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Entangling power and local invariants of two-qubit gates
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We show a simple relation connecting entangling power and local invariants of two-qubit gates. From the
relation, a general condition under which gates have the same entangling power is derived. The relation also
helps in finding the lower bound of entangling power for perfect entanglers, from which the classification of
gates as perfect and nonperfect entanglers is obtained in terms of local invariants.
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Entanglement, a nonlocal property of a quantum state,
is regarded as a resource for realizing various fascinating
features such as teleportation, quantum cryptography, and
quantum computation [1,2]. On one side, much work has been
carried out to understand and exploit the entanglement for
various information processing. On the other side, attention
has been given to quantum operations (gates) as they are
responsible for creating entanglement when acting on a
state.

Since two-qubit gates are capable of producing entangle-
ment, it is of vital importance to understand their entangling
characterization. One such useful tool is the entangling
power of an operator ep(U ), which quantifies the average
entanglement produced [3]. Another tool to characterize the
nonlocal attributes of a two-qubit gate is local invariants,
namely, G1 and G2 (first introduced in Ref. [4]), such that gates
differing only by local operations possess the same invariants.
Furthermore, nonlocal two-qubit gates form an irreducible
geometry of tetrahedron known as a Weyl chamber. Of all the
gates, exactly half of them are perfect entanglers (operators
capable of producing a maximally entangled state from some
input product state), and they form a polyhedron within the
Weyl chamber [5].

It is known that gates differing only by local operations
possess the same entangling power. Similarly, gates which are
inverse to each other possess the same entangling power. For
instance, SWAPα and SWAP−α gates assume the same entangling
power as they are inverse to each other. In our earlier study on
the geometrical edges of two-qubit gates [6], it was found
that gates which do not belong to the preceding category
also possess the same entangling power. For example, the
entangling power of the gates lying in the polyhedron edges
QP, MN, and PN are identical [6]. Motivated by this fact,
here we investigate the entangling power of two-qubit gates
in detail. In this Brief Report, we establish a simple relation
between the entangling power and local invariants. It is shown
that if the |G1| of two gates is the same, they possess the
same entangling power. The relation also facilitates in showing
that the minimum entangling power of perfect entanglers is
possessed by the three edges of the polyhedron mentioned
earlier. Furthermore, we find the conditions for the perfect
entanglers in terms of local invariants, which are useful for
the classification of two-qubit gates as perfect and nonperfect
entanglers.

Let us consider a general two-qubit gate U [7]:
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where c± = cos[(c1 ± c2)/2], s± = sin[(c1 ± c2/2], and [c1,

c2,c2] is the geometrical point of a two-qubit gate [4,5].
We note that the geometrical representation of two-qubit
gates (Weyl chamber) is described by c1 � c2 � c3 � 0.
The entangling capability of a unitary quantum gate can be
quantified by the entangling power, which is defined as [3,8]

ep(U ) = [E(U |�1〉 ⊗ |�2)]|�1〉⊗|�2 〉, (2)

where the overbar denotes the average over all product states
distributed uniformly in the state space. In the preceding
formula, E is the linear entropy of entanglement measure,
defined as

E(|�〉AB) = 1 − tr
[
ρ2

A(B)

]
, (3)

where ρA(B) = trB(A)(|�〉AB〈�|) is the reduced density matrix
of system A(B).

The expression to calculate the entangling power of a two-
qubit gate U is [3,9]

ep(U ) = 5
9 − 1

36 {〈U⊗2,T1,3U
⊗2T1,3〉

+ 〈(SWAP × U )⊗2,T1,3(SWAP × U )⊗2T1,3〉}, (4)

where 〈A,B〉 = tr(A†B) is referred to as the Hilbert-Schmidt
scalar product and T1,3 is the transposition operator, de-
fined as T1,3|a,b,c,d〉 = |c,b,a,d〉 on a four-qubit system.
In what follows, we use the definitions A = U⊗2, S =
SWAP⊗2, B = (SWAP × U )⊗2, and T = T1,3. Exploiting the
property of tensor products [10], (A1A2) ⊗ (B1B2) = (A1 ⊗
B1)(A2 ⊗ B2), we can write B = SA. With this, we have
〈B,TBT〉 = tr(A†S†TSAT), and hence the entangling power
can be rewritten as

ep(U ) = 5
9 − 1

36 [tr(A†TAT) + tr(A†S†TSAT)]. (5)

Using the fact that tr(A) + tr(B) = tr(A + B), we write the
entangling power as

ep(U ) = 5
9 − 1

36 [tr(A†RAT)], (6)
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where R = T + S†T S. Substituting Eq. (1) in the preceding
expression, after some simplifications, the entangling power
can be rewritten as

ep(U ) = 2
9 [1 − |G1|], (7)

where

|G1| = cos2 c1 cos2 c2 cos2 c3 + sin2 c1 sin2 c2 sin2 c3. (8)

Thus we obtain a simple relation between the entangling power
ep and the local invariant G1 of a two-qubit gate. The relation
also implies that gates having the same |G1| must necessarily
possess the same ep. Since the invariant G1 for a gate and its
inverse are complex conjugate to each other, both gates will
have same ep. Since 0 � |G1| � 1, it is evident that 0 � ep �
2/9. Here we note that Eq. (7) can also be rewritten as [7]

ep(U ) = 1
18 [3 − (cos 2c1 cos 2c2 + cos 2c2 cos 2c3

+ cos 2c3 cos 2c1)]. (9)

In our earlier study on the geometrical edges of a poly-
hedron, it was shown that ep = 1/6 for the edges QP, MN,
and PN [6]. In terms of Eq. (7), this result is understandable
as |G1| = 1/4 for all these edges. We also note that the
identical parameter dependence of ep for the other edges of the
polyhedron, LQ, LN, and A2P, is also reflected through their
|G1| [6]. Furthermore, Eq. (7) is also useful in identifying
the gates with maximum and minimum ep. If ep = 2/9,
|G1| = 0, which is possible only for [π/2,ϕ,0], where 0 �
ϕ � π/2. These gates correspond to the well-known family
of special perfect entanglers (SPE) [7]. If ep = 0, |G1| = 1,

which is possible only for (i) [0,0,0], a local gate, and (ii)
[π/2,π/2,π/2], a SWAP gate.

A two-qubit gate is called a perfect entangler (PE) if it
produces a maximally entangled state for some input product
state. Considering the symmetry in the maximal entanglement
production by the gates, we confine our attention to one
half of the Weyl chamber: π/2 � c1 � c2 � c3 � 0. If the
geometrical points are such that

(A) c1 + c2 � π/2 and (B) c2 + c3 � π/2, (10)

then the corresponding gate is a perfect entangler [11].
Having known that SPE possess the maximum ep, here we

exploit Eq. (7) to identify PEs which possess minimum ep. In
other words, we find PEs which possess maximum |G1|. Let
us rewrite the first term of Eq. (8) as

cos2 c1 cos2 c2 cos2 c3 = {[cos(c1 + c2)

+ cos(c1 − c2)]2 cos2 c3}/4. (11)

Imposing the condition (A) implies that −1 � cos (c1 + c2) �
0 and 0 � cos (c1 − c2) � 1. Then |G1| has the maximum
value of 1/4 only for c1 = c2 = π/4, for which the condi-
tion (B) becomes 0 � c3 � π/4. In other words, the edge
QP [π/4,π/4,η] with 0 � η � π/4 is such that |G1| = 1/4
and hence ep = 1/6 [6]. It is worth recollecting that if
[c1,c2,c3] is a perfect entangler, then [π − c1,c2,c3] is also
a perfect entangler. Since the edge QP [π/4,π/4,η] is a PE,

the edge MN [3π/4,π/4,η] is also a PE with ep = 1/6. In a
similar way, the second term of Eq. (8) is rewritten as

sin2 c1 sin2 c2 sin2 c3 = {sin2 c1[cos(c2 − c3)

− cos(c2 + c3)]2}/4. (12)

Imposing the condition (B) implies that 0 � cos (c2 + c3) � 1
and 0 � cos (c2 − c3) � 1. Then |G1| has the maximum value
of 1/4 only for c2 = c3 = π/4, for which the condition
(A) becomes π/4 � c1 � π/2. In other words, the gates
[π/4 + θ,π/4,π/4] with 0 � θ � π/4 are such that |G1| =
1/4 and ep = 1/6. Since the gates [π/4 + θ,π/4,π/4] are PEs,
the gates [3π/4 − θ,π/4,π/4] are also PEs with ep = 1/6.
Alternatively, the edge PN [π/4 + η,π/4,π/4] with 0 � η �
π/2 is a PE having ep = 1/6. From the preceding analysis,
it is clear for the PE that 1/6 � ep � 2/9. In this range, SPE
possess the maximum and the polyhedron edges QP, MN, and
PN possess the minimum. In terms of local invariant G1, the
preceding inequality reads as 0 � |G1| � 1/4.

Having found the range of G1, the following theorem
identifies the range of local invariant G2 for PEs.

Theorem 1. PEs are such that −1 � G2 � 1.
Proof. The expression for G2 is as given in Ref. [5],

G2 = 4 cos2 c1 cos2 c2 cos2 c3 − 4 sin2 c1 sin2 c2 sin2 c3

− cos 2c1 cos 2c2 cos 2c3, (13)

or [7],

G2 = cos 2c1 + cos 2c2 + cos 2c3. (14)

The preceding expression is rewritten as

G2 = 2 cos(c1 + c2) cos(c1 − c2) + cos 2c3. (15)

On imposing the condition (A), we have −1 � cos (c1 + c2) �
0 and 0 � cos (c1 − c2) � 1. Then G2 has the maximum value
of 1 for c1 = π/2 − θ , c2 = θ , and c3 = 0. In other words, the
edge LQ [π/2 − θ,θ,0] of a Weyl chamber with 0 � θ � π/4
is such that G2 = 1 [6]. Similarly, G2 takes the minimum value
of −1 for c1 = c2 = π/2 and c3 = 0, which corresponds to the
double controlled-NOT operation (DCNOT). Hence the proof is
completed.

From the earlier analysis on G1, we observe that all the PEs
lie within the range 0 � |G1| � 1/4. It is worth mentioning
that non-PEs are also found within this range, for example,
some controlled unitary gates [6]. In order to classify the gates
based on the local invariants, we prove the following theorem.

Theorem 2. Non-PEs lie within the range 0 � |G1| � 1/4
do not satisfy −1 � G2 � 1.

Proof. Consider all the non-PEs within the range 0 �
|G1| � 1/4, for which the condition (A) or (B) must be
violated. Violation of both (A) and (B) amounts to violation of
the Weyl chamber condition: π/2 � c1 � c2 � c3 � 0. First,
let us assume that (A) is violated, that is, c1 + c2 < π/2. This
implies that 0 < cos (c1 + c2) � 1 and 0 < cos (c1 − c2) � 1,

and G2 takes the maximum value of 3 for c1 = c2 = c3 = 0
(local gate). In order to find the minimum value of G2,
we take c1 + c2 = π/2 − ε and c1 − c2 = π/2 − δ, where
0 < ε < δ � 1. Then, the minimum value of G2 is 1 + 3εδ

for c1 = (π − ε − δ)/2, c2 = c3 = (δ − ε)/2. Second, let us
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consider that (B) is violated, that is, c2 + c3 > π/2. Rewriting
Eq. (14) as

G2 = cos 2c1 + 2 cos(c2 + c3) cos(c2 − c3), (16)

we have −1 � cos (c2 + c3) < 0 and 0 < cos (c2 − c3) � 1.
Then the minimum value of G2 is −3 for c1 = c2 = c3 = π/2
(SWAP gate). For the maximum value of G2, we take c2 + c3 =
π/2 + ε and c2 − c3 = π/2 − δ. With this, the maximum
value of G2 is −(1 + 3εδ) for c1 = c2 = (π + ε − δ)/2, c3 =
(ε + δ)/2. Hence non-PEs which violate (A) or (B) do not fall
in the range −1 � G2 � 1, and the proof is completed.

From theorem 2, we conclude that PEs satisfy

(C) 0 � |G1| � 1/4 and (D) − 1 � G2 � 1, (17)

and the gates that do not satisfy both these conditions are
non-PEs. It is easy to recognize that Eq. (17) and Eq. (10)
are equivalent. Thus the local invariants associated with a gate
are found to be useful for the classification as perfect and
nonperfect entanglers. It is worth emphasizing that Eq. (17)
involves two parameters, namely, |G1| and G2, while Eq. (10)
involves three geometrical parameters.

In this work, we have shown a simple relation between
entangling power ep and local invariant G1 of a two-qubit
gate. The relation implies that the gates with the same |G1|

possess the same entangling power. Thus the local invariant
G1 of a gate also signifies the average entanglement produced.
Gates differing only by local operations have same G1 and
hence ep. Since the invariant G1 for a gate and its inverse
are complex conjugate to each other, both gates will have
same ep. It is identified that three geometrical edges of the
polyhedron, namely, QP, MN, and PN, are such that |G1| =
1/4, and hence ep = 1/6. It is shown for perfect entanglers
that 1/6 � ep � 2/9 or 0 � |G1| � 1/4 such that ep = 1/6
for the preceding three edges and ep = 2/9 for special perfect
entanglers.

Furthermore, the local invariant G2 for the perfect entan-
glers are such that −1 � G2 � 1. From the obtained range
of local invariants G1 and G2, it is shown that the invariants
are also useful in classifying the two-qubit gates as perfect
and nonperfect entanglers. It is worth noting that the obtained
classification based on local invariants does not require the
geometrical point of a gate.
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