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Quantum search by partial adiabatic evolution
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A quantum search algorithm based on the partial adiabatic evolution [Phys. Rev. A 80, 052328 (2009)] is
provided. We calculate its time complexity and find that the algorithm improves the time complexity, which is
O(

√
N/M), of the local adiabatic search algorithm [Phys. Rev. A 65, 042308 (2002)] to O(

√
N/M).
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I. INTRODUCTION

Quantum adiabatic computation has attracted a lot of
attention in the past decades, such as Refs. [1–9], since it
was proposed by Farhi et al. [10]. In Ref. [4], an adiabatic
algorithm was proposed to solve the Deutsch-Jozsa problem.
The algorithm took an exponential time, which provided only
a quadratic speed up over the best classical algorithm for the
problem. A modified algorithm proposed by Wei and Ying
[11] improved the performance to constant time. In Ref. [5],
quantum adiabatic computation was proved to be polynomially
equivalent to the quantum circuit model. The proof showed that
adiabatic quantum computation using Hamiltonians with long-
range five- or three-body interactions, or nearest-neighbor
two-body interactions with six-state particles, could efficiently
simulate the circuit model. This results were soon modified
to qubits with two-body interactions [12]. A simpler proof
of the equivalence was presented in Ref. [7]. In Ref. [13],
quantum adiabatic computation was applied to solve random
instances of NP-complete problems. A research outline of its
application to solve NP-complete problems can also be found
in the paper.

A typical quantum adiabatic algorithm starts with the
ground state of the initial Hamiltonian Hi , and evolves
slowly to the ground state of the final Hamiltonian Hf . The
system that implements the algorithm uses the time-dependent
Hamiltonian,

H (s(t)) = [1 − s(t)]Hi + s(t)Hf . (1)

The running time (evolution time) is essentially determined
by [1]

T � �

(
1

g2
min

)
, (2)

where

gmin = min[E(1,s) − E(0,s)] (0 � s � 1). (3)

E(0,s) and E(1,s) are the two lowest eigenvalues of H (s).
We can see that the evolution time defined by Eq. (2) is
determined only by the minimum energy gap. Note that, in
general, the evolution time of a quantum adiabatic process
cannot be determined only by the minimum energy gap. But
in quantum adiabatic computation, the system Hamiltonian is
usually chosen to be real and nonoscillating [6]. This means
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that the commonly used condition [14], which is reduced to
Eq. (2) by Tulsi in Ref. [1], is sufficient to guarantee the
adiabaticity of the system process [6,15,16].

Roland and Cerf [17] considered the unstructured search
problem [18], and designed a quantum search algorithm based
on local adiabatic evolution. In the algorithm, Hi and Hf are
specified as

Hi = 1 − |�〉〈�|, (4)

and

Hf = 1 − |β〉〈β|, (5)

where

|�〉 = 1√
N

N−1∑
i=0

|i〉, (6)

and |β〉 is an equal superposition of all marked states. The
algorithm can find one marked item in a running time of order√

N/M .
In Ref. [1], Tulsi proposed a partial adiabatic evolution

with Hf a one-dimensional projector Hamiltonian. It was also
checked in the paper that Roland and Cerf’s results (for the case
that there is only one marked state) can be obtained as a special
case of the partial adiabatic evolution. In this Brief Report, we
give a specified quantum search algorithm based on the partial
adiabatic evolution, and show that the algorithm provides a
better time complexity, which is O(

√
N/M), than that, which

is O(
√

N/M), of the local adiabatic search algorithm.
This Brief Report is organized as follows. In Sec. II, we

specify the partial adiabatic search algorithm. In Sec. III, we
calculate its time complexity. We conclude the Brief Report in
Sec. IV.

II. PARTIAL ADIABATIC SEARCH ALGORITHM

In this section, we specify the partial adiabatic evolution
[1] as a search algorithm. For convenience, we use different
notations. The search algorithm executes the four steps as
follows:

(1) The initial state is prepared to be |�〉.
(2) At t = 0, the Hamiltonian is suddenly changed to H (s−)

without disturbing state |�〉.
(3) The Hamiltonian evolves from H (s−) to H (s+) linearly

in time over duration T ′.
(4) Measure the state of the system.
Repeat these four steps until we find a marked state.
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Note that the sudden change in step (2) is not an adiabatic
process [the adiabatic evolution only occurs in step (3)], and
s− and s+ are used to define the time interval in which the
algorithm runs adiabatically, and are similar to the notations
µ− and µ+ in Ref. [1]. For the algorithm, they are specified
as s− = 1

2 − 1
2
√

N
and s+ = 1

2 + 1
2
√

N
. Because the algorithm

evolves adiabatically only within a small time interval [s−,s+],
it is called a partial adiabatic search algorithm. After step (2),
the system that implements the algorithm will still be in state
|�〉. That is, the system state will be the ground state of H (s−)
with probability |〈�|E(0,s−)〉|2. The adiabatic theorem [14]
guarantees that it will be the ground state of H (s+) with
probability |〈�|E(0,s−)〉|2 after step (3). Measuring the state
of the system will give the ground state of Hf = 1 − |β〉〈β|
with probability P = |〈�|E(0,s−)〉|2 × |〈β|E(0,s+)〉|2. We
call P one-round success probability, and accordingly, T ′ one-
round evolution time. The overall time complexity (evolution
time) of the algorithm is T = T ′/P . Here, T ′ = ω/g2

min, where
ω = s+ − s− = 1√

N
.

III. TIME COMPLEXITY

As we know, the minimum energy gap is gmin = √
M/N

[17]. This gives rise to the one-round evolution time T ′ =√
N/M . We turn to calculate the one-round success probability

in the following. To achieve this, we follow a good method
usually used to analyze the quantum search. That is, we work
in a two-dimensional Hilbert space spanned by the marked and
unmarked states. Let

|α〉 = 1√
N − M

∑
x �∈S

|x〉, (7)

|β〉 = 1√
M

∑
x∈S

|x〉, (8)

where S is the set of the marked states, and M is the number of
the marked states. Throughout this Brief Report, we suppose
S is not empty. This means that 1 � M � N . State |�〉 can be
rewritten as [19]

|�〉 =
√

N − M

N
|α〉 +

√
M

N
|β〉. (9)

Let the eigenspectrum of H (s) be

H (s)|E(k,s)〉 = E(k,s)|E(k,s)〉, (10)

where E(k,s) and |E(k,s)〉 are the k-level eigenvalue and
eigenstate of H (s), respectively. Throughout this Brief Report,
we only consider the two lowest eigenstates and eigenvalues
(i.e., k = 0,1). Left multiplying 〈α| to Eq. (10), we get

〈α|H (s)|E(k,s)〉 = E(k,s)〈α|E(k,s)〉. (11)

Substituting Eq. (1) into the left side of Eq. (11), we also get

〈α|H (s)|E(k,s)〉 = 〈α|E(k,s)〉 − (1 − s)〈α|�〉〈�|E(k,s)〉,
(12)

with 〈α|β〉 = 0. Combining Eqs. (11) with (12), we obtain

〈α|E(k,s)〉 = (1 − s)〈α|�〉〈�|E(k,s)〉
1 − E(k,s)

, (13)

when 1 − E(k,s) �= 0. Similarly,

〈β|E(k,s)〉 = (1 − s)〈β|�〉〈�|E(k,s)〉
1 − s − E(k,s)

, (14)

when 1 − s − E(k,s) �= 0.
Substituting Eqs. (13) and (14) into |〈α|E(k,s)〉|2 +

|〈β|E(k,s)〉|2 = 1(k = 0,1), we have
{

(1 − s)2A

[1 − E(k,s)]2
+ (1 − s)2B

[1 − s − E(k,s)]2

}
|〈�|E(k,s)〉|2 = 1,

(15)

when 1 − E(k,s) �= 0 and 1 − s − E(k,s) �= 0, where A =
|〈�|α〉|2 = N−M

N
and B = |〈�|β〉|2 = M

N
. If 1 − s �= 0, this

immediately gives

|〈�|E(k,s)〉|2 = 1

(1 − s)2
{

A
[1−E(k,s)]2 + B

[1−s−E(k,s)]2

} . (16)

Substituting Eq. (16) into Eq. (14), we get

|〈β|E(k,s)〉|2 = B{ [1−s−E(k,s)]
1−E(k,s)

}2
A + B

. (17)

Because

(1 − s−)2 = 1

4

(
1 + 1√

N

)2

< 1, (18)

A

[1 − E(0,s−)]2
< 4, (19)

and

B

[1 − s− − E(0,s−)]2
< 4, (20)

we obtain

|〈�|E(0,s−)〉|2 > 1
8 . (21)

using Eq. (16).
In addition,

1 − s+ − E(0,s+)

1 − E(0,s+)
<

√
2M

N
=

√
2B, (22)

we obtain

|〈β|E(0,s+)〉|2 > 1
3 , (23)

using Eq. (17). We finally get a lower bound of the one-round
success probability,

P =
∣∣∣∣
∣∣∣∣
∣∣∣∣
〈
�

∣∣∣∣E
(

0,
1

2
− 1

2
√

N

)〉∣∣∣∣
∣∣∣∣
∣∣∣∣
2∣∣∣∣
∣∣∣∣
∣∣∣∣
〈
β

∣∣∣∣E
(

0,
1

2
+ 1

2
√

N

)〉∣∣∣∣
∣∣∣∣
∣∣∣∣
2

>
1

24
, (24)

with Eqs. (21) and (23). As a result, the overall time complexity
of the partial adiabatic search algorithm is T = T ′/P =
O(

√
N/M).
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IV. CONCLUSION

We have provided a quantum search algorithm based
on the partial adiabatic evolution. As we have seen, the
minimum energy gap along with the one-round success
probability determines the overall time complexity of the

algorithm. It is proved that the one-round success proba-
bility is bounded from below by a constant, and hence,
the overall time complexity is O(

√
N/M), which pro-

vides a speed up of
√

M over the local adiabatic search
algorithm.
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