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Recently a study [J. K. Saha and T. K. Mukherjee, Phys. Rev. A 80, 022513 (2009)] on the doubly excited
3pe¢ states of helium reports some resonance states that are not in conformity with previously published works
[Y. K. Ho and A. K. Bhatia, Phys. Rev. A 47, 2628 (1993)]. Owing to discrepancies between the works,
we investigate the resonance parameters (positions and widths) of the doubly excited Feshbach resonances of
the 3P¢ symmetries associated with N = 3, 4, and 5 He* thresholds using a different choice of correlated wave
functions in the framework of the complex-coordinate rotation method and the stabilization method. Resonance
parameters below the N = 4 and N = 5 He™" thresholds obtained from the present calculations are not consistent
with the results and discussions made in the recent work. Here we point out an error in assessment made by Saha
and Mukherjee in an earlier work as well as the lack of numerical accuracy of the results for some high-lying
doubly excited states reported by Saha and Mukherjee. The bound 2p? 3P¢ and 2 p3 p 3P¢ state energies obtained
from this calculation are consistent with the best reported results but not with the reported values of Saha and

Mukherjee.
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Investigation of doubly excited states of helium atoms
using highly correlated wave functions is of special interest
because these states can be determined precisely. Results
with a high degree of accuracy can be achieved depending
on the accuracy of the wave functions and computational
performance. Recently, a study [1] on the doubly excited 3P¢
states of helium using the stabilization method reports some
resonance states that are not in conformity with previously
published works [2] using the complex-coordinate rotation
(CCR) method. This study [1] also reported metastable bound
state energies much lower than the best reported results [3]. The
main purpose of this Comment is to clarify the discrepancies
of the results reported in recent works [1]. In the present work,
we employ a different type of correlated wave function than
used in the previous works [1,2]. We have also reoptimized our
calculation on the 2p?3P¢ and 2p3p 3P¢ state energies of the
helium atom with an increasing number of basis terms [4,5].
Several theoretical works have been reported on the metastable
bound 2p2 3pe states of helium [6-15]. The 3P¢ resonance
energies of He below the N = 3 He™ threshold have also been
reported [15]. Besides such theoretical developments, several
experiments have also been performed on the doubly excited
3pe state ([16,17], and references therein).

To extract resonance parameters, we have used the CCR
[18-20] and stabilization methods [21-27]. Highly accurate
correlated exponential wave functions with exponents gen-
erated by a quasirandom process are used to represent the
correlation effect. In the present work, we have identified
two, three, and four series of resonances below the N = 3,
4, and 5 He™ thresholds, respectively. All calculations are
performed in quadruple precision arithmetic (32 significant
figures) on IBM and ALPHA-DEC work stations in the UNIX,
FEDORA, and CENT operating systems. Atomic units (a.u.) are
used throughout this work. We have examined the convergence
of the calculations with the increasing number of terms in the
basis functions. Owing to experimental interest in >P¢ states,
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and to the discrepancy of a recent work [1] with previously
published work [2], it is important to reinvestigate the doubly
excited 3P¢ states using a different type of correlated wave
function. Details on the doubly excited nonautoionizing and
autoionizing states can be found in earlier works [1-15].

The nonrelativistic Hamiltonian describing the helium
atom is

H=T+v=—iv2_lyz (L 1) 1 (1)
a o 2 ! 2 2 ry ry ri2 ’

where r; and r; are the radial coordinates of the two electrons,

and r; is their relative distance. For triplet P unnatural parity

states of the He atom, we employ highly correlated wave
functions [27-29]:

Nb L
W=(1-Pp)Y Y A(=1FYE )

i=1 lj=¢

x exp [(—a;ry — Biry — virn)wl, ()
with

1y, I 1 LM A N
Yirr) = > Ch L Vi, GO Y, (R2). (3)
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where the functions Yl,_‘;fj(rl ,Ip) are the bipolar harmonics or
Schwartz harmonics, 7 = r;/r;(i = 1, 2); Y}, (i) denotes the
usual spherical harmonics; C/)! | are the Clebsch-Gordan
coefficients; «;,B;,y; are the nonlinear variation parameters;
A;(i =1,...,N) are the linear expansion coefficients; /| +
L=L+¢L =1,e=1,N, is the number of basis terms;
and the operator ﬁlz is the permutation of the two identical
particles 1 and 2. The scaling factor w is set equal to 1 for
bound state calculations and is varied for resonance state
calculations. Following a quasirandom process [4,5,27], the
nonlinear parameters «;, 8;, and y; are chosen from the three
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TABLE 1. Doubly excited *P¢ resonance states of helium below the N = 4 and N = 5 He* thresholds. The numbers in the square brackets
denote the powers of 10. The numbers in the subscripts show the uncertainty in the last digit.

Present work,
complex-rotation method
(using exponential wave

Saha and Mukherjee [1],
stabilization method
(using Hylleraas-type

Ho and Bhatia [2],
complex-rotation method
(using Hylleraas-type wave

functions) wave functions) functions)
State E, ry/2 E, ry/2 E, ry/2
Enw(N =4)=—-0.125
4p4p —0.194442 1, 0.165283,[—2] —0.197 38 0.1635[-2] —0.194 442 0.16525[-2]
4d4ad —0.1782569, 0.240322,[-2] —0.17878 0.2295[-2] —0.178257 0.24035[-2]
4p5p —0.161223 0, 0.9515,[-3] —0.16136 0.945[—3] —0.161223 0.951[-3]
4f4 f —0.15517681; 0.129251,[-3] —0.15520 0.135[-3] —0.1551768 0.12925[-3]
4d5d —0.1515498, 0.8832,[—3] —0.15154 0.77[-3] —0.1515495 0.883[—3]
4p6p —0.1480322, 0.5250,[—3] —0.148 08 0.84[—3] —0.1480315 0.525[-3]
4f5f —0.1423414, 0.1642, [-3] —0.14235 0.255[-3] —0.1423415 0.164 25[—3]
4d6d —0.1423411, 0.41924[-3] —0.14207 0.370[—3] —0.142 341 0.41895[—3]
4pTp —0.140841, 0.288 1,[—3] —0.14090 0.400[—3] —0.14084 0.285[—3]
4d7d —0.137293, 0.311,[-3] —0.13742 0.290[—3] —0.137295 0.306[—3]
4f6f —0.137 152, 0.5624[—4] —-0.13716 0.55[—4] —0.13715 0.55[—4]
4p8p —0.136 52, 0.1645[—3] —0.13655 0.24[-3]
4d8d —0.134 180, 0.22,[-3] —0.13405 0.20[—4]
4f7f —0.13407, 0.325[—4] —0.13375 0.90[—4]
En(N =5)=-0.08
5p5p —0.126 378, 0.108 7,[—2] —0.12639 0.108 5[—2]
5d5d —0.119301, 0.1769,[—2] —-0.11937 0.875[—3] —0.11930 0.177[-2]
5f5f —0.109 463, 0.156 1,[—2] —0.109 96 0.925[-3] —0.109463 0.156 1[—-2]
S5p6p —0.107 265, 0.765,[—3] —-0.107 65 0.5[-3] —0.107 265 0.765[—3]
5g¢5¢ —0.102097, 0.1135,[—3] —0.10299 0.102[-2] —0.102 096 0.11345[-3]
5d6d —0.098 602, 0.453,[-3] —0.098 28 0.424[-3] —0.098 602 0.453[-3]
5f6f —0.096 64, 0.689;[—3] —0.096 56 0.453[-3] —0.0966405 0.637[—3]
5g6g —0.095 254, 0.442,[—4] —0.09526 0.201[-3] —0.095253 85 0.4425[—4]
5pip —0.095 131, 0.743,[-3] —0.09513 0.74[-3]
5d7d —0.093 44, 0.22,[-3] —0.093 65 0.226 5[—3] —0.09344 0.205[-3]
5fF7f —0.09151, 0.48,[—3] —0.091 66 0.327[—3] —0.09151 0.425[-3]
5p8p —0.09111, 0.43,[-3] —0.09112 0.368 5[—3] —0.091 105 0.43[-3]
5¢7g —0.090725, 0.21,[—4] —0.09072 0.1725[—4] —0.0907245 0.21[—4]
5d8d —0.090245, 0.521,[—4] —0.09026 0.127[-3]
578f —0.088 63, 0.31,[-3] —0.089 08 0.299 5[-3]

positive intervals [A,A3], [By,B:], and [C{,C;] and are
written in matrix form as

i B v} ={{(kV2))Au + Ay ((k+/3))Bay
+ B ((kv/3))Ca1 + C1), (4)

where the symbol ({---)) denotes the fractional part of a
realnumber,k = l(l + 1)/2,A21 = Az — Al, B21 = Bz — B],
Cy = C, — C;. The exponential wave functions supported
by the quasirandom process are widely used in several other
works [4,5,27-29]. We have used the stabilization method
[21-27] and the complex-rotation method to extract resonance
parameters [18-20].

In the stabilization method, a resonance position can be
identified from the flat plateau of the stabilization diagram,
obtained by plotting the energy level E(w) for varying w.
To extract resonance parameters (resonance position, E,,
and resonance width, I") for a particular resonance state,
we calculate the density of the resonance states, p,(E), in
the stabilized plateau for each single energy level in the

stabilization diagram following the earlier works of Ho et al.
[21-27]. After calculating p,(E) for all the energy levels of
the stabilization diagram, we fit these p,(E), one set at a
time, to the Lorentzian form as used in earlier works [21-27].
The fit that gives the best fit [27] to the Lorentzian form is
considered the desired result for that particular resonance.
Using the stabilization method, we are able to extract the 3pnp
3P¢ (n = 3-9) and 3dnd *P° (n = 3-8) resonance parameters.
These resonance parameters below the N = 3 He™ threshold
are in reasonable agreement with those reported by Saha and
Mukherjee [1] and in good agreement with those reported by
Ho and Bhatia [2].

In the CCR method [18-20,29], the interparticle radial
coordinates r;; are transformed into r;; = r;; exp(if), where 6
is real and positive. The Hamiltonian H takes the form

H =T exp(=2i0) + Vexp(—if). (5)

Under such a transformation, one needs to calculate the matrix
element for the kinetic energy term and the potential energy
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TABLEII. Effective quantum numbers n* and effective resonance
widths (n*)°T" for the 3P¢ states of He below the N=4 and N =5
He thresholds, Ey,.

En(N = 4) = —0.125a.u. En(N =5)=—0.08

State n* n*)°r State n* n*)°r

4pdp 2.6833269 0.0638674 5p5p 3.2834392 0.0769567
4d4d  3.0640586 0.1382658 5d45d 3.5668365 0.1605489
4p5p 37152906 0.0975927 5f5f 4.1195191 0.2182592
4f4f 4.0705054 0.0174345 5p6p 4.2823509 0.1201540
4d5d 43396467 0.1443618 S5g5g 4.7568378 0.0244332
4p6p 4.6592637 0.1062041 5d46d 5.1844797 0.1262536
4f5f 53696122 0.0508431 5f6f 54816126 0.2269730
4d6d 53696587 0.1298050 Sgbg 5.7252325 0.0165894
4pTp 56181548 0.1021773 5pTp 57484557 0.2822750
4d7d 63775821 0.1613461 5d7d 6.0993755 0.0998410
4f6f 64144751 0.0296654 Sf7f 6.5909397 0.274861 1
4p8p 6.5880785 0.0937886 5p8p 6.7085394 0.2596464
4d8d 7.3801240 0.1768657 S5g7g 6.8278874 0.0133693
4f7f 74247419 0.0261953 5484 6.9860071 0.0355267

5f8f 7.6116639 0.2734201

term of Eq. (1) separately and then scale them according to
Eq. (5). Resonance position can be identified by observing the
complex energy levels E(6,w). The resonance positions and
widths can be extracted when the discrete complex eigenvalues
are stabilized with respect to the nonlinear parameters in the
wave functions and to the rotational angle 6. The complex
resonance eigenvalue W = E, —iI"/2 corresponding to the
stationary region represents the resonance energy, E,, and
the width, I'. For the details of the complex-rotation method,
readers are referred to review articles [18]. Using the CCR
method, we have extracted resonance parameters below the
N = 3, 4, and 5 thresholds of He™. Resonance parameters
below the N =4 and N =5 He" thresholds are presented
in Table I. The number x in the superscript in Table I shows
the uncertainty in the resonance parameters in the last quoted
digits that would be lying in the range (—x, x).

To classify the resonance states belowthe N = 4and N = 5
thresholds, we have calculated the effective widths, (n*)> T.
The effective quantum number (n*) for 3pe resonance states
are obtained using the formula

ORI
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FIG. 1. (Color online) Energy level diagram for different series
of resonance states associated with, and converging on, the N =5
He™ threshold (threshold energy —0.080 a.u.), with n > 5.

where N, E, and Z denote the inner electron quantum number,
the energy of the state below the total ionization, and the
atomic number, respectively. We present the effective quantum
numbers and the effective resonance widths in Table II. Our
calculated resonance parameters are in good accordance with
the reported results of Ho and Bhatia [2]. Ho and Bhatia have
employed correlated Hylleraas-type wave functions involving
the powers of interparticle distances. Our work is comparable
with the reported resonance parameters of Saha and Mukherjee
[1] below the N = 3 threshold (not shown here because of
limited page space). However, the result is not in agreement
below the N = 4 and N = 5 thresholds. As in the work
of Ho and Bhatia [2], we have obtained the seventh and
eighth 3P¢ resonance positions E, below the N = 4 threshold
at —0.1423414a.u. and —0.142 341 a.u., respectively, and
these are the members of two different series (see Table II)
having different widths. These two resonance states are not
in agreement with the reported resonance parameters of
Saha and Mukherjee [1]. It appears from Table I that their
calculated results lose accuracy from this state to all the higher
lying states. We have also obtained the resonance energy of
—0.095 13 a.u. for the eighth resonance state below the N =
5 threshold, which are in conformity with Ho and Bhatia [2]
but not in agreement with Saha and Mukherjee [1]. It is also
important to mention here that the stabilization method can

TABLE III. Comparisons of the bound-excited metastable 3P¢ state energies with the other calculations.

Calculation E (2p*3P°) (au.) E (2p3p3P°) (a.u.)

Using 700-term basis functions (2) —0.710500 155678 316 —0.567 812 898 724 643

Using 800-term basis functions (2) —0.710500 155 678 338 —0.567 812898 725 080

Using 900-term basis functions (2) —0.710500 155678 339 —0.567 812898 725 396
Other calculations

Saha et al. [1] —0.710500 16521526 —0.567 812899 807 06

Hilger et al. [3] —0.710500 155 678 33 —0.567 812898725 15
Kar and Ho [4] —0.710500 155678 3
Mukherjee et al. [12] —0.710500 155656 78
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produce resonance parameters for some lower lying states
depending on the size of the basis; however, accurate resonance
position and resonance widths can be obtained using the CCR
method. The spacing statement in the energy level diagram
(see Fig. 4 of [1]) presented in Ref. [1] is not valid for
resonance states with multiple series converging on a given
excited state of the He™ threshold but is valid for bound
states or bound metastable states with only one series. For
the resonances associated with the Het (N = 5) threshold,
Saha and Mukherjee [1] did not find agreement with those
resonances in Ref. [2] and concluded that one of the N =
5 states reported in Ref. [2] should be discarded. But this
was an error in assessment made by Saha and Mukherjee [1].
The correct interpretation of the present results and of those
in Ref. [2] is the following. For doubly excited 5Inl’ 3P¢
states, there are four series converging on the N = 5 He™
threshold. They are the Spnp, Sdnd, 5fnf, and Sgng states, with
n > 5 series. We present the energy levels for the different
series of resonance states in Fig. 1. The degeneracy in the
resonance energy having different resonance widths confirms
their existence in different series. The large difference in the
resonance widths below the N = 5 threshold in the recent work
[1] with the earlier reported results [2] establishes inaccuracy
of the former’s resonance parameters [1] for the higher lying
states. We arrange our resonance energies in Fig. 1 according
to their respective series. It is seen that all the states reported
in the present work and those of Ref. [2] are accounted for.
The states with energies of —0.095 25 a.u. and —0.095 13 a.u.
are 5g6g and 5p7p 3P, respectively. It was one of these two
states that was missed by Saha and Mukherjee [1]. Also, in
Ref. [1], the 5p? 3P¢ state was not reported.

In their work, Saha and Mukherjee [1] also presented
the 2pnp 3P¢ state energies which are much lower than the
best reported results of Hilger et al. [3]. But Saha and
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Mukherjee [1] also showed the numerical problems in their
results using 1575-term wave functions. We have reoptimized
the 2pnp 3P¢ state energy with an increasing number of basis
terms. In Table III, we compare the 2p?3P¢ and 2p3p 3P°¢
state energies obtained from the present calculations with
available results. We have obtained the bound excited *P¢ state
energies for the same set of nonlinear variational parameters
in the framework of the Ritz variational principle. We use a
maximum of up to 800 term basis functions for the resonance
state calculations using the CCR method, 600 terms for
the stabilization method, and 900 terms for the bound state
calculations. Our nonrelativistic energy for the 2p? 3P¢ state is
determined as —0.710500 155 678 339 a.u., with uncertainty
estimated in a few parts of 107'3. Our present value is
comparable with the results —0.710500 155678 33 a.u., the
value reported by Hilger er al. [3]. Saha and Mukherjee [1]
reported a much lower value of —0.710500 16521526 a.u.
But because of a convergence problem, they could only claim
the uncertainty of their results in the order of 10~ a.u. As for
the 2p3p 3P¢ state, we determine the nonrelativistic energy
as —0.567 812898725396 a.u., with uncertainty estimated
in a few parts of 107'2a.u. Our energy is also lower than
—0.567 812898725 15 a.u., as reported in Ref. [3]. Again in
Ref. [1], a much lower value of —0.567 812899 807 06 a.u.
was reported, but with a much larger uncertainty of 10~ a.u.
We have used the same set of nonlinear parameters to
show the convergence with the increasing number of
terms.
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