 series. We present the energy levels for the different
series of resonance states in Fig. 1. The degeneracy in the
resonance energy having different resonance widths confirms
their existence in different series. The large difference in the
resonance widths below the N = 5 threshold in the recent work
[1] with the earlier reported results [2] establishes inaccuracy
of the former’s resonance parameters [1] for the higher lying
states. We arrange our resonance energies in Fig. 1 according
to their respective series. It is seen that all the states reported
in the present work and those of Ref. [2] are accounted for.
The states with energies of −0.095 25 a.u. and −0.095 13 a.u.
are 5g6g and 5p7p 3P e, respectively. It was one of these two
states that was missed by Saha and Mukherjee [1]. Also, in
Ref. [1], the 5p2 3P e state was not reported.

In their work, Saha and Mukherjee [1] also presented
the 2pnp 3P e state energies which are much lower than the
best reported results of Hilger et al. [3]. But Saha and

Mukherjee [1] also showed the numerical problems in their
results using 1575-term wave functions. We have reoptimized
the 2pnp 3P e state energy with an increasing number of basis
terms. In Table III, we compare the 2p2 3P e and 2p3p 3P e

state energies obtained from the present calculations with
available results. We have obtained the bound excited 3P e state
energies for the same set of nonlinear variational parameters
in the framework of the Ritz variational principle. We use a
maximum of up to 800 term basis functions for the resonance
state calculations using the CCR method, 600 terms for
the stabilization method, and 900 terms for the bound state
calculations. Our nonrelativistic energy for the 2p2 3P e state is
determined as −0.710 500 155 678 339 a.u., with uncertainty
estimated in a few parts of 10−13. Our present value is
comparable with the results −0.710 500 155 678 33 a.u., the
value reported by Hilger et al. [3]. Saha and Mukherjee [1]
reported a much lower value of −0.710 500 165 215 26 a.u.
But because of a convergence problem, they could only claim
the uncertainty of their results in the order of 10−7 a.u. As for
the 2p3p 3P e state, we determine the nonrelativistic energy
as −0.567 812 898 725 396 a.u., with uncertainty estimated
in a few parts of 10−12 a.u. Our energy is also lower than
−0.567 812 898 725 15 a.u., as reported in Ref. [3]. Again in
Ref. [1], a much lower value of −0.567 812 899 807 06 a.u.
was reported, but with a much larger uncertainty of 10−7 a.u.
We have used the same set of nonlinear parameters to
show the convergence with the increasing number of
terms.

S.K. wishes to thank the Natural Scientific Research
Innovation Foundation of Harbin Institute of Technology for
financial support (Grant No. HIT.NSRIF.2008.01). S.K. also
wishes to thank IAMS for the support of a short-term visit.
Y.K.H. is supported by the NSC of Taiwan.

[1] J. K. Saha and T. K. Mukherjee, Phys. Rev. A 80, 022513 (2009).
[2] Y. K. Ho and A. K. Bhatia, Phys. Rev. A 47, 2628 (1993).
[3] R. Hilger, H.-P. Merckens, and H. Kleindienst, Chem. Phys.

Lett. 262, 400 (1996).
[4] S. Kar and Y. K. Ho, Euro. Phys. J. D 53, 303 (2009).
[5] S. Kar and Y. K. Ho, Phys. Rev. A 79, 062508 (2009).
[6] G. W. F. Drake and A. Dalgarno, Phys. Rev. A 1, 1325 (1970).
[7] H. Doyle, M. Oppenheimer, and G. W. F. Drake, Phys. Rev. A

5, 26 (1972).
[8] A. K. Bhatia, Phys. Rev. A 6, 2498 (1972).
[9] J. Callaway, Phys. Lett. A 66, 201 (1978).

[10] K. E. Banyard, D. R. T. Keeble, and G. W. F. Drake, J. Phys. B
25, 3405 (1992).

[11] K. E. Banyard and D. R. T. Keeble, J. Phys. B 28, 4215 (1995).
[12] T. K. Mukherjee and P. K. Mukherjee, Phys. Rev. A 69, 064501

(2004).
[13] S. Kar and Y. K. Ho, J. Phys. B 40, 1403 (2007).
[14] S. Kar and Y. K. Ho, J. Quant. Spectrosc. Radiat. Transfer 107,

315 (2007).

[15] L. Lipsky, R. Anamia, and M. J. Colnnely, At. Data Nucl. Data
Tables 20, 127 (1977).

[16] J. L. Tech and J. F. Ward, Phys. Rev. Lett. 27, 367 (1971).
[17] H. G. Berry et al., Phys. Rev. A 3, 1934 (1971); 6, 600 (1972).
[18] Y. K. Ho, Phys. Rep. 99, 1 (1983).
[19] W. P. Reinhardt, Annu. Rev. Phys. Chem. 33, 223 (1982).
[20] B. R. Junker, Adv. At. Mol. Phys. 18, 207 (1982).
[21] S. S. Tan and Y. K. Ho, Chin. J. Phys. 35, 701 (1997).
[22] W. J. Pong and Y. K. Ho, J. Phys. B 31, 2177 (1998).
[23] T. K. Fang and Y. K. Ho, Chin. J. Phys. 37, 37 (1999); J. Phys.

B 32, 3863 (1999).
[24] U. Roy and Y. K. Ho, J. Phys. B 35, 2149 (2002).
[25] S. Kar and Y. K. Ho, J. Phys. B 37, 3177 (2004); 42, 044007

(2009).
[26] A. Ghoshal and Y. K. Ho, Phys. Rev. A 79, 062514 (2009).
[27] S. Kar and Y. K. Ho, Int. J. Quantum Chem. 110, 993 (2010).
[28] A. M. Frolov and V. H. Smith Jr., Phys. Rev. A 53, 3853

(1996).
[29] S. Kar and Y. K. Ho, J. Phys. B 42, 055001 (2009).

036501-4

http://dx.doi.org/10.1103/PhysRevA.80.022513
http://dx.doi.org/10.1103/PhysRevA.47.2628
http://dx.doi.org/10.1016/0009-2614(96)01071-8
http://dx.doi.org/10.1016/0009-2614(96)01071-8
http://dx.doi.org/10.1140/epjd/e2009-00146-1
http://dx.doi.org/10.1103/PhysRevA.79.062508
http://dx.doi.org/10.1103/PhysRevA.1.1325
http://dx.doi.org/10.1103/PhysRevA.5.26
http://dx.doi.org/10.1103/PhysRevA.5.26
http://dx.doi.org/10.1103/PhysRevA.6.2498
http://dx.doi.org/10.1016/0375-9601(78)90656-4
http://dx.doi.org/10.1088/0953-4075/25/16/003
http://dx.doi.org/10.1088/0953-4075/25/16/003
http://dx.doi.org/10.1088/0953-4075/28/19/008
http://dx.doi.org/10.1103/PhysRevA.69.064501
http://dx.doi.org/10.1103/PhysRevA.69.064501
http://dx.doi.org/10.1088/0953-4075/40/7/009
http://dx.doi.org/10.1016/j.jqsrt.2007.01.055
http://dx.doi.org/10.1016/j.jqsrt.2007.01.055
http://dx.doi.org/10.1016/0092-640X(77)90042-0
http://dx.doi.org/10.1016/0092-640X(77)90042-0
http://dx.doi.org/10.1103/PhysRevLett.27.367
http://dx.doi.org/10.1103/PhysRevA.3.1934
http://dx.doi.org/10.1103/PhysRevA.6.600
http://dx.doi.org/10.1016/0370-1573(83)90112-6
http://dx.doi.org/10.1146/annurev.pc.33.100182.001255
http://dx.doi.org/10.1016/S0065-2199(08)60242-0
http://dx.doi.org/10.1088/0953-4075/31/10/008
http://dx.doi.org/10.1088/0953-4075/32/15/316
http://dx.doi.org/10.1088/0953-4075/32/15/316
http://dx.doi.org/10.1088/0953-4075/35/9/312
http://dx.doi.org/10.1088/0953-4075/37/15/012
http://dx.doi.org/10.1088/0953-4075/42/4/044007
http://dx.doi.org/10.1088/0953-4075/42/4/044007
http://dx.doi.org/10.1103/PhysRevA.79.062514
http://dx.doi.org/10.1103/PhysRevA.53.3853
http://dx.doi.org/10.1103/PhysRevA.53.3853
http://dx.doi.org/10.1088/0953-4075/42/5/055001

