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Stable structures with high topological charge in nonlinear photonic quasicrystals
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Stable vortices with topological charges of 3 and 4 are examined numerically and analytically in photonic
quasicrystals created by interference of five as well as eight beams, for cubic as well as saturable nonlinearities.
Direct numerical simulations corroborate the analytical and numerical linear stability analysis predictions for
such experimentally realizable structures.
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The study of vortices has been a principal theme of interest
in dispersive nonlinear systems with applications including,
among others, Bose-Einstein condensates (BECs) and nonlin-
ear optical media [1–3]. More recently, such states have been
studied in settings with some discrete spatial symmetry, that is,
nonlinear lattices. There, the notion of “discrete vortices” [4]
arose and was subsequently intensely studied in both discrete
and quasicontinuum media; see, for example, [5] and [6] for
relevant reviews. This led to the experimental realization of
unit-charge (S = 1) coherent structures in saturably nonlinear
photorefractive media [such as SBN:75 (Sr0.75Ba0.25Nb2O6)]
in [7] and [8] and the exploration of higher- charge (S = 2)
ones in square, hexagonal, and honeycomb lattices [9].
A multipole soliton necklace of out-of-phase neighboring
lobes in a square lattice was identified experimentally and
theoretically in [10] from the initial condition of a wide S = 4
Gaussian beam.

While regular lattices have mostly been studied [5], more
recently experimental developments have enabled the study of
photonic quasicrystals in photorefractive media [11] and have
spurred a correspondingly intense theoretical activity [12]. We
also note that recent experiments have been performed on
nonsquare optical lattices for ultracold atoms in a BEC [13].
It is then natural to expect that quasicrystals are well within
experimental reach in this regard as well.

Motivated by these developments, we illustrate the unique
ability of such lattices (with saturable or cubic nonlinearity)
to sustain stable vortices of higher topological charge, such as
S = 3 and S = 4. Direct numerical simulations reveal the ro-
bustness of such modes. In contrast, perhaps counterintuitively
(but as can be analytically predicted), lower-charge vortices are
found to be unstable, and this instability is also dynamically
monitored.

We introduce the following nondimensionalized evolution
equation:

[
i∂z + 1

2∇2 + F (|U |2) − V (x)
]
U = 0. (1)

The (saturable) photorefractive nonlinearity is F (|U |2) =
−1/(1 + |U |2) + 1, where U is the slowly varying amplitude
of a probe beam normalized by the dark irradiance of the crystal
Id [3,14], and V an external potential. In a Kerr medium the
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nonlinearity reads F (|U |2) = |U |2, and this case also includes
the interpretation of U as a mean-field wave function of an
atomic BEC [15], while the potential V is either modulation
of the refractive index, in the former case, or an externally
applied field, in the latter.

The potential V is taken to be of the form E/[1 +
I (x)], where I (x) = 1

N2 |
∑N

j=1 eikbj ·x|2. In the photorefractive
paradigm, this is the optical lattice intensity function formed
by N interfering beams in the principal directions bj with
periodicity 2π/k. We consider the cases of N = 5 and N = 8.
Here 1 is the lattice peak intensity, z is the propagation
distance, x = (x,y) are transverse distances, k = 2π/5 is the
wave number of the lattice, and E = 5 is proportional to the
external voltage. Recently, such a setting has been explored
theoretically for positive lattice solitons [12,16], but we extend
the considerations here to vortex solutions.

The possible charge S of vortices (the integer number of 2π

phase shifts across a discrete contour comprising the solution)
is bounded by the symmetry of the lattice [17]. A lattice with n-
fold symmetry has natural contours of 2n sites. Hence, taking
into account the degeneracy of vortex-antivortex pairs {S,

−S}, one has 0 � S � n, with the cases of S = 0,n being
the trivial flux cases of in-phase and out-of-phase neighboring
lobes, respectively. The quasicrystal with N = 5 has n = 5,
while for N = 8, n = 4. Hence, the highest possible charge,
S = n − 1, is S = 4 for the case of N = 5 and S = 3 for
N = 8.

Considering the quasi-one-dimensional contour of excited
sites (depending on the respective amplitudes of the lattice and
the probe field), and within the context of coupled-mode theory
[18], in which the probe field is expanded in Wannier functions
[19], one can obtain insights about the stability of the vortices
within the framework of a discrete nonlinear Schrödinger
equation [6], iu̇n = −ε(un+1 + un−1 − 2un) − |un|2un. In that
context and either based on modulational instability [18],
through empirical numerical testing [17], or, more rigorously,
via Lyapunov-Schmidt perturbative expansions around the
so-called anticontinuum (AC) limit of zero coupling (ε = 0)
[20], it is known that lobes which are phase separated by
more than π/2 are stable next to each other, while those
separated by less than π/2 are unstable. A simple intuitive
argument for this situation is that the effective potential which
out-of-phase neighboring nodes exert on one another through
the focusing nonlinearity is repulsive, and hence, the nodes
remain localized in their respective separate wells. In contrast,
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if the neighbors are in phase, then the effective neighboring
potentials are attractive and hence the solution is unstable
to remaining localized in separate wells. The possible relative
phases interpolate between these cases, with π/2 being exactly
in the middle. A similar discussion is used in [21] to justify
(upon suitable phase variation) the existence of soliton clusters
in bulk media. This leads to stability of the more highly charged
vortices for contours of larger numbers of nodes (see also [9]).
We briefly review the Lyapunov-Schmidt argument. In the
limit ε → 0 one can construct exact solutions of the form
uj = √

µe[−i(βz−θj )] for any arbitrary θj ∈ [0,2π ) [20]. The
case we are considering is that of θj = jSπ/n. We linearize
around the solution for ε = 0, and the condition for existence
of solutions with ε > 0 reduces to the vanishing of a vector
function g(θ ) of the phase vector θ = (θ1, . . . ,θN ), where

gj ≡ sin(θj−1 − θj ) + sin(θj+1 − θj ), (2)

subject to periodic boundary conditions. This includes the
preceding discrete reduction of the vortex solutions for
0 � S � n. The fundamental contours M will have length
|M| = 2n, and |φj+1 − φj | = �φ = πS/n is constant for all
j ∈ M , |θ1 − θ|M|| = �θ , and �θ |M| = 0 mod 2π .

For the contour M, there are |M| eigenvalues γj of the
|M| × |M| Jacobian Mjk = ∂gj/∂θk of the diffeomorphism
given in Eq. (2). The eigenvalues of this matrix γj can be
mapped to eigenvalues of the full linearization. In particular,
eigenvalues of the linearization, denoted λj , are given to lead-
ing order by the relation [20] λj = ±√

2γjε. Thus, solutions
are stable to leading order if γj < 0 (so λj ∈ iR) and unstable
if γj > 0 (so λj ∈ R). We have γj = 4 cos(�φ) sin2( πj

|M| )
and so these cases correspond exactly to �φ > π/2 (or
S > n/2) and �φ < π/2 (or S < n/2). In the boundary case
of �φ = π/2, one needs to expand to the next order in
the Lyapunov-Schmidt reduction. We note that a so-called
staggering transformation along the contour, ud

j = (−1)juf
j ,

allows the foregoing conclusions for the focusing problem to
be mapped immediately to the defocusing problem (with a
change in the sign of the nonlinearity). We do not consider the
defocusing case further here. The preceding considerations
illustrate the expectation that S = 3 vortices may be stable in
the N = 5 and N = 8 cases, and the S = 4 vortex may be
stable in the N = 5 case.

We now turn to numerical computations. We also explore
the evolution of some radial Gaussian beams. First, we confirm
the expectation of stability of the S = 4 vortex for saturable
and cubic nonlinearities, over continuations in the semi-infinite
gap (see Figs. 1 and 2, respectively). The profiles and phases
are depicted in Figs. 1(a), 1(a.i), 2(a), and 2(a.i); linear spectra,
in Figs. 1(b) and 2(b); Fourier spectra in Figs. 1(b.ii) and
2(b.i); and continuations of the power P = ∫ |U |2dx, as a
function of the propagation constant β, in Figs. 1(c) and 2(c).
The power of the solution branches differs substantially
between nonlinearities, and the power of the branch of
saturable solutions approaches some resonant frequency at
which dP/dβ → ∞ and P → ∞ [see Fig. 1(c)]. The lattice
is depicted in Fig. 1(d), while Fig. 2(d) shows the maximal
perturbation growth rate, or maxλ[Re(λ)], corresponding to
the branches in Fig. 2(c).
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FIG. 1. (Color online) Stable S = 4 vortex in a quasicrystal lattice
of N = 5 and with a saturable nonlinearity. (a), (a.i) Profile and
phase; (b) linear spectrum [(b.i) closeup]; (b.ii) Fourier spectrum;
(c) continuation of the power P = ∫ |U |2dx as a function of the
propagation constant β; (d) N = 5 lattice.

For the structures we consider, there is one pair of
eigenvalues at the origin accounting for the U(1) (phase)
invariance and the other 2n − 1 eigenvalue pairs associated
with the excited lobes all have negative energy, hence being
candidates for instability [22], and are all either purely
imaginary or purely real. If real, the instability is immediate,
while if imaginary, instability may still arise due to their
collision with the phonon band, resulting in a Hamiltonian-
Hopf bifurcation and eigenvalue quartets. The spectral plane,
with the negative-energy modes indicated by red squares, for
the saturable and cubic cases are given in Figs. 1(b) and 2(b),
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FIG. 2. (Color online) (a)–(c) The same as in Fig. 1 except for
a cubic nonlinearity. (d) Growth rate, or maxλ[Re(λ)]. (c.i) Profile
and (d.i) linear spectra of the highly unstable solution indicated by
the (red) square on the branches in (c) and (d), which collides with
the main branch and disappears in a saddle-node bifurcation close to
the phonon band edge.
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FIG. 3. (Color online) (a), (b) The same as in Figs. 1 and 2 for the
stable S = 3 vortex in the N = 8 quasicrystal lattice (c). (d) S = 3
vortex for N = 5. (d.i) Phase and (d.ii) Fourier spectra of this solution.
For both solutions, β = 3.4.

respectively. Figure 1(b.ii) is a closeup of the origin showing
the nine negative-energy pairs close to the origin and the
one pair at the origin. The potential instability arising from
these negative-energy modes is prevented by their proximity
to the origin and distance from the phonon band. The expected
saddle-node bifurcation [23,24] occurs close to the band edge
(which we computed as ≈3.9) in which the main solution
collides (and disappears) with an unstable solution branch of
a configuration with additional populated sites external (and
in phase) to the original contour.

Next we present results of the S = 3 vortex for saturable
nonlinearity in both the N = 8 [Figs. 3(a) and 3(b)] and the
N = 5 [Fig. 3(d)] cases for β = 3.4. Figure 3(c) depicts the
N = 8 lattice, and Figs. 3(d.i) and 3(d.ii) are the phase and
Fourier spectrum, respectively, of the solution in Fig. 3(d).
These solutions are both stable, and again, there is a resonance
in the semi-infinite gap (not shown) similar to what is shown
in Fig. 1. The vortices for S < 3 are unstable (not shown).

To examine the potential experimental realizability of the
preceding wave forms, we consider a radial Gaussian beam
with topological charge S = 4 of the form eiSθ−(r−R)2/(2b2),
with (r,θ ) denoting polar coordinates, R = 8.5, approximately
the radius of the contour, and b = 1, as an initial condition of
the system with saturable nonlinearity. In order to prevent the
inevitable radiation from scattering back from the boundaries
of the computational domain, we employ an extra term −i


on the right-hand side of Eq. (1) with 
 = 1 − tanh(D − r).
With D = 16, this layer initially absorbs the shed radiation
and, subsequently, affects the intensity distribution very little.
However, the phase dynamics may be sensitive to the presence
of such a layer. Imposing a wider dissipation layer, with
D = 24, the solution actually never settles into one of constant
charge; this topological instability effect has been analyzed,
for example, in [25–28]. Specifically, vortices may nucleate
in the very low-amplitude region and pass in and out of
the main configuration (without affecting its intensity). Note
that the above suggests that such effects could be avoided
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FIG. 4. (Color online) (a.i), (b.i) Initial conditions and (a.ii), (b.ii)
profiles at a later time of the S = 4 and S = 2 radial Gaussian
initial conditions for a saturable nonlinearity, with a “tight dissipation
layer” (see text), D = 16. (c.i), (c.ii) Similar to the above plots but
for D = 24 and a modulated initial condition.

experimentally if some form of dissipation is imposed. For
comparison, we launch a similar initial condition with S = 2
and note that it never settles into a stable configuration of fixed
charge independently of the dissipation layer size (and despite
its seemingly robust intensity distribution).

Figures 4(a.i) and 4(b.i) present the initial conditions and
profiles for a long evolution Figs. 4(a.ii) and 4(b.ii) of the
S = 4 and S = 2 initial conditions, respectively, for saturable
nonlinearity and D = 16. The charge of each fluctuates,
as power is shed and vortices nucleate in the surrounding
low-amplitude regions and enter and leave the contour as the
solution traces a stationary state. However, for the S = 4 initial
condition, the field settles into a solution of constant charge
4 for D = 16, while for the S = 2 initial condition, the phase
continues to fluctuate throughout the numerical experiment.
These results are typical in this setting. For D large, the charge
may never settle (topological phase instability). However,
this does not contradict the linear stability results (which we
have confirmed separately for near-stationary configurations).
The intial condition eiSθ−(r−R)2/(2b2) cos2(5θ ) is far from a
stationary configuration and does not prevent contamination
of the resulting state by radiation. Although, for example,∑10

k=1 eikSπ/5−(x−cxk )2−(y−cyk )2
, with (cxk,cyk) the center of one

of the wells, is sufficiently localized, and with the latter initial
condition, we observe topological stability (indeed, without the
initial turbulent fluctuating regime) for S = 4 [see Fig. 4(c)]
but not for S = 2. Finally, Fig. 5 shows the evolution of un-
stable (S = 2) vortices in the presence of a cubic nonlinearity.
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FIG. 5. (Color online) Dynamics of the unstable S = 2 vortex
in the case of a cubic nonlinearity. Evolution of the same solution
with the same perturbation of random noise with 5% of the initial
maximum amplitude of the field can lead to (a) robust structures
that persist for long distances or (b) almost immediately collapse in
different trials.

The evolution depends sensitively on the particular initial con-
dition. Using the initial condition u = U (1 + X) with U the
stationary solution and X ∼ 0.05 maxx[U (x)] Uniform(0,1),
two different particular instances can lead to significantly
different dynamics. Either the phase merely reshapes, as for the

saturable nonlinearity, but the structure persists [see Fig. 5(a)],
or the solution collapses almost immediately, as shown by the
maximum amplitude of the field in Fig. 5(b). For larger additive
noise, collapse seems more likely from several sample trials.
The relevant mechanism involves one of the solution lobes ex-
ceeding a minimum collapse threshold, leading to an “in-lobe”
collapse.

We have demonstrated numerically stable vortices of
topological charge S = 3 in quasicrystals with n = 4 and
n = 5 directions of symmetry and S = 4 with n = 5, in the
cases of both cubic and saturable focusing nonlinearities. The
negative-energy modes for these configurations remain close to
the origin in the spectral plane, preventing collision with the
phonon band. Hence, the configurations can be experimentally
realizable in photonic quasicrystals in a photorefractive (or a
Kerr) medium. This has additionally been demonstrated by
simulation of the evolution of a radial Gaussian beam into such
robust vortex states. This is a prime prospect for an immediate
future experimental direction related to the present work.
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